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ABSTRACT
Semantic features represent images by the outputs of a set of vi-
sual concept classifiers and have shown interesting performances
in image classification and retrieval. All classifier outputs are usu-
ally exploited but it was recently shown that feature sparsification
improves both performance and scalability. However, existing ap-
proaches consider a fixed sparsity level which disregards the actual
content of individual images. In this paper, we propose a method
to determine automatically a level of sparsity for the semantic fea-
tures that is adapted to each image content. This method takes into
account the amount of information contained by the image through
a modeling of the semantic feature entropy and the confidence of
individual dimensions of the feature. We also investigate the use of
local regions of the image to further improve the quality of seman-
tic features. Experimental validation is conducted on three bench-
marks (Pascal VOC 2007, VOC 2012 and MIT Indoor) for image
classification and two of them for image retrieval. Our method ob-
tains competitive results on image classification and achieves state-
of-the-art performances on image retrieval.
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Sparsification

1. INTRODUCTION
The problem of image recognition and retrieval in image databases

is a topic of high interest in the vision community [1, 2, 14, 23,
25]. In parallel to the mainstream “bottom-up” approach based on
convolutional neural networks (CNN) [2], several works adopted a
“top-down” scheme to design semantically grounded image fea-
tures, that we name semantic features in the following. Given
the availability of large-scale image datasets, [14, 25] argued that
an image representation based on a bench of object detectors is a
promising way to handle natural images. These object detectors
are more generally considered as the outputs of base classifiers.
Such approaches offer a rich, high level description of images that
is close to the human understanding. Moreover, they can easily in-
tegrate the advances of the “bottom-up” works that propose better
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Figure 1: Illustration of the “Content-Based Sparsity” (CBS)
method that adapts the sparsification of semantic features to
the actual content of the image. Two images with different se-
mantic profiles are presented, i.e. large and low number of de-
tected concepts to the left and right, respectively. A fixed spar-
sity scheme would select the concepts illustrated in red and it
would miss some useful concepts in the left image and would
select noisy concepts (n.c.) in the right image. In contrast, CBS
adapts the number of selected concepts (surrounded in black)
and keeps a larger number in the left image and a lower one in
the right image. Best viewed in color.

mid-level features in order to improve the base classifiers. Even
more importantly, semantic features are scalable in terms of num-
ber of classes recognisable in order to cope with a wide variety of
content. In image retrieval, they can be represented with inverted
index implementation that is particularly efficient for large-scale
databases. In classification, the compactness of the features insures
computational efficiency, in particular at testing time. The classical
formulation of semantic features exploits all classifier outputs [25]
but it was recently shown that feature sparsification can be benefi-
cial both in terms of scalability and performance [9].

The contribution of this paper is two-fold. First, we propose a
method to determine automatically an appropriate level of seman-
tic feature sparsity that accounts for the amount of information con-
tained by the image that is modelled with the Shannon entropy and
the confidence of the individual prediction of semantic feature di-
mensions. We study the importance of both components for an ap-
propriate modelling of image content. Above the particular method
proposed, such an adaptation of the level of sparsity has never been
proposed to date in the domain of semantic features.



Second, inspired by Object Bank scheme [14], we also deal with
the problem of the content-locality aspect in images. In Object
Bank, the spatial location of the objects is encoded with a three
level pyramid computed at multiple scales of the image. However,
the final feature in [14] results from the concatenation of the fea-
tures in all grids. While concatenation is not problematic in Ob-
ject Bank since it only includes approximately 200 detectors, it has
significant negative effect on scalability when exploiting tens of
thousand detectors [1, 9]. As an alternative for locality modelling,
we apply a pooling of local regions that does not change the total
size of the feature and its sparsity level. The amount of useful in-
formation varies from one region to another and this variability is
accounted through a max-pooling scheme that selects the top score
of each individual concept and merges these individual scores into
a single vector before sparsification. The proposed locality mod-
elling scheme is named “Constrained Local Enhancement” (CLE)
and built on top of the first contribution. The use of max-pooling
and spatial pyramid is not novel in itself since it has been used in
the domain of bag-features [2] and CNNs [12], but nevertheless its
use is novel for semantic features, and we show it makes particular
sense when it is combined with the first proposed contribution.

We validate our work on three publicly available benchmarks,
focusing on a scene classification task with the MIT Indoor bench-
mark and on multi-class object classification task with PascalVOC
2007 and Pascal VOC 2012. Result shows that the proposed ap-
proach CLE obtains competitive results compared to the best ap-
proaches in the literature and achieves state-of-the-art performances
compared to semantic-based approaches. We also validate our ap-
proach on image retrieval over two datasets, Pascal VOC 2007 and
MIT Indoor 67, when CLE achieves state-of-the-art performances.

