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ABSTRACT
We consider the problem of image classification with se-
mantic features that are built from a set of base classifier
outputs, each reflecting visual concepts. However, exist-
ing approaches consider visual concepts independently from
each other whereas they are often linked together. When
those relations are considered, existing models strongly rely
on image low-level features, yielding in irrelevant relations
when the low-level representation fails. On the contrary,
the approach we propose, uses existing human knowledge,
the application context itself and the human categorization
mechanism to reflect complex relations between concepts.
By nesting this human knowledge and the application con-
text in the concept detection and selection processes, our
final semantic feature captures the most useful information
for an effective categorization. Thus, it enables to give good
representation, even if some important concepts failed to be
recognized. Experimental validation is conducted on three
publicly available benchmarks of multi-class object classi-
fication and leads to results that outperforms comparable
approaches.

Keywords
Image-Classification, Semantic-Features, Category-Level

1. INTRODUCTION
The problem of object class recognition in large scale im-

age databases is a topic of high interest in the vision com-
munity [1, 3, 14, 24, 26]. In parallel to the mainstream
data-driven approach, based on convolutional neural net-
works (CNNs) [3, 24], several works adopted a concept-
driven scheme to design semantically grounded image fea-
tures, that we name semantic features in the following. Given
the availability of large-scale image datasets, [14, 26] argued
that an image representation based on a bench of object
detectors is a promising way to handle natural images ac-
cording to their category. These object detectors are more
generally considered as the outputs of base classifiers. Such
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Figure 1: We propose a semantic representation that
compute the concepts presence differently according
to their categorical level. For an input image (a)
with multiple objects, state-of-the-art semantic fea-
tures (b) would output the concepts illustrated in
black and miss useful concepts, such as person and
bicycle. In contrast, the proposed scheme (c) cap-
ture properties of the image that are useful for cat-
egorization, e.g. superordinate (brown), basic-level
(gray) and subordinate (blue) concepts, making the
representation more relevant. Best viewed in color.

approaches offer a rich high-level description of images that
is close to the human understanding. Moreover, they can
benefit from the advances of the data-driven works that pro-
pose better mid-level features in order to improve the base
classifiers. Semantic features are also scalable in terms of
number of concepts thus being able to cope with a wide
variety of content.

Most semantic features in the literature [2, 10, 12, 14,
26] consider visual concepts independently from each other
whereas they are often linked together by some semantic re-
lationships (i.e.hyponymy, hypernymy, exclusion, etc.). An
exception is the work of Bergamo and Torresani [1] that in-
troduces “meta-classes” to address this aspect. Those meta-
classes are “abstract” categories (do not really exist in the
real-world) that capture common properties among many
object classes. They are built using spectral clustering on
low-level features of images among a set of categories. The
restrictive assumption of this method, is the dependence of
the meta-class learning to the visual low-level features. For
instance, it leads to irrelevant meta-classes when low-level
feature fails to capture the dissimilarity between different
categories, making this method a “bottom-up” scheme.

The classical formulation of semantic features exploits all



classifier outputs [1, 2, 14, 26] but it was recently shown that
forcing the semantic representation to be sparse (by setting
the lowest values to zero) can be beneficial both in terms of
scalability and performance [10, 12]. Nevertheless, semantic
features with a large set of concept detectors often contains
a high number of visually similar concepts to describe the
same object. For instance, the right image of Figure 2 would
be predicted by a semantic feature as a palm cockatoo, but
also a cockatoo, a parrot, a bird, a vertebrate, and so on, in-
ducing redundant information in the final representation. As
far as a human is concerned, he would categorized this image
as a bird, an animal and maybe a palm cockatoo if the human
is a bird-expert. In fact, psychologists studies such as those
of Rosch [20] and Kosslyn [15] showed that a human tends
to categorize an object through three categorical-levels (i)
basic-level, (ii) superordinate, and (iii) subordinate. They
are the most important concept types to categorize objects.

In this paper, we take into account the relations between
concepts using human existing knowledge, such as semantic
hierarchies (e.g WordNet [17]), which makes our approach
a “top-down” scheme. More precisely, our main contribu-
tion consists in identifying three types of concepts into an
existing hierarchy, according to their categorical level, then
process them differently to design the semantic feature. It
is nevertheless not easy to determine to which categorical-
level a concept belongs to. Hence, we propose a method to
identify the three groups in practice, for a given supervised
classification problem. The proposed semantic representa-
tion is named Diverse Concept-Level feature (D-CL).

