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ABSTRACT
Cross-media retrieval is a problem of high interest that is at the
frontier between computer vision and natural language processing.
The state-of-the-art in the domain consists of learning a common
space with regard to some constraints of correlation or similarity
from two textual and visual modalities that are processed in paral-
lel and possibly jointly. This paper proposes a different approach
that considers the cross-modal problem as a supervised mapping of
visual modalities to textual ones. Each modality is thus seen as a par-
ticular projection of an abstract meta-concept, each of its dimension
subsuming several semantic concepts (“meta” aspect) but may not
correspond to an actual one (“abstract” aspect). In practice, the tex-
tual modality is used to generate a multi-label representation, further
used to map the visual modality through a simple shallow neural
network. While being quite easy to implement, the experiments
show that our approach significantly outperforms the state-of-the-art
on Flickr-8K and Flickr-30K datasets for the text-illustration task.
The source code is available at http://perso.ecp.fr/∼tamaazouy/.
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1 INTRODUCTION
Many works deal with multi-modal tasks, either to retrieve an image
given a text query (text illustration) or to linguistically describe an
image (image captioning) or to classify bi-modal documents. Most
of these approaches aim at learning a joint embedding for both
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Figure 1: Given an input text (a) and an input image (b),
our method computes the AMECON-features for each modal-
ity (textual (c) and visual (d)) and matches them in the AME-
CON Space (e). The key novelty of our approach is that, each
dimension of our AMECON representation (each bar in (c) and
(d)) corresponds to the output probability of an abstract meta-
concept detector applied on the input data. For instance, here
the two input data are close together in the AMECON space
(e) since they both have the same three abstract meta-concepts
(identified by circles on features) that are highly activated. The
size of the arrows (A) and (B) highlights the asymmetry of our
approach. In fact, it shows that more computations are needed
to project (on the AMECON space) the visual features than the
textual ones. Best view in color.

modalities into a common latent space, in which vectors from the
two different modalities are directly comparable [7, 11, 16, 17, 32].

Two families of approaches emerge when reviewing the literature
about the design of such a common latent space. The first, specifi-
cally focuses on learning the latent space from existing textual and
visual features. These last, typically result from an embedding rep-
resentation, such as the word2vec [22] features for textual content
and one layer from a pre-trained Convolutional Neural Network
(CNN) [3, 25] for the visual modality. Then, the latent space is
learned according to a certain principle from aligned textual and vi-
sual data described with these features. By “aligned data”, one must
understand that an image is for example aligned with its caption,
in the sense that their respective contents are supposed to match.
Regarding the principle used to learn the latent space, the seminal
work of Hardoon [11] consisted in maximizing the correlation of the
aligned data once projected in the common space. More recently,
Frome et al. [7] proposed a visual visual-semantic embedding that
maps the visual representation to the language model by learning a
similarity metric that produces a higher score for aligned data than
non-aligned ones. The second family of approaches relies on deep
networks to model a full multi-modal embedding. This is the case
of [16] who proposed to infer the correspondences between images
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and their sentence description. First, they use a Region Convolu-
tional Neural Network (RCNN) [8] as image representation and a
Bidirectional Recurrent Neural Network (BRNN) [24] to textual one.
Second, they define a loss that encourages aligned image-sentences
pairs to have a higher score than misaligned pairs. A RNN is then
learned to generate a description for new images. Another interest-
ing recent work is that of [35] who learn a text-image embedding
using a two-view neural network. Two layers of non-linearities are
used on top of a CNN-based visual representation and sentences
represented by Fisher vectors [19]. They define a loss that tends to
force aligned images and sentences to be reciprocal first neighbours
within the latent space. Other related works are detailed in Section 2.

Our initial motivation is the same as the work of [7], that aimed at
matching the visual and textual representations. However, our model
differs from the previous work by proposing very different pipelines
to process both modalities. Indeed, most of previous works use two
similar pipelines in parallel, one for each modality that only differ
by the features considered, then determine a method to design a
common space. We adopt a different point of view, considering that
the visual and the textual modalities should not (yet) be processed
symmetrically. It refers to the well-known semantic gap [26] that re-
flects the fact that textual features are closer to human understanding
(and language) than the pixel-based features. Despite the progresses
due to deep learning in visual recognition, we argue that gap is
still relevant to consider. We thus propose to consider the Abstract
MEta-CONcept (AMECON) principle for a multi-modal (texts and
images) alignment. As explained in the following, the AMECON
models a higher-level representation of the human knowledge, that
is “meta” since each of its dimension subsumes several semantic
concepts and “abstract” because each of them may not correspond
to a unique existing semantic concept.

