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Abstract

In a transfer-learning scheme, the intermediate layers of

a pre-trained CNN are employed as universal image repre-

sentation to tackle many visual classification problems. The

current trend to generate such representation is to learn

a CNN on a large set of images labeled among the most

specific categories. Such processes ignore potential rela-

tions between categories, as well as the categorical-levels

used by humans to classify. In this paper, we propose

Multi Categorical-Level Networks (MuCaLe-Net) that in-

clude human-categorization knowledge into the CNN learn-

ing process. A MuCaLe-Net separates generic categories

from each other while it independently distinguishes spe-

cific ones. It thereby generates different features in the in-

termediate layers that are complementary when combined

together. Advantageously, our method does not require ad-

ditive data nor annotation to train the network. The exten-

sive experiments over four publicly available benchmarks of

image classification exhibit state-of-the-art performances.

1. Introduction

Convolutional neural networks (CNNs) established the

state-of-the-art for several visual recognition problems.

One of the most important reasons behind their success is

their ability to generate rich discriminating features (con-

volutional and unit-filters). The common scenario to ob-

tain such performing features is to solve a discriminative

problem, that consists to separate categories from one an-

other. By solving this discriminative problem, features are

generated at the intermediate layers of the network. In a

transfer-learning scenario [2, 23, 38], these latter can then

serve as image representation for a new target problem with

few training-data. Since these CNN-based descriptors have

obtained good performance on many target-problems, they

were assigned the property of universality. An important

question, that the current article investigates, is thus to de-

termine how to obtain more universal image representations

resulting from the generative aspect of a CNN.

The problem of increasing the universality of a CNN-

Figure 1. A standard CNN (Net-S) solves a discriminative prob-

lem (D1) that consists to separate specific categories ((1) and

(2)) from each other. This last, automatically generates power-

ful specific features in the intermediate layers (G1), from which

the fully-connected activations (a) are generally used as image-

representation in a transfer-learning scheme. Here, we advocate

that varying the discriminative problem aims to vary the generated

features, even through the same training-images. More precisely,

our method re-labels the training-images at a generic categorical-

level (simply by re-labeling the categories), then use these generic

categories (3) as the discriminative problem (D2) to be solved by

another CNN (Net-G) for generating different features (G2). After

normalization, we combine the specific (a) and generic (b) fully-

connected activations, to get the final MuCaLe representation (c).

In contrast to standard CNN-descriptors, MuCaLe is more diver-

sified in terms of relevant features (convolutional and unit-filters)

leading to better performances. Best view in color.

descriptor can be handled by increasing the quantity of rel-

evant filters generated by a CNN. However, it is unclear how

to directly supervise their complex generative aspect. Con-

sequently, many works indirectly tackle the issue by focus-

ing on the discriminative problem. In particular, two ap-

proaches emerge when reviewing the literature. The first

one is known as the “ensemble-model” [14, 15, 31, 36, 40],

and the second as the “data-enlargement” [2, 17, 21, 41].

The former consists to train many different networks and

merge their internal features as image representation to

solve the target-problem. The difference between each

network can be the random initialization [40], the image-
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scale [14, 31] or more recently the subset of categories to

recognize [1, 15, 22, 27, 36]. However, this approach needs

many cumbersome models to get sufficient diversity in the

ensemble, which is highly limited on a test phase when time

is critical. The second approach (data-enlargement) consists

to enlarge the training-database through more images-per-

class and more categories. By this enlargement, the CNN is

forced to solve a different discriminative problem that desir-

ably increases the universality of generated features. How-

ever, the key limitation of this approach is its cost, since

it requires thousands additive images and their correspond-

ing annotations. Furthermore, commonly to all previously

mentioned methods, only specific categories are considered

in the discriminative problem whereas it has been shown

by psychologists such as Eleanor Rosch [29] and Stephan

Kosslyn [16] that humans use many categorical-levels1 to

classify. For this reason, recent works in computer vision

highlighted the importance to pay attention to the exact way

we name objects [6, 20, 25, 26, 34].