Compared to bottom-up approaches, an advantage of the
proposed top-down scheme appears when the concept detec-
tors fails at the subordinate level (e.g. the concepts cock-
atoo and parakeet are highly activated), which is often the
case since the category is finer thus harder to identify. In
that case, our descriptor at least capture basic-level and su-
perordinate concepts (e.g. bird and animal), making the
full representation more robust for classification problems.
Moreover, the proposed feature contains only useful concepts
(from the three categorical levels), which avoids redundant
information that disturbs the image classification.

We validate the proposed Diverse Concept-Level represen-
tation, in a multi-object classification task through Pascal
VOC 2007, Pascal VOC 2012 and Nus-Wide Object. The
experiments show that the proposed approach obtains better
results than seven state-of-the-art semantic features.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly introduces related works. Section 3 details the
proposed technical approach. After showing experiments
and analytic studies in Section 4, we conclude in Section 5.

2. RELATED WORKS
The current trend in image classification is to exploit mid-

level features obtained with deep convolutional neural net-
works, such as Overfeat [23], Caffe [13] or VGG-Net [24].
Built on top of such mid-level representations, we focus on
semantic features that: (i) include a rich representation of
images, (ii) provide a humanly understandable description of
content, and (iii) are more flexible since concepts are learned
independently from each other. This semantic-based ap-
proach has been introduced by Torresani et al. [26] and Li et
al. [14] with a limited number of concepts. The former used
nonlinear LP-β [9] classifiers to learn each concept detector.
Recently, Ginsca et al. [10] and Jain et al. [12] explored lin-

ear SVMs in semantic features and shows their effectiveness
when the features are constrained to be sparse.

The feature is said sparse when, for a given image, only
a limited number of dimension is non-zero. For instance,
Li et al. [14] managed this sparsity aspect at learning time
through the regularization of logistic regression by L1 or
L1/L2 [27]. Torresani et al. [26] did not investigate directly
the sparse aspect but showed that classemes was quite robust
to a 1-bit quantization. In practice, they forced negative out-
puts to zero thus they actually performed a sparsification.
The difference with further works is that they also unified
positive outputs to 1. Recent works such as [10, 12] exhibit
very good performances in image retrieval, and action clas-
sification on videos, by retaining in the final feature, a small
(but fixed) number of the largest classifier outputs (less than
100). In our scheme, the sparsity is a consequence of the
proposed concept groups identification . Thus, in terms of
sparsity, the key novelty of our work is the selection of con-
cepts regarding their identified categorical-level, yielding to
representations containing only useful concepts. Contrary to
former works, our sparse representation is adapted to each
image, according to its actual content, and relative to the
problem of interest.

Regarding the general concepts in semantic features, Berg-
amo et al. [1] proposed “meta-classes”, corresponding to “ab-
stract” categories that captures common properties among
many object classes. In our work, we also use general con-
cepts, that captures common properties among object classes,
but the key difference with their work is the building of
these categories. While [1] automatically built the meta-
classes using spectral clustering on low-level features of im-
ages among a set of categories, our scheme rely on a direct
selection of concepts among those of WordNet [17], that have
the advantage to match a semantic reality and is thus more
relevant on a user point-of-view.

A last line of work deals with cognitive studies in pattern
recognition [6, 16, 18, 19]. The main goal of these works is to
propose a system that takes as input a set of predicted con-
cepts for an image and outputs the corresponding basic-level
concepts. In particular, the work of Deng et al. [6] is related
to ours since they optimize the trade-off between accuracy
and specificity. In other words, if concept detector fails to
recognize categories at a specific level, they try to output
a more general concept. As in our work, they indirectly
reflect in their systems the psychological fact that even if
humans tend to categorize an object at a particular level
(basic-level), they are still aware of the other levels of cate-
gorization. However, the key difference between their work
and ours is the method used to integrate this psychological
fact as well as its purpose. In fact, our goal is to identify the
most important concepts to retain in the semantic feature.
In contrast, their goal is to annotate the images, and con-
sequently identify only one concept. More precisely, we opt
for an integration of the psychological fact directly in the
semantic feature design, while they do it only on the test
images, after the prediction of the different concepts.