2. RELATED WORK
The current trend in image classification and retrieval is to ex-

ploit mid-level features obtained with deep convolutional neural
networks, such as Overfeat [21], Caffe [13] and VGG-Net [24].
Building on such features, we focus on “semantic features” that:
(i) include a rich representation of images, (ii) provide a humanly
understandable description of content, and (iii) are more flexible
since concepts are learned independently from one another. The
semantic feature approach has been introduced in [14, 25] with a
limited number of concepts, with several proposals to determine the
level of sparsity for these features. For instance, [14] managed this
sparsity aspect at learning time through the regularisation of logis-
tic regression.[25] adopted a more direct scheme by retaining only
a portion of the most probable base classifier outputs. In practice
they selected 1, 500 non-zero dimensions among 2, 659 possible
visual concepts. However, recent works such as [9] exhibits very
good performances in image retrieval by retaining a small and fixed
number of classifier outputs (i.e. less than 100 dimensions) for all
images. To the best of our knowledge, our work is the first that
proposes to adapt the level of sparsity to the content of each image.

The number of base classifiers used was limited and hand-picked
in the first works [14, 25] but [1] learned a larger number of visual
concepts to provide better coverage of semantic features. However,
their approach is based on 13 different features and then "lifting-
up" each one to approximate a non-linear kernel, resulting in a
significant computational cost. In order to gain in efficiency, they
showed that a binarization of their 15, 458-dimensional vector re-
sulting from a hierarchy of 8, 000 synsets still leads to good re-
sults, though inferior to those obtained with the full feature. Re-
cently, [9] exploited 17, 000 concepts from ImageNet or 30, 000
concepts from Flickr Groups and obtained interesting results in im-
age retrieval using simpler linear classifiers learned over mid-level

CNN features. Relating to the choice of the visual concepts of ref-
erence, we adopted a scheme similar to [9], that has the advantage
to be efficient and easy to reproduce.

Regarding semantic feature locality, Object Bank [14] accounts
for the spatial location of the objects using a three level pyramid
computed at multiple scales of the image to reduce scale variance.
As we mentioned, this concatenation based approach scales poorly
when using a large number of base classifiers. However, the contri-
bution of our paper does not relate to obtain the exact localisation
of an object but to include such a possible locally present object
into a global signature. Regarding the modelling of the local infor-
mation, our contribution is inspired by the spatial pyramid pooling
(SPP) [12]. However, in this last paper, SPP is applied at a lower
level (that of the mid-level features) and requires a much larger
number of regions than in our case. In our case, we show that when
it is applied at a higher level (semantic feature) and it is combined
with the CBS that adapt the number of active concept to the actual
content of each region, SPP makes sense with a small number of
regions. This latter is specifically due to the ability of our approach
to consider informative regions and neglect confusing ones.

3. IMPROVED SEMANTIC FEATURES
We first present the formalism of existing semantic features [1, 9,

25]. Then, we detail the “Content-Based Sparsity” (CBS) scheme
that automatically adapts the level of sparsity to the content of the
image. Finally, we introduce “Constrained Local Enhancement”
(CLE), the main contribution of this paper which applies CBS to
image regions to integrate only informative local regions.

An image I is first described by a global feature x. Then, a raw
semantic feature is defined as a C-dimensional vector ζraw(x) =
[φraw1 (x), . . . , φrawC (x)] where each dimension φc(x) is the out-
put of a binary classifier evaluated on x, further normalized by a
sigmoid function, such that 0 < φc(x) < 1. First works in the
domain [1, 25] used the LP-β kernel combiner of [8] on 13 fea-
tures. These approaches had an important computational complex-
ity, but [9] showed that linear classifiers could be used under the
constraint of (i) using a significantly larger C (ii) using more pow-
erful mid-level features x. Following [9], the semantic feature is
learned on top of ImageNet [3] concepts that have at least 100 as-
sociated images, results in 17, 462 dimensions. To study its robust-
ness for different mid-level features that are used to learn object
classifiers, it is implemented on top of Overfeat, Caffe and VGG-
Net architectures and results are discussed in Section 4.4. A diver-
sified negative class is used when learning classifiers. This class is
composed of images that are pooled from ImageNet concepts that
are not included in the semantic feature. Its content is sorted in such
a way a maximum of concepts are used when learning base classi-
fiers. We empirically determined that best results are obtained for a
ratio of 1/100 between positive and negative samples and this ratio
is used in experiments. Finally, we chose to learn each classifica-
tion model φc(.) with L2-regularized linear SVM.