A semantic concept can be named by a word from the vocabulary
of a given language. In line with [1, 10, 27], a meta-concept is de-
fined by a concept subsuming several semantic concepts. Moreover,
a concept can be qualified as abstract when it does not reflect a no-
tion that is explicit in a given language. For example, it is sometimes
handy to use some words from a foreign language when it does not
really exist in ours. However, in the case of AMECONs, they can
be even more abstract, in the sense they can represent some notion
where seemingly unrelated concepts can be mapped together because
of some invisible intrinsic quality that they share but which is not
obvious to humans. We consider that each modality, namely visual
and textual, described in its original feature space is an (imperfect)
observation of the AMECON space from a particular point of view.
A key particularity of our approach is that the mapping from one
modality to this space is specific to said modality. For reasons given
above, the proposed AMECON space is much closer to the textual
embedding space than to the visual one. In practice, on the one
hand, the textual modality is mapped through vector quantization
of the textual features, because we consider they are close enough
from the human conceptual space. On the other hand, we learn a
mapping from the visual modality to the AMECON space with a
multi-layer perceptron. It takes the visual features as input and the
target (labels) are derived from the textual features by local hard
coding. An overview of our approach is illustrated in Figure 1.

Our proposal is thus a new method to build a multi-modal com-
mon latent space. It particularly, matches visual content to sentences

and thus aims to perform cross-modal or bi-modal tasks. In this
paper, we focus on the Text-Illustration task (i.e., retrieve best im-
ages from a textual query). While being quite easy to implement,
our method exhibits performance above the current state-of-the-art
on Text-Illustration. Indeed, we conducted extensive experiments
(in Sec. 4) on two publicly available benchmarks, namely Flickr-8k
and Flickr-30k, on which our method significantly outperforms the
previous works. We also conducted (in Sec. 5) an in-depth analysis
of the proposed model to highlight its insights, including an ablation
study that shows the relative importance of each component.

2 RELATED WORK
In its seminal work on the design of common space to visual and
textual data, Hardoon proposed to maximize the correlation between
the projections of both modalities using the Canonical Correlation
Analysis (CCA) and its kernelized version (KCCA) [11]. This work
has then be extended by [9] who added a third view that reflects the
“semantic classes” derived from the ground-truth or the keywords
used to download the images. This work also proposed to derive
this third view from unsupervised clustering of the tags to avoid the
use of ground truth. While being very different from our approach
since it relies on a symmetric projection of both modalities through
KCCA, such a clustering of tags relates to the process we use to
define the projection of the textual features on the AMECON space.
However, while [9] uses the clusters to define a third view that is
further projected on the KCCA space, our approach uses it as a
codebook to directly encode the textual projection.

In the vein of reflecting semantics, [4] proposed to build semantic
features into the common space, that is to say to create a signature
where each dimension is a given semantic concept that is estimated
by a learned binary classifier [31]. Contrary to ours, these concepts
are neither meta nor abstract. However, one could image to apply
the approach of [1] to get meta-concepts in the common space. Still,
a major difference with our work is that each concept is obtained by
supervised classification, while in our case, the abstract concepts
deeply result from an unsupervised approach.

A major drawback of KCCA-based approaches is their tendency
to group the projections with respect to each modality rather than
the actual semantic of the content. To compensate this effect, [32]
proposed to quantify the common space then code each modality
according to the resulting codebook. Their method also include
a “completion” of each projected modality. Such a completion
compensates the modality separation identified in the common space
and can be effective for retrieval even without quantization [33].

Rather than relying on an a priori principle such as maximizing
the correlation, other works consider deep neural networks with
other type of constraint. Ngiam et al. [23] used a deep autoencoder
to learn a common space for videos and speech audio data. It allows
them to manage the absence of a modality and thus perform cross-
modal retrieval. As already cited in the introduction, Frome et al.
proposed DeViSE [7] that learns a similarity metric between the top
layer of a visual network and a skip-gram text model (word2vec),
optimizing an objective function that forces the similarity of a given
image to the relevant label to be higher than that to other randomly
chosen text terms. This is probably the work that is closer to ours, in
the sense that it tries to directly match the visual representation to the



AMECON: Abstract Meta-Concept Features for Text-Illustration ICMR’17, June 06-09, 2017, Bucharest, Romania

textual one. However, our work differs from them on several points.
Indeed, our approach transforms explicitly the textual information
into labels to use a supervised classification scheme to map the vi-
sual representation. Thereby, the advantage of our approach is to
design a non-linear mapping between both modalities while DeViSE
only proposes a linear transformation between the original features.
In [17] and [16], visual data is also aligned with sentences, thanks to
a structured loss that forces aligned sentences and images to be close
reciprocal neighbours. In the same vein but with a lighter architec-
ture [35] tends to preserve the local neighbourhood of corresponding
text and images by forcing the distances of correct matches in the
latent space to be smaller than the wrong ones. The main difference
between our approach and these deep learning-based approaches is
that they rely on a quite symmetric scheme where both modalities
are processed similarly. While our asymmetric approach seems more
straightforward, it remains conceptually simpler and has much better
performances.