3. PROPOSED APPROACH
In this section, we detail our proposed approach, a new

semantic representation of an image that take into account
an available human knowledge. In Section 3.1, we present
our main contribution, consisting in identifying three types
of concepts into an existing hierarchy (according to their



Figure 2: Illustration of concepts that our D-CL fea-
ture would predict, for two different images. It se-
lect concepts from different categorical levels of a
semantic hierarchy, i.e., superordinate, basic-level
and subordinate concepts.

categorical level) and then, process their concepts differently.
It is nevertheless, not evident to identify these three groups,
in practice. Thus, we detail in Section 3.2 how to identify
them, for a given supervised classification problem.

3.1 Diverse Concept-Level Feature
A semantic feature is a F -dimensional vector F(x) =

[F1(x), . . . ,FF (x)] extracted from an image I, itself described
by a mid-level feature x. The feature x could be any image
descriptor such as Bag-of-Word or Fisher Kernel [11] fea-
tures, but also mid-level features such as that obtained from
a fully-connected layer of a convolutional neural network.
Each dimension Fi(x) of the semantic feature is the output
of a classifier for the concept ci evaluated on x.

While the concepts ci are potentially linked together by
some semantic relationships, most of works consider them
independently [2, 10, 12, 14, 26]. A notable exception is the
work of Bergamo and Torresani [1] that take into account
relations between categories through a “bottom-up” scheme.
However, their method can lead to irrelevant identification
of relation when the low/mid-level features used fails to cap-
ture the dissimilarity between different categories. To cope
with such a limitation, we propose to rely on existing human
knowledge regarding the relations between concepts. Such a
knowledge is, for instance, reflected into existing hierarchies
such as WordNet [17] that organize a large set of concepts
according to “is-a” relationships, that is to say by defining
hyponyms and hypernyms. An advantage of our approach is
to remove the dependence to the basic visual descriptor and
to introduce human-based information within the process of
image representation design.

All the concepts considered in semantic features, are named
according existing categories. Once again, the name of a
category is given according to a human judgment, and the
exact choice of the word used is far from being neutral, as a
large literature has shown it, both in Psychology [15, 20] and
Computer Vision[6, 16, 19]. More precisely, they showed the
importance to differentiate several levels of categories:

• Basic-level concepts are the terms at which most
people tend naturally to categorize objects, usually
neither the most specific nor the most general avail-
able category but the one with the most distinctive
attributes of the concept.

• Superordinate concepts are categories placed at the
top of a semantic hierarchy and thus displays a high
degree of class inclusion and a high degree of generality.
They include basic-level and subordinate concepts.

• Subordinate concepts are found at the bottom of
a semantic hierarchy and display a low degree of class
inclusion and generality. As hyponyms of basic-level
concepts, subordinate categories are highly specific.

At the core of our proposal to design a feature repre-
sentation, concepts are processed differently according to
their categorical level. This asymmetrical process is based
on a cognitive study proposed by [15] where they conclude
that, concepts are processed differently by humans, i.e., it
is purely perceptual for the basic-level and subordinate con-
cepts, while it is inferred using stored semantic information,
for superordinate concepts. In our scheme, basic-level and
subordinate concepts are computed through a visual process,
while superordinate concepts are processed semantically us-
ing the hyponym relations between concepts into hierarchies.
Figure 2 illustrates for two input images, the three types of
concepts that would be retained by our scheme.

More precisely, for an input image, the probability of a
basic-level or a subordinate concept is the output of a bi-
nary classifier (ϕV

i (x)) for the concept ci evaluated on the
mid-level feature x, further normalized by a sigmoid func-
tion such that 0 < ϕV

i (·) < 1. The binary classifiers, that we
name visual classifiers in the following, have been learned
using images of the concept ci as positive samples and im-
ages of a diversified class as negative samples. Each concept
classification model ϕV

i (·) is obtained with L2-regularized
linear SVM, but other linear models could be used. Re-
garding the process of basic-level and subordinate concepts,
even if it is similar, a particular difference is that, all basic-
level concepts are selected in the final representation, while
for subordinate concepts, we select only the most salients.
This particular process for subordinate concepts avoid re-
dundancy of information, due to the fact pointed in [20]
that there is more concepts at a subordinate level than at
the basic-level.