In this paper, we propose a new method to relevantly in-

crease the diversity of the generated features based on the

nesting of Human-categorization [16, 29] (e.g., categorical-

level labels of objects) into the CNN learning process. Our

proposal belongs to the ensemble-model approach with a

new original definition of the difference between the net-

works. This difference is obtained from a variation of the

categorical-level labels of the training-images. More pre-

cisely, our main contribution consists to structure the labels

of the training-images in multi categorical-levels and inde-

pendently train one network per categorical-level, resulting

to a new learning-strategy that we name MuCaLe-Net. For

new images, we extract the intermediate layers from the pre-

trained MuCaLe-Net and merge them to get the final Mu-

CaLe representation. Figure 1 illustrates the whole method.

To the best of our knowledge, this is the first attempt to use

multi categorical-level networks to obtain a more universal

image representation in a transfer-learning scenario.

A major advantage of the proposed method in compari-

son to previous work is that, is does not require any addi-

tive image dataset nor very costly manual annotation, while

it achieves state-of-the-art performances on four publicly

available benchmarks in image classification.

Above the proposal itself and the demonstration of it per-

formance in practice, the other major contribution of this

paper lies in Section 4 in which we analyze and clarify the

reasons why our approach works. Compared to representa-

tions obtained from standard CNNs trained with specific la-

bels, an advantage of MuCaLe appears when the filters fail

at the subordinate-level (e.g. in Fig 1, the filters for Tesla

1Humans use superordinate, basic-level and subordinate categories.

Basic-level categories correspond to the most common words used by Hu-

mans to categorize objects. Superordinate/subordinate categories corre-

spond to categories that are more generic/specific than basic-level ones.

and Ford are both weakly activated), which is often the case

since the categories are finer thus harder to identify. With

our proposal, the descriptor at least contains features that

capture common properties among basic-level categories

(e.g. filters of Car are highly activated), making it more

robust for classification problems.

2. Related Work

Diversification-strategies. The data-enlargement approach

that consists to add images labeled among new categories

(specific [2, 41], generic [18, 21], noisy tags [17]) to the

initial discriminative problem is a powerful diversification-

strategy. A strong limitation of these methods lies in their

cost resulting from the need for many additive data and cor-

responding annotations. The works of [18, 21] are the clos-

est to ours, since they consider both generic and specific

categories. The key difference is the way they combine both

types of categories, as well as the genericity definition. In

fact, they solve only one discriminative problem by jointly

training the CNN on the generic and specific data, resulting

into a mix of generic and specific features in the intermedi-

ate layers. Moreover, the joint learning makes the generic

categories (e.g. dog) and specific ones (e.g. rottweiler) mu-

tually exclusive, which clearly violates real world seman-

tics. In contrast, we independently solve two discriminative

problems, resulting into a desirably clear separation of the

different features. Moreover, they define the generic cate-

gories as the internal nodes of a hierarchy while we consider

they belong to the basic categorical-level.

The ensemble-model approach [1, 15, 22, 27, 36, 40] is

another way of diversifying the features. Desirably, it does

not need additive training-data, but it requires many net-

works to diversify the ensemble. From this approach, the

work of [27] is the closest to ours. They use “abstract”

generic categories (do not exist in the real world) that cap-

ture common properties among many object classes. They

are built using hierarchical clustering on low-level features

of images among the initial set of categories. The restric-

tive assumption of this method is its dependency to the vi-

sual low-level features, since it leads to irrelevant categories

when low-level features fail to capture the dissimilarity be-

tween different categories. Moreover, they train a network

on the initial set of categories and fine-tune it on all other

generic groups, thus all new filters are highly biased by

those of the initial model which is undesirable for increasing

the set of features. In fact, they need 18 models to get sig-

nificant diversity which is very costly. On the contrary, the

method we propose relies on the human categorization ex-

pertise to reflect complex relations between categories. By

independently training each discriminative problem, it only

needs two models to significantly diversify the ensemble.

Cognitive studies in computer vision. A last line of work

deals with the inspiration from cognitive studies in com-

puter vision [6, 20, 25, 26, 34]. Generally, the main goal of
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these works is to output the corresponding basic-level con-

cepts of an image from a set of predicted concepts. In partic-

ular, the work of Deng et al. [6] is closest to ours since they

optimize the trade-off between accuracy and specificity. In

other words, if the concept detectors fail to recognize cat-

egories at a specific level, they try to return a more gen-

eral concept. As in our work, their system reflects the psy-

chological hint stating that, even if humans tend to catego-

rize objects at subordinate level, they are still aware of the

other categorical-levels. However, the key difference with

our work is the method used to integrate this psychological

hint as well as its purpose. In fact, our goal is to diversify

the generated features in CNNs, while they aim at annotat-

ing the images and thus identifying one concept. Moreover,

we opt for an integration of the psychological hint at three

levels, the training-data, the learning process and the image

representation design, while they do it only during the test

phase, after the prediction of the different categories.