Let note that, a recently released pre-print [6] also proposes an
asymmetric method that matches text features to CNN-based image
representations. The key differences with our work is the mapping
as well as the common space. In fact, our common latent space is
based on the proposed AMECON principle while they directly use
the original visual features as the common space. Also interesting,
the asymmetry of both approaches limits the performances on the
inverse cross-modal task. Indeed, our method works very well on
Text-Illustration but does not work so well on the inverse task (i.e.,
image-captioning). The same phenomenon seems to appear in [6],
since they only evaluate their method on image-captioning. Hence,
for these asymmetrical approaches, getting good performances on
one direction of cross-modal task when building the common latent
space on the inverse direction, remains an open problem.

3 PROPOSED APPROACH
Our approach to build a multi-modal common space is named “Ab-
stract Meta-Concept” (AMECON). It consists to match texts and
images in an AMECON common latent space (described in Sec. 3.1)
where the cues (visual, textual or both) contribute to activate the
different abstract meta-concept detectors. In Sec. 3.2, we describe
how to learn the abstract meta-concepts and how to generate AME-
CON features for the text modality. Sec. 3.3 details the learning of
AMECON features for the visual modality. In this paper, we focus
on the application of AMECON to the Text-Illustration task.

3.1 AMECON Space
Let first recall that a semantic-concept is any word (associated to a
particular notion) from the real-world vocabulary used by humans
(e.g, bicycle plant, bird, etc.).

Definition 1. An abstract meta-concept is both, an abstract con-
cept and a meta-concept. An abstract concept describes a concept
that is not associated to a semantic connotation (that does not exist in
the real-world vocabulary used by humans) and a meta-concept is a
concept that subsumes others (at least one). Note that, the subsumed
concepts can be either semantic or even abstract.

Figure 2: Illustration of the proposed AMECON principle.
Given a set of words from a training corpus (a) and their pro-
jection in a word embedding space (b), our method clusters
the space (c) such that each cluster is an abstract meta-concept
that corresponds to an abstract concept (do not exist in the real-
world) and a general concept (group of concepts). For instance,
the blue cluster in (c) is general since it subsumes the vectors of
many words and is abstract since no semantic connotation can
be attributed to it. Indeed, the abstraction comes from the fact
that inside the group, the words are not semantically related
which makes the group noisy and thus prevents a human to at-
tribute it a correct semantic concept. Best view in color.

Definition 2. An abstract meta-concept detector (χi (x)) is a vi-
sual χVi (x) or textual χTi (x) classifier that takes as input a mid-level
representation (visual xV or textual xT ) of an input data and an
AMECON-model (that has been learned with positive and negative
samples of that abstract meta-concept) and returns the probability of
presence of that abstract meta-concept given the input data.

Let us consider a visual representation of an image I noted χV

and a linguistic representation of a text T noted χT , such that each
dimension χVi or χTi reflects the same abstract meta-concept. Their
integration into a unique multi-modal description χ results from
a scheme where each representation (visual or textual) is an im-
perfect representation of the corresponding abstract meta-concept.
Therefore, we name “AMECON Space” the space containing these
abstract meta-concept and illustrate the principle in Figure 1.

Formally, the proposed multi-modal representation corresponds
to a C-dimensional vector χ (x) = [χ1(x), . . . , χC (x)], where each
dimension χi (x) is the output of an abstract meta-concept classifier
that can be obtained by one or both modalities. More specifically,
χi (x) =max(χTi (x), χ

V
i (x)) with χTi (x) and χVi (x) are respectively

the textual and visual abstract meta-concept detectors. Note that, we
have as many visual classifiers as textual ones, thus the visual (χV )
and textual representation (χT ) are both of size C.

This scheme has the advantage to consider both modalities for
bi-modal tasks (bi-modal retrieval and classification) or only one
modality for mono-modal tasks (cross-modal retrieval and classi-
fication). More precisely, in the former case, it is straightforward
to compute χi (x) since both modalities are available while in the
latter case, where only one modality is available, we set the output
values (of the detectors) of the missing modality to zero, resulting to
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Figure 3: Illustration of the proposed textual AMECON-
features. Given an input caption (a), our method first selects
the non stop-words (coloured in gray), computes their mid-level
features and projects them in the clustered word embedding
(b) that corresponds to our AMECON space. After the projec-
tion, when a word embedding representation falls in an abstract
meta-concept (e.g, blue cluster), its associated dimension is acti-
vated (e.g, 3rd dimension). All other dimensions are filled with a
zero-value. Applying this process on all the selected words and
pooling their binary textual AMECON features together, results
in a binary multi-label representation (c). Best view in color.

consider only the available modality. Moreover, for cross-modal re-
trieval where we need to retrieve the nearest documents from another
modality, we simply use the k-Nearest Neighbours (k-NN) algorithm
since both modalities are represented in the same AMECON space.