Concepts (ci) at the highest categorical level (superordi-
nate) are computed, for an input image, through a semantic
classifier. It is an inference of concepts that have at least one
hyponym relation with the superordinate concept (ci). We
thus, define the subsumption function that aims to output
the set of concepts having hyponym relations with an input
concept. We further, define the semantic classifiers that are
used to compute superordinate concepts.

Definition 1. A subsumption function ς(·) takes as input
a concept ci and a semantic hierarchy H with hyponymy re-
lations and outputs a set Ci of concepts that are subsumed
by the concept ci, i.e., the concepts that have an hyponymy
relation with the concept ci in a semantic hierarchy.

Definition 2. Considering x ∈ RN a N-dimensional mid-
level feature extracted from an image I. A semantic classifier
is an operator that predicts the probability of presence of
a concept ci in the image through a semantic inference of
purely visual output classifiers: ϕS

i (x, Ci) = max(ϕV
C1

(x), · · · ,
ϕV

CM
(x)), where Ci is the set of concepts subsumed by ci,

M = card(Ci) and ϕV (·) is the output values given by vi-
sual classifiers.



Figure 3: Illustration of the asymmetric process
in our D-CL feature. Superordinate concepts are
processed semantically through semantic classifiers,
while basic-level and subordinate concepts are visu-
ally processed through binary classifiers. Stars and
zeros represents output values Fi(·) of each concept
of the D-CL feature F(·). Note that, concepts are
grouped by categorical levels, but any order could
be obtained in a real scheme.

Finally, the proposed“Diverse Concept-Level”(D-CL) fea-
ture computes superordinate concepts through a semantic
classifier and all other concepts, i.e. basic-levels and sub-
ordinates, using visual classifier. It also selects all basic-
level and superordinate concepts and retains only the most
salients subordinate concepts. Formally, let’s N be the set
of all concepts associated to a semantic hierarchy, BL the
set of all basic-level concepts, P the set of superordinate
concepts, B the set of subordinate concepts and BK the set
of the K most salient subordinate concepts for each input
image. Note that, N = P ∪ BL ∪ B. Each dimension Fi(x)
of the D-CL feature F(x) is a concept detector computed
through:

Fi(x) =


ϕS

i (x, ς(i)), if ci ∈ P
ϕV

i (x), if ci ∈ BL ∪ BK

0 if ci ∈ B \ BK

(1)

where ς(·) is the subsumption function, ϕV
i (·) the visual clas-

sifier, ϕS
i (·) the semantic classifier and K is a parameter cor-

responding to the number of subordinate concepts retained
in the representation, that can be set by cross-validation.
An illustration of the asymmetric process according to the
type of concepts is presented in Figure 3.

3.2 Identifying Concept Groups in Practice
In this section, we detail how to identify the three groups

of concepts (i.e., basic-level, superordinate and subordinate),
in practice, for a given supervised classification problem.

As depicted in Equation 1, the D-CL feature is computed
by activating all the basic-level concepts, all the superordi-
nate concepts, the K most salient subordinate concepts and
by deactivating all others. Let F(x) be the D-CL feature
of a mid-level feature x extracted for an image I contained
in a targeted dataset. Let Dd the set of d categories of the
targeted dataset.

While basic-level concepts are not available at a large
scale, we propose to identify, in an offline phase, the set
of basic-level concepts (BL) selected in our D-CL feature
by matching it with the set of targeted dataset categories
Dd. This latter, is based on the assumption that broader-
datasets mostly contain categories at the basic-level. Specif-
ically, all targeted dataset categories di are matched with

concepts ci to generate a set of basic-level concepts adapted
to the dataset BLd. In fact, this matching has the advan-
tage to make our D-CL feature adaptable to the application
context. Regarding the sets of superordinate P and most
salients subordinate BK concepts, they are therefore au-
tomatically selected through the subsumption function ς(·)
that takes as input concepts from BLd and a semantic hi-
erarchy H with “is-a” relations. Formally, the Equation 1
becomes:

Fi(x) =


ϕS

i (x, ς(i)), if ci ∈ Pd

ϕV
i (x), if ci ∈ BLd ∪ BK

0 if ci ∈ B \ BK

(2)

where BLd and Pd are, respectively, the set of basic-level
and superordinate concepts adapted to the targeted dataset
Dd. Selecting a portion of the whole concepts, and setting
others to zero is closely related to the sparsification pro-
cesses that sets to zero the lowest output values and keeps
activated only the other concepts. Recent works underlined
that such a property of sparsity has the advantage to be ef-
fective and computational efficient [10, 12]. The key novelty
of our work is the adaptability of the concept selection to
the input images. Contrary to former work, the sparsity is
adapted to each image, according to its actual content, and
relative to the problem of interest.