3. Proposed Approach

In this section, we aim at learning more universal image

representations by nesting human-categorization knowl-

edge into deep CNNs. Our approach consists of three mod-

ules: the re-labeling of categories (Sec. 3.1), the learning of

multi categorical-level networks “MuCaLe-Net” (Sec. 3.2)

and the extraction of the multi categorical-level “MuCaLe”

representation (Sec. 3.3). An overview of the whole ap-

proach is illustrated in Figure 3.

3.1. CategoricalLevel Relabeling

Let us consider a semantic hierarchy with hyponymy re-

lations, that is to say, a (large) set of categories organized

according to “is-a” relations. An example of such a hier-

archy is WordNet, on which are mapped the categories of

ImageNet [5]. Formally, this is a directed acyclic graph

H = (V, E) consisting of a set V of nodes and directed

edges E ⊆ V × V . Each node v ∈ V is a label and an

edge (vi, vj) ∈ E is a hierarchy-edge indicating that label

vi subsumes label vj . Let us also consider a dataset DN
C

containing N images labeled among S specific categories

belonging to C = {c1, c2 . . . , cS}, such that C ⊂ V .

We now consider a partition of C into G subsets i.e C =
⋃G

i=1 Ci (an example to obtain such a partition is detailed in

supp. material) and define a re-labeling function as:

R : 2C → V (1)

Ci 7→ LCAH (Ci) ,

where LCAH(Ci) is the lowest common ancestor of the cat-

egories of Ci according to H. Let us note that the partition

of C is the only additive work needed. The “cost” of this

step is thus much smaller than that usually needed, i.e, col-

lecting new images and annotating each of them. Using this

function R, we obtain G categories, with G ≪ S.

Figure 2. Illustration of our categorical-level re-labeling. Given

a set of categories (leaf nodes of the hierarchy in white diamonds)

and a partitioning of it into G subsets C1, · · · , CG (gray blobs), our

method automatically re-labels them (and thus, their images) into

generic categories (blue circles). It consists to first get the least

common ancestor of each subset Ci, through the R-function (green

dashed arrows) then, if it does not reach a category of the desired

categorical-level L (due to the hierarchy-imbalance), it applies a

deductive function (blue dashed arrows) that goes to its ancestors

until it reaches it. Best view in color.

We now consider a categorical-level defined according

to human cognition. Let us note L a set of categories that

belong to a categorical-level [16, 29, 35] (e.g, basic or su-

perordinate-levels). It is important to realize that the cat-

egories of L do not correspond to a given level of the hi-

erarchy H. Our purpose here, is to match the G categories

previously re-labeled by Eq (1) to L. In fact, as illustrated in

Fig. 2, some of the G categories already match the desired

categorical-level L but others may not (due to the imbal-

ance of semantic hierarchies). For this, we consider a de-

ductive function δH(·) that associates to a category vi of V
its direct ancestor, that is to say, the category directly above

vi according to H. We note δnH(·) the corresponding iter-

ated function (i.e δH(·) composed with itself n times) and

we assume that the image of the root node of H is itself.

Hence, given a category ci, the set of all its ancestors in V is

AV(ci) = {δjH(ci)}
∞
j=1. We can now define our re-labeling

function relative to a given categorical-level L by:

RL : 2C → L (2)

Ci 7→ L ∩ AV (LCAH (Ci)) .

Simply said, while Eq. (1) identifies the least common an-

cestor of the subsets of C, Eq. (2) matches their ancestors

belonging to a categorical-level L (illustration in Fig. 2).

Thus, given the initial training-dataset DN
C (labeled ac-

cording to C) and the hierarchy H, the only additive work

is to determine the set of categories in L. Hence, assum-

ing that none of them is an ancestor of an other in V (i.e.