Given a raw semantic feature, it has been shown that the per-
formances in retrieval and classification could be almost the same
when the descriptor is quantized on a limited number of bits [25,
1], or even improved when one sparsifies the feature by retaining
only the d largest values and set the other to zero [9]. Formally, the
signature with a “fixed” level d of sparsification is expressed as:

φdc(x) =

{
φrawc (x) if φrawc (x) ∈ Hd(ζraw(x))

0 otherwise,
(1)

whereHd(A) is the subset of the d largest values of the setA ⊂ R.
The semantic feature with a fixed level of sparsification d is then



ζd(x) = [φd1(x), . . . , φdC(x)]. Equation ( 1) correspond to the “fast
encoding” of locality-constrained coding [26], an efficient method
of sparse coding used in the bag-of-visual-word framework. It
introduces a locality constraint to the feature representation that
leverages the manifold geometry induced by the set of visual con-
cepts, locally homeomorphic to an Euclidean space [26], and im-
proves the recognition performances in practice [9]. In addition,
such a sparsification leads to a much smaller memory footprint
since, if a float and an index are both coded on 4 bytes, then φrawc

occupies 4× C bytes while φdc only 8× d bytes (with d� C).

3.1 Content-based Sparsity for Semantic Fea-
tures

We make two hypotheses that motivates our proposal.First, the
level of sparsity of a semantic feature should be adapted to the num-
ber of objects/concepts contained in the image. As illustrated in
Figure 1, it seems desirable that an image containing lots of ob-
ject (Fig. 1, left image) has a semantic feature with more non-zero
dimensions than that of an image with few objects (Fig. 1, right im-
age). Retaining a fixed number of concepts as it has been proposed
to date leads to an incomplete description for the first image and to
an over-complete one for the second one.

Second, it is equally important that the number of non-zero di-
mensions to retain also depends on the confidence that can be placed
into the quality of visual concept detections. For instance, if the
confidence of concept detections is low (bottom of Figure 2), only
a small number of concepts should be retained. On the contrary, if
confidence is high (top-right of Figure 2), a larger number of con-
cepts would probably be useful in the image representation. In [25]
such a selection is proposed but is based on a cross-validation error
of the φc and is thus the same of all images. As well, [1] proposed
a simple thresholding on the values of φc(x) that is not adapted to
each image. To our kowledge, our proposal is the first to propose
an adaptation to each image.

The combination of the two hypotheses leads to four prototypical
semantic feature profiles that are depicted in Figure 2. When few
visual concepts are present in the image (see left of Figure 2), the
profiles include a small number of dominating values (values with
high confidence) and profiles are naturally sparse. On the contrary,
the presence of a large number of visual concepts (see Figure 2,
right schemes) leads to a flatter profile, typical of a distributed ac-
tivity. In addition, the value of the largest concept (thus on the
left of the profiles in Figure 2) indicates the confidence one can
place into the quality of the visual concepts detected. If the two hy-
potheses above are combined, we should retain a large number of
concepts when the profile indicates both a confident detection and
many dominant concepts (top-right of Figure 2), while we should
keep few concepts for the other three cases.

Let ζraw(x) = [φraw1 (x), . . . , φrawC (x)] be the raw semantic
feature. Equation (1) proposes a fixed sparsity level that does ac-
count for the two hypotheses that support an appropriate modeling
of individual images. We propose to incorporate these hypotheses
and thus adapt sparsity to image content using:

φCBSc (x) =

{
φrawc (x) if φrawc (x) ≥ Γ(I)

0 otherwise,
(2)

where Γ(.) is a threshold that reflects “semantic feature profile” of
each image, that is to say, the way its values decrease, when they
are sorted in decreasing order.