Our D-CL feature is illustrated in Figure 4. It is able
to capture from an image containing multiple objects, all
the basic-level concepts (colored in dark green) adapted to
the target dataset, all its superordinate concepts (colored in
dark red) and the most salient subordinate ones (colored in
dark blue). It results in a final representation capturing the
most informative concepts for a target collection of images.

4. EXPERIMENT AND ANALYSIS
In this section, we employ the proposed“Diverse Concept-

Level” feature (denoted as D-CL) on three multi-object
classification datasets. We first describe this datasets (Sec-
tion 4.1) and the implementation details of our model (Sec-
tion 4.2). Then, we report multi-object classification re-
sults on the three datasets (Section 4.3), and we compare
it with the best semantic features in the literature. Finally,
we evaluate the contribution of the asymmetrical process of
concepts in the proposed D-CL descriptor by, first, evaluat-
ing the proposed semantic classifier and compare it to tradi-
tional binary classifiers (Section 4.4), and then, assessing the
contribution of each concept groups selection (Section 4.5).

4.1 Datasets
The effectiveness of the proposed diverse concept-level fea-

ture is tested in the context of multi-class object classifica-
tion. It is evaluated according to a standard experimental
protocol as reported in the recent literature on the three
following datasets:

• Nus-Wide Object [4], is a multi-object classification
dataset. As a subset of NUS-WIDE, it consists of 31
object categories and 36, 255 images in total. It con-
tains 21, 709 images for training and 15, 546 images for
testing. Each image is labeled by one or several labels
from the 31 categories.

• Pascal VOC 07 [8] is a multi-object classification



Figure 4: Illustration of the concept groups identification (c) in a practical case, for an input image (a)
contained in a dataset collection. The proposed concept groups identification selects (1) in an offline phase
(dashed arrow), the concepts of the target dataset categories (Dd) as a portion (BLd) of all basic-level concepts
(BL), (2) the part (Pd) of its superordinate concepts (P) and in a final step (3) the most salient (BK)
subordinate concepts (B). For steps (2) and (3), a semantic hierarchy (WordNet) is used to compute the
hyponymy relations. This latter, results in the final D-CL representation (b), to an activation of diverse
concept levels (i.e., superordinate, basic-level and subordinate) and a deactivation of all other concepts.

task. It is based on a dataset that contains 9,963 im-
ages, each image being labeled by one or several labels
from 20 categories. We used the pre-defined split of
5, 011 images for training and 4, 952 for testing.

• Pascal VOC 12 [7] benchmark is similar to VOC
2007 but its number of images is larger: 22, 531 images
are split into 11, 540 images for training and 10, 991
images for testing.

4.2 Implementation details
D-CL learning: For all experiments, ImageNet [5] is

used to learn our diverse concept-level representation. We
especially use a subset of ImageNet with 17, 462 concepts,
containing more than 100 images each. Thus, we learn each
individual concept detector using images representing the
concept ci as positive samples, and images of a diversified
class as negative samples. Note that the concepts can be
at any categorical-level of a semantic hierarchy, making our
method applicable on top of any semantic feature.

Concept Groups Identification: As depicted in Sec-
tion 3.2, the set of basic-level concepts (BLd in Equation 2) is
matched with the set of targeted dataset categories, for each
dataset. Since all the concepts of ImageNet are organized in
accordance to the WordNet [17] hierarchy, we use it as input
to the subsumption function ϕ(·) to select the correspond-
ing superordinate concepts (Pd in Equation 2). Specifically,
only the first and the fourth level of the WordNet hierar-
chy are used. This, avoids redundancy of semantically close
superordinate concepts. In fact, those levels contains the
most popular superordinate concepts employed in cognitive
experiments [15, 20, 25]. For the set of the K most salients
subordinate concepts (BK), the parameter K of Equation 2,
is cross-validated on each training dataset using the usual
train/val split.