∀(vi, vj) ∈ L×L, vi /∈ AV(vj)) it is straightforward to au-

tomatically re-label DN
C according to L, once it is chosen.
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3.2. Multi CategoricalLevel Network Learning

Given the initial training-dataset DN
C (with specific la-

bels) and the ω re-labeled generic ones {DN
L1
, · · · ,DN

Lω
},

we now learn the Multi Categorical-Level Network

(MuCaLe-Net). Generally, it consists to learn one CNN

per database (initial database DN
C and re-labeled ones DN

Li
)

in accordance to the classical methodology [18]. An illus-

tration is given in Figure 3. Note that our method does not

depend on a particular network architecture, thus can bene-

fit from the advances in this domain.

Formally, let us consider a training-database DN
B that

contains N images {x1, · · · , xN} labeled among the cat-

egories of the label-set B = {b1, · · · , bcard(B)} ⊂ V . Let

B = C for the initial database DN
C , and B = Li for those

re-labeled according to categorical-levels DN
Li

. The multi-

ple datasets could be differentiated by other principles than

categorical-levels. Using the “softmax” to specify how to

penalize the deviation between the predicted and true la-

bels, the posterior probability of an image xi and category

bj for the label-set B is:

pBij =
exp(fB

j (xi))
∑Card(B)

k=1 exp(fB
k (xi))

, (3)

where fB
j (xi) is the jth dimension of the output of the last

fully-connected layer of the network and the dimensionality

of fB(·) is equal to the number of categories in label-set B.

Thus, assuming that the ground-truth probability for image

xi and class bj at categorical-level B is defined as pBij , the

cost function (from maximum log-likelihood) to be mini-

mized by asynchronized stochastic gradient descent is:

JB
N (θ) = −

1

N

N
∑

i=1

Card(B)
∑

j=1

pBij log(p
B
ij). (4)

Note that, we have as much cost functions to minimize

as the number of label-sets B, and each cost function JB
N (θ)

is minimized independently from all others, on the same N
images of the initial database DN

C . At convergence, we ob-

tain a set Ω = {WC ,WL1
, · · · ,WLω

} of ω + 1 models,

with ω corresponding to the number of re-labeled label-sets

used. Note that, by considering the categorical-levels to dif-

ferentiate the databases, we can re-label the initial label-set

to the basic and the superordinate categorical-levels. Nev-

ertheless, the proposed formalism for multi-level network

is general, and other principles may drive the definition of

each database-level.

In practice, for the initial training-database DN
C , we use

the popular ILSVRC dataset [5], which is a subset of Im-

ageNet. Its set of categories corresponds to the most spe-

cific hierarchical-level of ImageNet (i.e, the most specific

words used by humans with domain-expertise to categorize

objects) thus, it can be considered as the subordinate-level.

Figure 3. Illustration of the MuCaLe-Net learning procedure (B)

and the extraction of the MuCaLe descriptor (C) given the different

categorical-level databases obtained after the re-labeling proce-

dure (A). MuCaLe-Net consists to individually train one network

per categorical-level database (that contains the same images but

differs by their label-sets). Here, we have two databases (specific

(a) and generic (b)). The network trained on the specific database

is denoted by Net-S (c) and the one trained on the generic one,

by Net-G (d). For a new image (e), we individually extract one of

the layers from each component of the pre-trained MuCaLe-Net,

independently-normalize and concatenate them to obtain the final

MuCaLe representation (f). Best view in color.

Hence, using categorical-levels as a principle to differenti-

ate the multiple databases, we have B ∈ {C,L1,L2} with

C, L1 and L2, respectively corresponding to subordinate,

basic and superordinate categorical-levels. After training

our MuCaLe-Net with respect to Eq. (4), we obtain a set of

three network-models Ω = {WC ,WL1
,WL2

}.

3.3. MuCaLe Representation

At testing time, let us consider a query image xi, and a

set Ω = {WC ,WL1
, · · · ,WLω

} of network models learned

on training-databases labeled according to the initial label-

set C and the ω re-labeled ones {L1, · · · ,Lω}. Let us

denote the feature extracted from a CNN model WB by

φB
K(·) where the Kth first layers filter the images (e.g,

{conv1, conv2} when K = 2 with AlexNet [18] network).

The output of φB
K(·) is thus a scoring function of the data

point xi that produces a vector of activations. The Multi

Categorical-Level (MuCaLe) representation for the query

image xi is thus computed as:

Φ(xi,Ω,K) =
⊕

B∈{C,L1,··· ,Lω}

(

φB
K(xi)

∥

∥φB
K(xi)

∥

∥

∞

)

, (5)

where
⊕

B(·) is the concatenation operator among the ω+1
input vectors, and ‖v‖∞ returns the maximal value of v.