3.2 Textual AMECON-Features
3.2.1 Learning the AMECONs. We propose to learn the ab-

stract meta-concepts (AMECONs) using unsupervised clustering.
Hence, the AMECONs verifies its two definitional characteristics:
(i) it groups similar data into a generic cluster that thus corresponds
to a meta-concept and (ii) because of the unsupervised aspect, the
resulting clusters do not have any explicit semantic connotation
(i.e do not exist in the real-world vocabulary of humans) making
them abstract-concepts. More generally, AMECONs are obtained
through unsupervised clustering of textual mid-level features (e.g.,
word2vec [22]). In that sense, our method adopts a “bottom-up”
approach, generating high-level knowledge from low-level data in
the same vein as [1] for the meta aspect. Note that, in [27] and [10],
the meta concepts are obtained through manual annotations. An
illustration of our AMECON principle is given in Figure 2.

To learn the AMECONs in practice, we collect all the words of
a training corpus and represent them in an embedding space (e.g.,
word2vec) of dimension d. Then, we group the word vectors rep-
resentations using a clustering algorithm (e.g K-means) that results
into C clusters (C being chosen arbitrarily or obtained through cross-
validation). Each cluster is an AMECON that is represented by
the corresponding cluster-center (ci)i=1, ...,C ∈ Rd . Hence, within
an AMECON cluster, words have similar semantic connotations
(i.e., similar in the sense of the word representation used). Here,
we used the K-means algorithm for clustering but obviously, other
unsupervised algorithms (e.g., spectral-clustering, MeanShift, etc.)
could be used. Note that, the number of AMECONs (C) directly
corresponds to the dimensionality of the AMECON Space presented
in the previous section.

3.2.2 Learning the Textual AMECON-Features. The set of
C abstract meta-concepts is now seen as a codebook that we use to
encode any piece of information. In the case of textual information,
we adopt a coding scheme similar to local soft coding [20], origi-
nally introduced as locality-constrained linear coding [34], that is
nevertheless binarized. Given a caption T composed of n words,
we compute the mid-level representation xTj ∈ R

d of each word,

resulting into a set of n vectors {xTj }j=1, ...,n in the word embedding
space.

The jth word is then encoded according to the codebook in the
C-dimensional vector, its kth dimension being:

χTbin, j (k) =
{

1 if k ∈ NNm (xTj )
0 otherwise

(1)

where NNm (xTj ) is the set of indexes of the m nearest AMECON

clusters of xTj in the word embedding space. It is thus a “local hard

coding” of xTj according to the codebook. We add the index notation
.bin to highlight it is a binary vector. The parameter m can be set
arbitrarily or determined by cross-validation. The representation, in
this C-dimensional space, of the ith caption result from the pooling
of its word’s representation:

χTbin,i = P
j=1...n

(χTbin, j ), (2)

where P is the pooling operator that can be max or sum pooling. In
the following we use the same notation for the representation of a
word j and that of caption i since both of them lie in the same space.
Our proposal to compute the textual AMECON-features for an input
caption is illustrated in Figure 3.

3.3 Visual AMECON-Features
In this section, we describe the proposed method to learn and com-
pute the AMECON-features for the image modality. More precisely,
we first represent images through mid-level features extracted from a
pre-trained CNN. Our goal is to project these mid-level features into
the learned AMECON Space. To do this, we propose (in Sec. 3.3.1)
to approach the projection problem as a classification problem with
CNN features as inputs and the corresponding textual AMECON-
features as ground-truth labels. We then, propose (in Sec. 3.3.2) to
solve this classification problem using a shallow neural network.

3.3.1 Textual AMECON-Features as Image Labels. At the
core of our approach, we associate visual mid-level features to
binary textual AMECON features. It is posed as a classification
problem with CNN features as input data and AMECON features
as ground-truth labels. Indeed, the textual AMECON features being
binary, they can be used as ground-truth labels for a multi-label
supervised classification problem (reduced to a single label if the
textual document is a unique word). Figure 4 illustrates the pipeline.

Formally, let consider a training database D containing N pairs
of text-image (Ti , I i ). From each image I i and caption Ti , we
respectively extract their mid-level features xVi and xTi . For each
textual mid-level features we compute the corresponding AMECON-
features as depicted in Sec. 3.2. We then use these binary features as
ground-truth labels (during training) for the visual mid-level features
xVi . In the next section, we describe the classification algorithm used
to solve this multi-label classification problem.



AMECON: Abstract Meta-Concept Features for Text-Illustration ICMR’17, June 06-09, 2017, Bucharest, Romania

Figure 4: Illustration of the learning of the visual AMECON
features. Given an input image (b) and its associated caption
(a), we first represent the three selected words and the image
through mid-level features (one layer of a CNN (d) for the im-
age and word2vec features (c) for the words). Then, we project
the word2vec features in the AMECON space (e) and compute
the binary textual AMECON-features χTbin of the caption. This
latter, is then used as output layer (ground-truth label for the in-
put image vector). A shallow neural-network is finally learned
to map from the CNN features to the binary textual AMECON-
features. Best view in color.