Each dimension of the raw semantic signature φrawi (x) can be
seen as a piece of information related to the content of the image.
We propose to consider the raw semantic signature of an image as
a source of information on its semantic content and to model the

Figure 2: Four configurations of semantic feature profiles.
Each configuration illustrates the raw semantic signature with
φrawi (x) sorted by decreasing values. The top graphics illus-
trate high confidence detections (well recognizable objects in
the images) and the bottom ones low confidence detections (in-
complete objects in the image). The left graphics correspond to
the schemes containing few dominant visual concepts (few ob-
ject in the image), while the right ones, depict schemes with a
lot of dominant visual concepts (several objects in the image).

quantity of information it conveys using the Shannon entropy. This
choice is formally supported by the fact that the entropy is defined
as the average amount of information generated by a source. If
appropriately normalised to be considered a random variable, ζraw

can be considered as such a source of information. Formally, for an
image I from which a mid-level feature x was extracted:

H(I, x) =

C∑
i=1

φrawi (x)∑C
j=1 φ

raw
j (x)

log2

(∑C
j=1 φ

raw
j (x)

φrawi (x)

)
(3)

The value φraw
i (x)∑C

j=1 φ
raw
j (x) is the probability to get concept i into

the image. With such a normalization, the semantic feature is the
probability mass function of a discrete random variable whose value
is subject to variations due to the presence of object/concepts into
the image. Hence, equation 3 computes Shannon entropy of this
source of information. It results into a lower entropy when profiles
are distributed and higher for the profiles having a small number
of dominant concepts. The threshold Γ(.) should therefore be a
decreasing function with respect to H(I, x).

Equation 3 reflects the number of dominant concepts but does
not take into account the absolute confidence of their detection.
For this, we propose to consider the value of the largest semantic
dimension of the profile, noted φmax(x) that is normalized in [0, 1],
as the proportion of concepts to retain among the C available. For
instance, for an almost flat profile, our proposal means that if the
output classifiers have a confidence around 0.5 we decide to retain
half of them, while for a confidence around 0.75 we retain the three
quarters of them. In accordance to our hypothesis, the more confi-
dent detections are, the more dimensions will be retained. Hence,
the threshold Γ(.) should therefore be an increasing function with
respect to φmax(x)× C.



Figure 3: Illustration of our “Constrained Local Enhancement” (CLE) method over semantic features. Concepts illustrated in red
are selected by the fixed sparsity, while concepts surrounded in black are selected by our “Content-Based Sparsity” (CBS). The use
of fixed sparsity on local regions results in a final representation (bottom) that contains a lot of noisy concepts (n.c.). On the contrary,
CBS selects only relevant concepts per region and results in a relevant output feature (top). Using max-pooling, selected concepts
from the global image representation are updated with higher scores from image regions. Equally important, new relevant concepts
with strong activations in image regions appear in the final representation. Best view in color.

Combining the two modeling of our hypotheses, we finally pro-
pose to estimate the threshold as:

Γ(I) = α× φmax(x)× C
H(I, x)

(4)

where the denominator H(I, x) is the entropy computed accord-
ing to equation (3), α ∈ [0, 1] is a normalizing parameter that can
be set by cross-validation, C is the total number of visual con-
cepts that are considered in the semantic signature and φmax(x)
the largest value of the semantic feature, named “confidence pa-
rameter”.

3.2 Constrained Local Enhancement
The mid-level CNN features used to produce the semantic fea-

tures are not scale-independent [19] and small objects have smaller
detection scores if only the full image is exploited. In Figure 3, we
illustrate the importance of using local regions with the examples
of car, whose score is taken from a local region and restaurant,
which does not appear at all in the representation of the full im-
age. We enhance image semantic features by adding local image
information. Let’s consider an image I from which we identify a
set of regions {Ri, i ∈ [1, N ]}. A mid-level feature xi is extracted
from each region and the corresponding semantic feature ζdii (xi) is
computed with a level of sparsity di. Then, the final feature of the
image results from the pooling of all these local semantic features:

ζloc(I) = P
i=1...N

(ζdii (xi)), (5)

where P is a pooling operator such as sum, average or max that
operates on individual components of semantic features of image
regions. The pooling procedure is well established by biophysical
evidence in visual cortex [22] and is empirically justified by many
algorithms applied to image categorisation.

One advantage of the method is that, unlike concatenation-based
region modeling schemes such as spatial pyramid matching (SPM)
[10, 16], the resulting feature has the same size as the original se-
mantic feature computed on the full image. Moreover, it contains
information extracted at a local level that represents more faithfully
the content of the image.

Naturally, the performance of the local enhancement of the fea-
ture depends on the choice of initial regions Ri. Here we propose

a simple strategy in order to demonstrate the efficiency of the prin-
ciple and adopt a scheme inspired by SPP [12]. The region R0 is
the full image and the following Ri>0 are extracted according to
regular grid at smaller scale. Unlike SPM, we use overlapping rect-
angular regions to reduce the risk of cutting the objects represented
in the image.