CNN feature: Semantic features (including the pro-
posed D-CL), are built on top of any low-level or mid-level
features (CNN). However, the quality of the D-CL feature
will directly depend on the low/mid-level feature used. We
thus, created semantic features on top of a competitive mid-
level feature released in the literature, namely VGG-Net [24].
It is extracted from the last fully-connected layer (layer
16) of a Convolutional Neural Networks (CNN) learned on
ILSVRC 2012 dataset [21] (containing 1.2 million images
over 1,000 output categories), resulting in 4, 096 dimensional
vectors. Note that, for a fair comparison, the same mid-level
feature is used to build Classemes+ [26] and Semfeat [10],
presented in Section 4.3. For our study, fine tuning of the
CNN may result into an improvement of the results at the
cost of significant computational cost and the possible use
of additive data. Such a specific optimization of the CNN
has not been considered in our experiment, to insure their
reproducibility with the available CNN models.

4.3 Multi-Object Classification Results
In this section, we test the D-CL feature for multi-object

classification on the datasets presented in Section 4.1. The
evaluation of our method lies in the context of semantic
features. Thus we compare its performances to the following
four baselines:

• VGG-16 (fc8) [24], is extracted from a fully-connected
layer (fc8, 18th layer) of a CNN architecture (D) learned
on ILSVRC 2012 dataset [21] that contains 1.2 million
images of 1,000 classes. The resulting vector has 1, 000
dimensions and can be seen as a semantic feature build
on top of the fc7 (16th layer), which the concept de-
tectors are the final outputs of the CNN;

• Semfeat [10], is built on top of a mid-level feature
(Overfeat [23]) in their original work. To fairly com-



Method
Nus-Wide Object Pascal VOC 2007 Pascal VOC 2012

(20%) (45%) (30%)

ObjectBank [14] n.a 45.2* n.a

Classemes [26] n.a 43.8* n.a

Classemes+ [26] 70.3 82.4 81.7

Picodes [2] n.a 43.7* n.a

Meta-Class [1] 36.5 48.4 (53.2*) 49.3

VGG-16 (fc8) [24] 67.3 77.4 77.2

Semfeat [10] 74.7 82.8 81.7

D-CL (ours) 76.0 85.1 83.0

Table 1: Overall performance (mean Average Precision in %) of the following methods, ObjectBank,
Classemes, Classemes+, Picodes, Meta-Class, VGG-16 (fc8), Semfeat and our approach (D-CL) on Nus-
Wide Object, Pascal VOC 2007 and Pascal VOC 2012. We mention, for each dataset (in parenthesis), the
rate of images labelled with multiple labels. Results marked with * are those reported in the original papers.

pare it to our method, we build it on top of the 16th

layer of VGG-16. This layer is used to learn the classi-
fiers of the 17, 462 concepts of ImageNet that contains
more than 100 images. According to their original
work, a fixed sparsification over images is considered;

• Classemes+ is, for a fair comparison with other meth-
ods, our own implementation of Classemes [26]. We
build it on top of a the 16th layer of VGG-16 with the
same concepts as our method and Semfeat, that is to
say 17, 462 concepts of ImageNet containing more than
100 images. Like in the original work, no sparsification
is considered;

• Meta-Class [1], is the output of 15, 232 concept de-
tectors. It is based on a concatenation of five low-level
features combined with a spatial pyramid histogram
with 13 pyramid levels. Since the number of concepts
is almost equal to other methods and the code is avail-
able, we use it as it is released 1.

To extend the comparison, we also report released scores
by other semantic-based approaches in the literature (Ob-
jectBank [14], Picodes [2] and Classemes [26]). Regard-
ing the classification protocol, each class of the datasets is
learned by a one-vs-all linear SVM classifier and we use mean
Average Precision (mAP) to evaluate the performances. For
each dataset, the cost parameter of the SVM classifier and
the parameter K of Equation 2 are optimized through cross-
validation on the training images, using the usual train/val
split. Results are reported in Table 1. Our descriptor signifi-
cantly outperforms all the other representations. On Pascal
VOC 2007, D-CL has better performances than the four
baselines Classemes+ (+2.7 points of mAP), Meta-Class
(+35), VGG-16-fc8 (+7.7) and Semfeat ( +2.3 points of
mAP). Our method also outperforms the other semantic-
based methods (ObjectBank, Picodes and Classemes) eval-
uated on Pascal VOC 2007. The same improvements are ob-
served on Pascal VOC 2012 and Nus-Wide Object datasets.
However, we note that, compared to all baselines, the im-
provements of the proposed D-CL feature, is much better on
Pascal VOC 2007 than Pascal VOC 2012 and Nus-Wide Ob-
ject. This result is aligned with the expectation since Pascal
1http://vlg.cs.dartmouth.edu/projects/metaclass