3.3.2 Learning the Visual AMECON-Features. To learn the
mapping of visual mid-level features to the AMECON Space, we
use a shallow neural-network classification algorithm. Formally, let
re-consider the training database D of N text-image pairs (Ti , I i ).
Each image I i is represented as mid-level features xVi – e.g one layer
of a pre-trained CNN – and its corresponding caption is represented
using textual mid-level features xTi which are mapped to binary
textual AMECON features χTbin,i that result from the aggregation
via Eq. (2). As depicted in the previous section, the mid-level visual
features xVi are used as inputs and the textual features χTbin,i are
used as ground-truth labels.

To solve the above classification problem, we use an L-layer
perceptron. The input layer is the visual mid-level features xV ,
the output layer is the predicted visual AMECON representation
χV , and the neural network contain L − 1 hidden layers. More
concretely, by applying an affine transformation on s(xV ), followed
by an element-wise ReLU activation f (z) =max(0, z) we obtain the
first hidden layer h1(xV ) of the L-layer neural-network through:

h1(xV ) = f (W1xV + b1). (3)

The following hidden layers are expressed by:

hl (hl−1) = f (Wlhl−1 + bl ),∀l ∈ [2, . . . ,L − 2], (4)

whereWl parametrizes the affine transformation of the lth hidden
layer and bl are the bias terms. In the same vein, we compute the
output layer χV by:

χV (hL−1) = σ (WLhL−1 + bL), (5)

where σ (z) = 1
1+e−z is the sigmoid function that maps the raw scores

to the predicted probabilities. We then implement the sigmoid cross-
entropy loss function L that is computed for N samples through:

L = 1
N

N∑
i=1

χTbin,i log(χ
V
i ) + (1 − χTbin,i )log(1 − χVi ), (6)

where χTbin,i and χVi are the C-dimensional AMECON features

for the ith example. The use of a sigmoid cross-entropy loss is
better adapted to the multi-label problem than the commonly used
softmax loss, since it leads to model the marginal probabilities while
softmax leads to model the joint probability of the prediction. The
cost function L is then minimized through asynchronized stochastic
gradient descent.

Note that the training datasetD is composed of real-world images
and texts that may contain very rich information. For instance, sen-
tences may contain many entities and relations between them while
images may contain very localized entities. Thus, it is important
to consider this complex information in our model. For the text
modality, our textual AMECON feature directly models this rich
information by considering each word (that corresponds to local
information) separately before pooling them together. Regarding
the image modality, we follow the local schemes of [3, 29] which
models the rich information through the pooling of features ex-
tracted from local regions. Practically, we extract a set of R regions
{Ri , i ∈ [1,R]} that have been identified into an image I . From each
region, we extract a visual mid-level feature xV ,Ri . Then, all these
local features are pooled into a global representation of the image
through:

xV = P
i=1...R

(xV ,Ri ), (7)

where P is the pooling operator (max or sum). The resulting mid-
level visual features xV that models the local information of images
are thus used as inputs of the neural-network.

During the test phase, given an input image, we extract its mid-
level features according to Eq. (7), then compute its projection into
the AMECON space through a forward pass on the learned network,
which results in the predicted visual AMECON feature χV . In this
space, features that are projection from visual and textual data are
directly comparable which allows us to perform multi-modal tasks.

4 EXPERIMENTS
In this section, we evaluate the performance of our approach in
a cross-modal retrieval task namely “Text-Illustration” (i.e retriev-
ing the best representative images given a text query) through two
datasets. Before comparing the results of our method to the state-of-
the-art in Sec. 4.3, we describe (in Sec. 4.1) the different datasets
that we use and the implementation details (in Sec. 4.2).

4.1 Datasets
We evaluate our system on two commonly used datasets for the
task of Text-Illustration, namely Flickr-8K [13] and Flickr-30K [37].
Both of them contain images from Flickr groups, but they differ
by their size. In fact, the former (Flickr-8k) contains 8, 000 images
while the latter consists of 31, 783 images. Moreover, each image is
associated to five captions (sentences) thus, they also differ by their
number of texts, i.e., 40, 000 captions for Flickr-8k and 158, 915 for
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Flickr-30k. We use the official training, validation and testing splits
that consists of 6,000 images in Flickr-8k and 29, 783 in Flickr-8k
for training, and 1, 000 images for validation and test sets in both
datasets. In each subset, the images are associated to their five
captions. Since, even the test images are associated to five captions
and not one, different evaluation protocols have been used in the
literature. Thus, we used the most common protocol [16, 17, 36]
where each caption is treated individually – i.e. each of the 5, 000
captions has to be illustrated by one image from the whole test set of
1, 000 images. For both datasets, we adopt recall at top K retrieved
results (denoted R@K in the following) as an evaluation metric. We
follow the literature and set K ∈ {1, 5, 10}.