A semantic feature can be enhanced locally with a fixed-sized
sparsity (di fixed ∀i ∈ [1, N ]), but it results into the assignment
of the same number of visual concepts to all local regions. Such
an approach is suboptimal since some regions could contain a lot
of information while others may contain much less. Hence, we hy-
pothesize that we should assign automatically a weight to each re-
gion, in order to determine which ones should be most considered.
As illustrated in Figure 3, our first contribution, “Content-Based
Sparsity” (CBS) method, has the ability to assign a sparsity level
to regions based on their amount of information. Finally, when the
level of sparsity di used in equation 5 is determined by the CBS
method (equation 4) on all regions before the pooling, we obtain
our main contribution, namely “Constrained Local Enhancement”
(CLE). Formally, the final feature is computed through

ζloc(I) = P
i=1...N

(ζCBSi (xi)), (6)

where P is a pooling operator such as sum, average or max
that operates on individual components of semantic features of im-
age regions. The sparsification of each region is computed by our
“Content-Based Sparsity” (CBS) defined by Eq. (2) and (4).

4. EXPERIMENTS
The effectiveness of our approach is tested in image classifica-

tion (Section 4.2) and image retrieval (Section 4.3) tasks. To fa-
cilitate reproducibility and comparability, evaluation is done with
publicly available datasets and using standard experimental proto-
cols. Image classification evaluation is conducted on Pascal VOC
2007 [7], Pascal VOC 2012 [6] (object recognition) and MIT In-
door 67 [18] (scene recognition). For image retrieval, we evaluate
our approach on Pascal VOC 2007 and MIT Indoor 67. 1

The proposed “Constrained Local Enhancement” method can be
applied to a semantic feature built on top of any mid-level feature.
1Pascal VOC 2012 is excluded due to the unavailability of an eval-
uation protocol and ground truth for image retrieval.



However, based on the experiments reported in Section 4.4, the
quality of the semantic feature will directly depend on that of the
mid-level feature used. We thus created semantic features on top
of a competitive mid-level CNN feature released in the literature,
namely VGG-Net [24]. For our study, fine tuning of the CNN may
result into an improvement of the results at the cost of significant
computational cost and the possible use of additive data. Such a
specific optimization of the CNN has not been considered in our
experiment, to insure their reproducibility with original and avail-
able CNN models.

4.1 Baseline Methods
Our work is focused on semantic features and it is important to

compare the performance of the proposed CLE method to several
state-of-the-art semantic-based approaches. We also compare it to
a very competitive CNN feature.

• VGG-Net [24], is extracted from a fully-connected layer (fc7,
16th layer) of a CNN architecture (D) learned on ILSVRC
2012 dataset [20] that contains 1.2 million images of 1,000
classes. The resulting vector has 4, 096 dimensions. The
18th and last layer (fc8), of size 1, 000, can be seen as a
semantic feature build on top of the fc7, which the base clas-
sifiers are the final outputs of the CNN.

• Semfeat [9] is built on top of a mid-level CNN feature using
the Caffe reference model [13]. To ensure a fair compari-
son with our method, we rebuild Semfeat using VGG-Net
as basic feature. The same 17,462 ImageNet concepts from
[9], represented by at least 100 images, are modeled here. A
fixed sparsification is used to replicate their methodology.

• Classemes+, is our own implementation of Classemes [25].
Again, for a fair comparison with other methods, it is built
on top of a VGG-Net feature with exactly the same concepts
as Semfeat. Following [25], no sparsification is considered
and Classemes+ thus corresponds to ζraw.

• Meta-Class [1] is the output of 15,232 classifiers. It is based
on a concatenation of five low-level features combined with a
spatial pyramid histogram with 13 pyramid levels. Since the
number of concepts is rather similar to other methods and the
code is available, we use it as it is released. 2

4.2 Image Classification Experiments
We report and analyse the experimental results on image classifi-

cation task using the Pascal VOC 2007, Pascal VOC 2012 and MIT
Indoor 67 datasets.

4.2.1 Object Classification
The Pascal VOC 2007 object classification task [7] is run on a

dataset that contains 9, 963 images. Each image is labelled with
one or more categories from a total of 20. We used the pre-defined
split of 5, 011 images for training and 4, 952 for testing, with the
publicly available evaluation tools and ground truth. The Pascal
VOC 2012 benchmark [6] is similar to VOC 2007 but its number
of images is larger: 22, 531 images are split into training (5, 717
images), validation (5, 823 images) and test data (10, 991 images).
A server is available to estimate the performances of an algorithm
on the test dataset, with a limited number of submission allowed.
Hence, we measured the performance on the official testing dataset.