VOC 2007 contains a larger part (45%) of images labeled by
multiple classes, compared to Pascal VOC 2012 and Nus-
Wide Object, that contains only 30% and 20%, respectively.
Regarding this, the performances of our method increases
with the level of co-occurrence objects in the dataset and
even achieves better performances than comparable state-
of-the-art methods when the objects in the datasets have a
lower level of co-occurrence.

4.4 Accuracy of Semantic Classifiers
In this section, we assess the effectiveness of the proposed

semantic classifier (ϕS(·) of Equation 1), and compare it
with purely visual classifiers, i.e., binary classifiers (ϕV (·) of
Equation 1) on generic concepts (i.e. concepts that have at
least one hypernym relation with another concept).

This analytic study is an analogy to the experiment con-
ducted by the cognitive works of Stephan Kosslyn [15]. More
precisely, they wanted to provide a converging evidence that
superordinate concepts are semantically processed by hu-
mans, rather than by a visual perception processing. Thus,
to respect the analogy with [15], we evaluate the proposed
semantic classifier and the visual classifiers on superordinate
concepts only.

Regarding our experiment, the selection of superordinate
concepts impose, in the Equation 2 of the proposed D-CL
representation, to set to zero all the basic-level and subor-
dinate concepts (ϕV

i (x) = 0, ∀ci ∈ BLd∪BK). Thereby, the
experiment has been conducted on the context of multi-class
object classification through the Pascal VOC 07 dataset. All
the images of the dataset have been re-labeled at superor-
dinate level, e.g. all images labeled as bird, dog, cow, horse
or sheep are now labeled as animal, all images labeled as
chair, sofa or table are now labeled as furniture, etc (see
first and second column of Table 2 for the re-labeling of
other classes). Hence, we learn each superordinate class of
the dataset by a one-vs-all SVM classifier. The cost pa-
rameter of the SVM classifier is optimized through cross-
validation on the training dataset, using the usual train/val
split. Performance results of both classifiers are reported in
Table 2 using average precision (AP in %) for each class and
mean Average Precision (mAP in %) over all classes in the
last row. The second column of the table corresponds to
the basic-level categories of the dataset and the first column



Superordinate Basic-level Visual Semantic (↑)
Animal bird - cow - dog - horse - sheep 92.9 97.7 (+4.8)

Electronic equipment tv monitor 52.1 72.6 (+20.5)

Furniture chair - sofa - table 70.0 74.9 (+4.9)

Person person 77.2 85.7 (+8.5)

Plant potted plant 26.5 40.5 (+14.0)

Vehicle airplane - bike - boat - bus - car - mbike - train 93.4 96.9 (+3.5)

Vessel bottle 18.7 31.4 (+12.7)

mAP 61.5 71.4 (+9.9)

Table 2: Evaluating purely visual binary classifiers (denoted as “Visual”) and our proposed semantic classifiers
(denoted as “Semantic”) for superordinate concepts (first column) of Pascal VOC 07 dataset classes (second
column). The improvements of semantic classifiers over visual classifiers are shown in parentheses. Note
that, the class person of Pascal VOC 2007 is already at the highest level in the WordNet hierarchy.

corresponds to the list of selected superordinate concepts in
our D-CL feature. The average precision of each superordi-
nate concept computed through binary classifiers (denoted
as Visual) and the proposed semantic classifier (denoted as
Semantic), are presented in the last two columns, respec-
tively. Remarkably, the proposed semantic classifier clearly
outperforms binary classifiers (purely visual) for all the su-
perordinate concepts. From this study, we conclude that
the superordinate concepts are better recognised by D-CL,
due to its ability to compensate low within-category resem-
blance of generic concepts. The most surprising aspect of
this experiment is that it shows, as concluded by the ana-
logical cognitive experiment of Stephan Kosslyn [15], that
semantic process is most adapted than purely visual process
for superordinate concepts.