4.2 Implementation Details
Representations: For all experiments, the mid-level features used
to represent words and images are respectively the word2vec [22]
representation (300-dimensional vector) and the penultimate fully-
connected layer (4096-dimensional vector) extracted from a pre-
trained CNN. Once the mid-level features are computed for each
modality, they are projected in the AMECON Space (Sec. 3.1). More
precisely, each textual caption is represented through the binary tex-
tual AMECON feature, as depicted in Sec. 3.2.2 (with max-pooling
for P) and each image is represented through the visual AMECON
features with respect to the method described in Sec. 3.3.2. Note that,
for the captions, we apply pre-processing that aims to remove stop-
words following the pipeline provided by [2]. It is also worth noting
that during training, each image I i is associated to five captions
(Ti1 , . . . ,T

i
5 ). Thus, we use them as five different training exam-

ples that result in the following set of text-image pairs {(I i ,Ti1 ), . . .,
(I i ,Ti5 )}. Regarding, the CNN features used to represent images, we
used the pre-trained VGG network of [30] that has been trained on a
diversified set of ImageNet [5], which gives slightly better results
than the standard VGG [25]. Note that, our method could also bene-
fit from other best representations such as [12, 14, 28]. As depicted
in Sec. 3.3.2, each image is represented by the pooling of a global
representation (from the whole image) and local features (from local
regions). Regarding the exact regions extracted from each image, we
follow [29] and extract the full image as region R0 and choose the
following Ri>0 according to a regular grid at a smaller scale (2/3 of
the image size). We use the max-pooling operator in Eq. (7) and the
euclidean distance to compute the similarity in the AMECON space.

Neural Networks: We used the Caffe framework [15] to train the
networks using standard parameters (e.g., learning rate: 10−4, mo-
mentum: 0.9, weight decay: 5 · 10−4, batch size: 512). The networks
were trained with full back propagation from scratch, i.e., using a
random initialization (with respect to a Gaussian law) of the weights.
Regarding the architecture of the neural network in Sec. 3.3.2, we
used a standard multi-layer perceptron and tested different architec-
tures through cross-validation on each dataset. More precisely, we
tested with one to three hidden layers (the L parameter of Eq. 4 is
set to 3, 4 or 5) and for each layer, we set a number of hidden units
to one of the following values: {2048, 3072, 4096}. Note that, the
number of hidden-units is set according to each hidden layer, i.e, one
layer can be of size 4096 and the other of size 1024. We conducted

an in-depth analysis about the network architecture in Sec. 5.4. Re-
garding the input and output layers, they respectively corresponds
to the visual CNN features (4096 units) and to the binary textual
AMECON feature (C units since the AMECON space has C dimen-
sions). The C parameter has also been set by cross-validation and
we conducted an analysis on its impact in Sec. 5.2. Also important,
each layer of the multi-layer perceptron is followed by a ReLU and
a dropout function.

4.3 Text-Illustration Results
In this section, we evaluate our method for the text-illustration task
on the two datasets presented above. We compare our method to
the methods of the literature that reports the best results for text-
illustration. All scores of the comparison methods are those released
in the original papers, except those of Tran et al. [32]. Indeed, this
very recent paper achieves great results on multi-modal tasks but
uses another evaluation protocol different from ours. Thus, we re-
implemented their method and evaluated it with our protocol for a
fair comparison. Regarding the parameters (network architecture,
C andm) of our method, they have been set by cross-validation on
the validation set of each dataset. For instance, on Flickr-8k, the
best performances on the validation set are obtained with C = 1, 000,
m = 3 and an architecture of 2 layers with 4096 units each. The
results on the two datasets are presented in Table 1.

The best results of the literature on the two datasets were achieved
by the method of [16] (BRNN). However, it is important to consider
that above their interesting vision-language integration method, they
use a costly representation on the visual side. More precisely, from
each image they extract 2, 000 salient regions through a RCNN then
pool the local features of the top 19 detections, which is unfair with
respect to other methods. On our side, we only extract 5 regions per
image, and attain much better results (e.g., an absolute improvement
of 4.1 points of R@1 on FlickR-8k and 3.1 points of R@1 on Flickr-
30k). Moreover, our proposal outperforms all other methods on the
two datasets. Specifically, it outperforms the best method (except
BRNN) with an improvement of, 4.1 to 5.8 absolute points of R@K
on FlickR-8k and, 3.0 to 5.7 absolute points of R@K on Flickr-30k.

As said in Sec. 2, here we evaluate our method on one direction
of cross-modal retrieval, namely text-illustration. By construction,
our method could also technically deal with the inverse cross-modal
retrieval task that consist to retrieve texts from image queries, which
is also well known as image-captioning. The performances of our
proposal on that task are still below those of the state-of-the-art,
certainly due to the asymmetrical property of our approach. As said
above, getting good performances on one direction of cross-modal
task when building the common latent space on the inverse direction,
remains an open problem.