2http://vlg.cs.dartmouth.edu/projects/metaclass/metaclass/Home.html

For both datasets, we learn each class by a one-vs-all SVM clas-
sifier and we use mean Average Precision (mAP) to evaluate per-
formance. The cost parameter of the SVM classifier and the α pa-
rameter from equation (4) are optimised through cross-validation
on the training dataset, using the usual train/val split. In addition
to the baselines presented in Subsection 4.1, we also report the best
existing state-of-the-art results in the literature.

Classification results for Pascal VOC 2007 and 2012 are pre-
sented in Table 1. Our method leads to significant better results
than previous approaches based on semantic features [25, 1, 9], as
well as those obtained from the mid-level feature it is based on
(VGG-Net [24]). Note that we get better results than VGG-16 (our
method is built on top of this mid-level features) but [24] report
results above ours with VGG-19, a multi-scale VGG-Net feature
of 19 layers. However, this is obtained when descriptors are ag-
gregated over five scales and they note that their performances is
much below when only three scales are used (although they do not
give the corresponding score). On our side, we obtain 88.2 with
only two scales and a VGG-Net features of 16 layers only. The im-
provement due to our method with regards to the mid-level feature
used is discussed in Section 4.4. In the same vein, Wei et al. [27]
achieves 2% better mAP on VOC12 when their method is trained
on an extended 2000-classes ILSVRC dataset but is 5% of mAP
below our method when they use a comparable dataset as ours to
train their CNN. Note that our proposal is always better on VOC07
(from 3% to 7% mAP), even in comparison to the method trained
with the extended dataset.

Method VOC 2007 VOC 2012
mAP (in%) mAP (in%)

C
N

N

Oquab et al. [19] 77.7 n.a.
Chatfield et al. [2] 82.42 83.2
Wei et al. [27] 81.5(85.2**) 81.7(90.3**)
VGG-Net (fc7) [24] 86.1(89.7*) 84.5 (89.3*)

Se
m

an
tic

VGG-Net (fc8) [24] 77.4 77.2
Meta-Class [1] 48.4 (53.2†) 49.3
Classemes+ [25] 82.4 81.7
Semfeat [9] 82.8 81.7
CLE (ours) 88.2 86.6

Table 1: Comparison with the state of the art on Pascal VOC
2007, Pascal VOC 2012. Our model is denoted as “CLE”. Re-
sults marked with * where achieved using multi-scale scheme
with a CNN architecture (E) of 19 layers. Results marked with
** were achieved using a CNN pre-trained on the extended
ILSVRC dataset (2000 classes). Results marked with † are re-
ported scores in the original paper.

4.2.2 Scene Classification
The MIT Indoor database [18] is a scene recognition benchmark

that consists of 67 categories of indoor places. All experiments in
this database where performed using the usual training-test split,
taking 80 images per class for training and 20 for testing. It results
in 5, 360 images in training and 1, 360 in testing.

We learn a SVM classifier on each class (one-versus-all strat-
egy) and cross-validate the cost parameter and the α parameter of
the equation (4) by splitting the training dataset into 60 images per
class for training and 20 images per class for validation. Similar to
Pascal VOC experiments, the proposed CLE method is compared
to related baselines but also with other state-of-the-art approaches
that were evaluated MIT Indoor 67. All results are reported in the



Table 2. We report classification accuracy to evaluate the perfor-
mances. Zhou et al. [30] report an accuracy of 56.79 on MIT In-
door 67, using a generic CNN architecture similar to Caffe. With
this mid-level feature, our method gets 57.3. They also report a
score of 68.24 when they fine-tune the network with 2.5 million
additional images representing placs. When they combine with
the original ImageNet images and remove the overlapping scene
categories, they obtain an Hybrid-CNN trained on 3.5 million im-
ages from 1, 183 categories that report 70.8 classification accuracy.
Our CLE method based on VGG-Net obtain better results (71.6)
while we use a CNN pre-trained on object images only while their
deep network is adapted to recognize places. Our proposed ap-
proach also outperforms over all semantic-based approaches and
even other state-of-the-arts works such as ONE+SVM [28].