4.5 Concept Groups Selection Sensitivity
We evaluate now the contribution of the concepts from

different groups (i.e. categorical levels) on a multi-object
classification task (Pascal VOC 2007). To this end, we need
to isolate each group of concepts in the D-CL representa-
tion by selecting them individually and setting other groups
to zero. It results in four special cases of the D-CL fea-
ture (Equation 2), (i) selecting only superordinate concepts
(∀ci ∈ Pd ∪ B, ϕ(ci) = 0) denoted as “Superordinate”, (ii)
selecting only basic-level concepts (∀ci ∈ Pd ∪ B, ϕ(ci) = 0)
denoted as “Basic-level” (iii) selecting only subordinate con-
cepts (∀ci ∈ Pd ∪ BLd, ϕ(ci) = 0), denoted as “Subordi-
nate” and (iv) selecting only the K most salient subordi-

nate concepts (∀ci ∈ BK), denoted as “K-Subordinate”. We
also evaluate the contribution when selecting all the concept
groups in the representation (∀ci ∈ Pd ∪ BLd ∪ B, ϕ(ci) 6= 0
in Eq. 2), e.g., superordinate, basic-level and subordinate
concepts, denoted as “Fusion 1”. Finally, we report the re-
sults obtained by the proposed D-CL concept groups selec-
tion (see Section 3.2), corresponding to the selection of, all
the superordinate and basic-level concepts and the K most
salient subordinate concepts. It is also a fusion of other
groups of concepts that we denote as D-CL. Results are re-
ported in Table 3. For each concept group selection, a check-
mark represents the concept groups that had been selected
in the final representation. The last column gives the mAP
obtained for the different concept selections. Note that, the
K parameter of Equation 2 has been cross-validated for the

Concept Groups
Selection

P BL B BK mAP

Superordinate 3 44.4%

Basic-level 3 76.1%

Subordinate 3 82.1%

K-Subordinate 3 78.9%

Fusion 1 3 3 3 82.7%

Fusion 2 (D-CL) 3 3 3 85.1%

Table 3: Evaluation of the contribution of differ-
ent concept groups selection (check-mark = selected
group) in the proposed semantic feature on Pascal
VOC 2007 dataset.

“K-Subordinate” and “D-CL” concept group selections.
Obviously, selecting only superordinate concepts (P) leads

to very bad results, compared to basic-level concepts only
(BL), which are their-self lower than subordinate concepts
only (B). Selecting only the K most salient subordinate con-
cepts (BK) obtains lower performances than selecting them
all. Surprisingly, for the fusion, it is better with the selec-
tion of the K most salient concepts (the proposed D-CL)
than with the selection of all subordinate concepts (Fusion
2). This experiment shows that the proposed D-CL selection
gives a most effective semantic representation.

5. CONCLUSIONS
We propose the Diverse Concept-Level feature (D-CL), a

semantic representation based on the exploitation of human
knowledge, such as semantic hierarchies, to identify group
of concepts, according to their categorical-level. This latter,
aims to process the three groups of visual concepts differ-
ently from each other. Thus, our scheme outputs only infor-
mative concepts in the final representation. In addition, we
show that the proposed semantic classifiers are most adapted
to recognize superordinate concepts in images, than tradi-
tional visual classifiers. We also explored the selection of
concepts from the three different categorical-levels, show-
ing that the proposed scheme, consisting in the selection of
concepts from all of them, is beneficial to obtain a precise



semantic representation.
Experimental validation of the proposed approach has been

conducted on three benchmarks (Pascal VOC 2007, Pascal
VOC 2012 and Nus-Wide Object) of multi-class object clas-
sification. The proposed D-CL feature obtained significantly
better performances than the best semantic features in the
literature.

The results obtained for image classification are very en-
couraging and we will pursue the work reported here. We
will investigate finer ways to identify basic-level concepts.
In particular, large released lists of basic-level concepts [16,
19, 22] will replace the dataset categories that are currently
used. This work direction, will aim to handle unsupervised
image retrieval problem, where categories of images in the
collection are not supposed known.
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