5 ANALYSIS
5.1 Impact of Each Component
The goal of this section is to compare our proposal to baseline
methods in order to demonstrate the utility of each component.
Roughly, on the textual side, our method represents each word of an
input caption with a word embedding vector (word2vec) and projects
them in the AMECON space. We then use a hard-coding process
to compute the textual AMECON features. Thus, in this section,
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Method Denotation
Flickr-8k Flickr-30k

R@1 R@5 R@10 R@1 R@5 R@10

Karpathy et al. [17] DeFrag 9.7 29.6 42.5 10.3 31.4 44.5

Kiros et al. [18] MNLM 10.4 31.0 43.7 11.8 34.0 46.3

Mao et al. [21] m-RNN 11.5 31.0 42.4 12.6 31.2 41.5

Karpathy et al. [16] BRNN* 11.8 32.1 44.7 15.2 37.7 50.5

Yan et al. [36] DCCA 12.7 31.2 44.1 12.6 31.0 43.0

Tran et al. [32] MACC† 10.2 29.3 41.4 12.4 33.5 46.1

Our Approach AMECON 15.9 37.9 49.5 18.3 41.3 53.5

Table 1: Comparison of our approach with state-of-the-art methods on the Text-Illustration task through the FlickR-8k and FlickR-
30k datasets. The second columns states the denotation of the different methods. Each method is evaluated on its R@1, R@5 and
R@10. All scores are those released in the original papers, except those marked with † that were re-implemented by ourselves for fair
comparisons. The Method marked with * was achieved using a costly visual representation that consists to pool the top-19 features
after an extraction of 2,000 regions per images.

we denote our method by Tloc+Chard+Vloc, with Tloc meaning a
local textual representation (extracted from each word w.r.t Eq. (1))
in the sentence, Chard, a hard-coding process, and Vloc a local
visual representation (extracted from each local region w.r.t Eq.(7)).
We thus compare our method to three baseline methods that differ
from ours by one or two component which are replaced by baseline
components. The following items describe the baseline methods:

• Tloc+Chard+Vglob: In this baseline method, we use a global
visual representation instead of a local one. More specifi-
cally, the visual CNN features are extracted only from the
global image;

• Tloc+Cso�+Vloc: Here, we use a soft-coding process in-
stead of a hard-coding one. Indeed, for each dimension of
the textual AMECON features, we compute the euclidean
distance between the word embedding vector and the vector
representing the corresponding AMECON cluster;

• Tglob+Cso�+Vloc: In this baseline approach, we use a
global textual representation instead of a local one. Practi-
cally, for an input caption, we compute the word features
for all words and then average them in a vector that corre-
sponds to a global representation of that caption. This latter
is then projected to the AMECON space through Eq (1)
and coded with soft-coding.

The results are presented in Table 2. Our method clearly out-
performs the three baselines. More precisely, Tloc+Chard+Vloc is
better than Tloc+Cso�+Vloc which proves the utility of the hard-
coding process. Our method also outperforms Tloc+Chard+ Vglob
and Tglob+Cso�+Vloc which demonstrates the utility of the mod-
elization of the local visual and textual information in our scheme.
Moreover, the results of the baseline Tglob+Cso�+Vloc are very low,
which confirms the clear need of binary outputs in the textual AME-
CON features and a computation of locality (projection each word
in the AMECON space), at least on the textual modality.

Method R@1 R@5 R@10

Tloc+Chard+Vglob 12.8 32.5 43.0

Tglob+Cso�+Vloc 1.5 3.5 5.1

Tloc+Cso�+Vloc 13.1 30.6 41.5

Tloc+Chard+Vloc 15.9 35.9 48.0

Table 2: Comparison of our method (denoted Tloc+Chard+Vloc)
to three baseline methods, that are described in Sec. 5.1. The
evaluation is carried in a Text-Illustration task through the
FlickR-8K dataset, with C = 700 and m = 3.

5.2 Impact of the Number of AMECONs
In this section, we study the impact of the parameter C in Equa-
tions (1) and (2), that corresponds to the number of abstract meta-
concepts (clusters) and thus to the dimensionality of the AMECON
Space. To evaluate its impact on our method, we set it to the seven
values of the following set: {100, 300, 500, 700, 1000, 1100, 1300}.
For instance,C = 700 means that the clustering algorithm (Sec. 3.2.1)
was set to output 700 clusters that directly correspond to the AME-
CONs. Therefore, the dimensionality of our textual AMECON
features (Sec. 3.3.1) is 700 and the mapping for the visual side is
from a 4096-dimensional CNN features to a 700-dimensional textual
AMECON features.

The results of our method for the different values of the C param-
eter evaluated on the FlickR-8k dataset are presented in Figure 5.
We clearly observe that increasing the C parameter significantly
improves the retrieval results. It is also important to note that, from
700 to 1, 300 the results are quite similar, meaning that our method
is quite robust to the number of selected clusters (AMECONs).
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Figure 5: Evaluation of the impact of the number of selected
clusters on our method in Text-Illustration through the FlickR-
8k dataset. The graph presents the recall (R@1, R@5 and
R@10) according to the number of clusters. Best view in color.