Method MIT Indoor 67
Classification Accuracy (in%)

Doersch et al. [4] 66.9
Oquab et al. [19] 69.0
VGG-Net (fc7) [24] 65.8
Zhou et al. [30] 68.2* (70.8**)
ONE+SVM [28] 70.1

Se
m

an
tic

VGG-Net (fc8) [24] 48.7
Meta-Class [1] 35.7 (44.6†)
Classemes+ [25] 58.9
Semfeat [9] 61.5
CLE (ours) 71.6

Table 2: Comparison with the state of the art on MIT Indoor
67. Our model is denoted as “CLE”. Results marked with *
where achieved using a CNN pre-trained on 2.5 million scene
images. Results marked with ** where achieved using the pre-
vious pre-trained CNN with fine-tuning. Results marked with
† are reported scores in the original paper.

4.3 Image Retrieval Experiments
We report and analyse the experimental results on visual retrieval

over Pascal VOC 2007 and MIT Indoor 67 datasets. Pascal VOC
2012 has not been evaluated because of the absence of ground-
truth on test images. For both evaluated datasets, we adopt Average
Precision at top K retrieved results (AP@K) defined as in [29]:

AP@K =
1

min(R,K)

K∑
j=1

Rj
j
× Ij , (7)

where R is the number of relevant images within the collection and
Rj is the number of relevant images among top j search results. Ij
is set to 1 if the j-th image is relevant, and 0 otherwise. We av-
eraged AP@K over all queries to obtain mAP@K as overall eval-
uation metric. K ∈ {1, 2, · · · , 100} for Pascal VOC 2007 and
K ∈ {1, 2, · · · , 80} for MIT Indoor 67, because the number of
relevant images within the dataset is set to 80 per query. Similarity
between images are computed using cosine measure.
Object retrieval evaluation is run with the Pascal VOC 2007 dataset,
using the train images as collection and the test images as queries.
In Figure 4, we present mAP@100 curves for CLE, Classemes+
and Semfeat, the best semantic feature baselines, and also for VGG-
Net. Figure 5 reports detailed performance (AP) of individual con-
cepts for the CLE, Semfeat VGG-Net.
Scene retrieval is evaluated with the MIT Indoor 67 dataset, using
the same split as for classification, with training images considered

Figure 4: Overall performance (mAP@K) of visual retrieval
using all images of the released test split as queries on Pascal
VOC 07. We compare our CLE method, with the best semantic-
based state-of-the-art approaches ( Classemes+ [25] and Sem-
feat [9]) and the best CNN-based method (VGG-Net [24]) rep-
resented in dashed line.

Figure 5: Detailed performance (AP@100) of individual cat-
egories for the best semantic-based (Semfeat [9]) and CNN-
based (VGG-Net [24]) approaches reported in the Figure 4 for
image retrieval on Pascal VOC 2007 dataset.

to be the collection and test images considered as queries. Fig-
ure 6 gives mAP@K curves for CLE, Classemes+, Semfeat and
VGG-Net. For each query, there are at most 80 true positives in
the ground-truth and we set K=80. Figure 7 reports detailed per-
formance (AP) of individual concepts for the best semantic-based
(Semfeat) and CNN-based (VGG-Net) approaches.

The obtained results show that the proposed CLE method out-
performs all other tested methods on both of the evaluated datasets.
For instance, on Pascal VOC 07, CLE improves the performance
of VGG-Net, Classemes+ and Semfeat by around 10%, 8% and
7% in terms of mAP@100, respectively. CLE achieves best re-
sults over all methods (CNN and semantic-based) on all categories.
On MIT Indoor 67, CLE improves the performances of VGG-Net,
Classemes+ and Semfeat by around 6%, 7% and 5% in terms of
mAP@20, respectively. Nevertheless, we observe on the detailed
performances (AP@20) of individual categories that, for a few cat-
egories, VGG-Net performs better, this can be due to the fact that
some scene categories like pool inside, do not contain any object
but only basic shapes, while CLE has the ability to recognize ob-



Figure 6: Overall performance (mAP@K) of visual retrieval
using all images of the released test split as queries on MIT In-
door 67. We compare our CLE method, with the best semantic-
based state-of-the-arts approaches (Classemes+ [25] and Sem-
feat [9]) and the best CNN-based method (VGG-Net [24]) rep-
resented in dashed line.

jects only. Based on that, our proposed CLE outperforms all the
methods when scene categories contain objects. The above phe-
nomenons of performance comes from an effective cooperation of
local representations and a Content-Based Sparsity that keeps in
the final representation only relevant concepts. On the contrary,
Semfeat forces a level of sparsification and Classemes+ keeps all
the concepts in the final representation, yielding in a consideration
noisy concepts in the final feature.