Figure 6: Evaluation of the impact of the number of selected
neighbours (m parameter of Eq. (1)) on our method in Text-
Illustration through the FlickR-8k dataset. The graph presents
the R@1, R@5 and R@10 according to the number of selected
neighbours. Here we report the scores with C = 700 and a 2-
layer architecture with 4096 units each. Best view in color.

5.3 Impact of the Number of Neighbours
In this section, we evaluate the impact of them parameter of Equa-
tion (1) that corresponds to the number of selected neighbours when
performing the hard-coding process for each word. To evaluate its
impact on our method, we set it in the seven values of the following
set: {1, 2, 3, 4, 5, 6, 7}. For instance, m = 3 means that three dimen-
sions are activated in the textual AMECON features computed by
Equation (2).

The results of our method for the different values of the m param-
eter evaluated on the FlickR-8k dataset are presented in Figure 6.
We clearly observe that the three curves (R@1, R@5 and R@10)
are quite flat. This latter, means that our method is desirably highly
robust to them parameter.

L Architecture R@1 R@5 R@10

2 2048-2048 14.6 35.4 46.8

2 3072-2048 15.2 36.6 47.8

2 3072-3072 15.0 36.3 47.8

2 4096-3072 16.2 36.6 48.0

2 4096-4096 15.9 35.9 48.0

3 2048-2048-2048 13.0 33.6 45.0

3 3072-3072-3072 14.5 35.5 47.0

3 4096-4096-4096 15.8 36.4 47.7

Table 3: Text-illustration results on the FlickR-8K dataset with
different network architectures. The first column indicates the
number of hidden-layers in the architecture and the second in-
dicates the number of units per hidden-layer. Here we report
the scores with C = 700 meaning that we have 700 units in the
output layer and m = 3.

5.4 Neural-Network Architecture
In this section, we evaluate the results of our method for different
neural-network architectures. We conducted the experiment on the
Flickr-8k dataset with the C and m parameters respectively fixed to
700 and 3. Since the C parameter is fixed to 700, the dimensionality
of the textual AMECON features and thus the number of units in the
output layer of the neural-network are 700. Regarding the hidden-
layers of the neural-network, we set the L parameter of Equation (4)
to two values (2 and 3). The size of each hidden-layer was set to one
of the following values {2048, 3072, 4096}.

The results are given in Table 3. We observe that the best results
are given with only 2 hidden-layers, which is desirable since no high
computational complexity is needed to achieve great performance.
Regarding the number of units in each hidden-layer, we can roughly
say that increasing the number of units leads to better performance.

6 CONCLUSION
We introduced the Abstract Meta-Concept principle to build a multi-
modal common space and we demonstrated its ability on a Text-
Illustration task. Contrary to most of recent work on this topic, we
consider an asymmetric scheme to process both modalities and the
unifying common space contains concepts that are abstract and that
subsumes several semantic-concepts.

We evaluated our method on a Text-Illustration task and obtained
significantly better results than recent methods on publicly available
benchmarks, namely Flickr-8k and Flickr-30k. We also conducted
an in-depth analysis of the parameters of our method, including an
ablation study that shows the relative importance of each component
of the proposed pipeline.

Above the formal definition of the AMECON and the experiments
that demonstrate its efficiency on a particular application task, the
proposed principle would be confirmed if one could demonstrate its
success on the inverse retrieval task, namely image-captioning (i.e.,
retrieving the best captions given an image query).
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[33] Thi Quynh Nhi Tran, Hervé Le Borgne, and Michel Crucianu. 2016. Cross-modal
Classification by Completing Unimodal Representations. In ACM Multimedia
Workshop.

[34] Jinjun Wang, Jianchao Yang, Kai Yu, Fengjun Lv, Thomas Huang, and Yihong
Gong. 2010. Locality-constrained linear coding for image classification. In CVPR.

[35] Liwei Wang, Yin Li, and Svetlana Lazebnik. 2016. Learning Deep Structure-
Preserving Image-Text Embeddings. In CVPR.

[36] Fei Yan and Krystian Mikolajczyk. 2015. Deep correlation for matching images
and text. In CVPR.

[37] Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. 2014. From
image descriptions to visual denotations: New similarity metrics for semantic
inference over event descriptions. ACL (2014).


	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Approach
	3.1 AMECON Space
	3.2 Textual AMECON-Features
	3.3 Visual AMECON-Features

	4 Experiments
	4.1 Datasets
	4.2 Implementation Details
	4.3 Text-Illustration Results

	5 Analysis
	5.1 Impact of Each Component
	5.2 Impact of the Number of AMECONs
	5.3 Impact of the Number of Neighbours
	5.4 Neural-Network Architecture

	6 Conclusion
	References