4.4 Mid-level Feature Sensitivity
The low-level or mid-level features used to build concept de-

tectors are a core component of semantic features. We evaluate
their influence on performance by using three publicly available
CNN models using the Pascal VOC 2007 dataset. Overfeat [21],
Caffe [13] and VGG-Net [24] are used as basic features. Overfeat
and Caffe architectures are similar since both of them are based
on the original AlexNet model [15]. VGG-Net [24] uses a deeper
CNN architecture, with smaller kernels and exhibits significantly
better results than Overfeat and Caffe on the ImageNet challenge.
In all cases, we extracted features from the last fully-connected
layer, resulting in 4, 096 dimensional vectors. Regarding the re-
sulting semantic features, note that, Classemes was initially de-
signed with low-level features only, as well as Semfeat, was ini-
tially designed with Overfeat features only. Thus, we implemented
Classemes [25], Semfeat [9] and our CLE method on top of the
three mid-level features (Overfeat, Caffe and VGG-Net). For Sem-
feat, the sparsity parameter is fixed as formalised by equation (1). It
has been cross-validated on several levels of sparsity, and we report
the best results, corrseponding to d = 50. For our “Constrained Lo-
cal Enhancement” (CLE), the parameter α of equation 4 has been
cross validated on the validation data and we report the best results,
corresponding to α = 0.1.

Results are reported in Table 3 and, as expected, they are corre-
lated to the quality of the mid-level feature used. For all the seman-
tic methods, best performance is obtained with VGG-Net followed
by Caffe and Overfeat. This suggests that, the more the mid-level
features are deeper, the more the obtained results by semantic fea-

Method
Pascal VOC 2007

mAP (in %)
Overfeat [21] Caffe [13] VGG-Net [24]

CNN only 72.0 76.3 86.1
Classemes+ [25] 72.2 72.4 82.4
Semfeat [9] 73.6 76.0 82.8
CLE (ours) 78.4 80.5 88.2

Table 3: Evaluation of effects of CNN architecture (Over-
feat, Caffe and VGG-Net) used to compute semantic features
(Classemes, Semfeat and Ours) on object classification over
Pascal VOC 2007 dataset.

tures will be better. Equally important, regardless the mid-level
feature used, our CLE approach is better than other semantic-based
ones. This validates the robustness of our approach and, since other
mid-level features are easy to plug into the CLE pipeline, it will be
easy to make it evolve in order to take advantage of progress in
deep learning architecture design.

5. CONCLUSIONS
We introduce a novel method to design semantic features that

integrates adaptive sparsification and information from informative
local regions only. In contrast to existing works, which perform
sparsification regardless of image content, we propose a scheme
that considers individual image profile to do so. The informational
content of images is modelled using the Shannon entropy, a the-
oretically grounded method, and also accounts for the confidence
that can be placed in visual concept detections. Finally, modelling
local regions of the image further improves the semantic features
through an improved integration of localized objects.

Evaluation is carried out for classification and retrieval tasks and
results show that the proposed method outperforms existing se-
mantic features and also the mid-level CNN feature it is based
upon. Interestingly, our CLE scheme is the only semantic feature
whose classification performance is above that of the mid-level fea-
tures, with existing semantic features all having lower performance.
Equally important, the proposed approach is also competitive with
optimizations of CNN features reported in the literature and even
state-of-the-art on the MIT Indoor 67 benchmark. Content-based
image retrieval results place CLE favourably when compared to all
other tested approaches. In addition to performance, it is also im-
portant to note that CLE representations are sparse and thus more
scalable than CNN features. Sparsity is particularly important for
retrieval since images can be efficiently represented using inverted
index structures which accelerate the search process.

The results obtained for still images are very encouraging and
we will pursue the work reported here. We will investigate finer
ways to model local information. In particular, interesting region
detection [5] will replace the fixed regions that are currently used.
A second work direction concerns video classification and retrieval
that can be dealt with the CLE pipeline. Replacing local regions by
frames in CLE, will bring to our proposed approach, the ability to
assess the amount of information of each frame. This information
can be used in future work to stop-frame removal [11] (removing
less informative frames) or even concept-prototyping [17] (select-
ing a set of relevant frames) for web-videos.
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Figure 7: Detailed performance (AP@20) of individual categories for the best semantic-based (Semfeat [9]) and CNN-based (VGG-
Net [24]) approaches reported in the Figure 6 for image retrieval on MIT Indoor 67 dataset. Our model is denoted as CLE.
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