In practice, when Ω contains the models obtained from the

three categorical-level databases, Eq. (5) concatenates three

features to get the MuCaLe representation. Fig. 3 illustrates

the learning procedure (presented in previous section) and

the extraction of the representation for a new image.
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Figure 4. Graph (a) reports the average of maximum correlation

between convolutional-filters of Net-G and Net-S (i.e, similarity

between the two networks) according the layers. In (b), we plot the

average quantity of unique filters (that do not match with any filter

of the other network) in the two networks according the layers.

4. Diversification Ability of MuCaLe-Net

In this Section, we investigate whether each component

– network trained on images labeled at a particular set of

categorical-level labels – of a MuCaLe-Net introduces some

relevant diversity in the whole features’ space. To do so, we

analyze (in Sec. 4.1) the intermediate layers of the differ-

ent pre-trained categorical-level networks in order to show

that different features have been generated between them.

However, since diversity does not mean relevance, we also

analyze (in Sec. 4.2) how pertinent is this difference.

4.1. Do different categoricallevel networks learn
different features?

Two categorical-level networks are trained using the

AlexNet network on the same training-images (ILSVRC0.5

detailed in Sec. 5.1) for two categorical-level labels (basic

and subordinate), that we respectively denote by Net-G and

Net-S. Following Li et al. [19], we statistically compare the

internal convolutional-filters of the two networks. Thus, we

first aggregate certain statistics of the activations within the

networks. Given a pre-trained network Net-n, we denote by

the scalar random variable X
(n)
l,i the activation values pro-

duced over a large set of samples2 by convolutional-filter i
on layer l ∈ {conv1, · · · , conv5}. From this set of sam-

ples, we collect for all filters, the average µ
(n)
l,i , the standard

deviation σ
(n)
l,i and the “cross-network correlation”:

c
(n,m)
l,i,j = E[(X

(n)
l,i − µ

(n)
l,i )(X

(m)
l,j − µ

(m)
l,j )]/σ

(n)
l,i σ

(m)
l,j , (6)

corresponding to the correlation of the random variable of

a filter of a network Net-n with the one of another network

Net-m at the same layer l. We thus obtain five asymmetric

matrices per network, of size 96× 96 for conv1, 256× 256
for conv2 and conv5 and 384 × 384 for conv3 and conv4.

From these matrices, we look for the filters of Net-S that

2All the spatial positions (55 × 55 for conv1, 27 × 27 for conv2

and 13 × 13 for all others) of 2, 000 randomly selected images from the

ILSVRC0.5 validation set.

Figure 5. Illustration of the top-4 patches that highly activate some

unique convolutional-filters of the conv5 layer. The top part re-

ports unique filters learned from Net-S and the bottom part, unique

filters from Net-G. More visualizations in supplementary material.

Best view in color.

match the most with those of Net-G (and inversely) to show

the similarity between the networks. To show the amount

of unique filters generated in each network, we look for the

filters that do not have any matching filter in the other net-

work. Regarding the cross-network similarity, we compute

the average of maximum cross-network correlation (e.g.,

the average of the maximum of each row and each column

of the cross-network correlation matrices), for each layer

and display the results on the graph (a) of Figure 4. As

in [19], for the amount of unique filters, we compute the rel-

ative percentage of filters that do not match with any filter in

the other network – e.g., the maximum cross-correlation of

that filter with all those of the other network is above a low

threshold of 0.5 – for all the layers and report the results on

the graph (b) of Figure 4.

First of all, the high similarity (0.71) observed in conv1
confirms previous works [19, 38, 40] showing that, what-

ever the training-database, the first layers always generate

very similar filters (blob and Gabor-like filters). Second,

at the other extremity (conv5), the cross-network similar-

ity is much lower (0.26) and the quantity of unique filters

reached 100%, meaning that a very different feature space

has been generated by the two networks. Hence, these

two criteria show that two categorical-level networks be-

gin by generating many common filters but end by learn-

ing many unique ones, even if the same training-images

have been used. Equally important, graph (4b) shows that

we have a difference of 20% between the two networks at

conv1, clearly meaning that the representational divergence

of MuCaLe-Net begins at the first layer and thus confirms

the importance of training the networks independently with-

out sharing any layer between them.

To enhance this study, we visualize some unique filters

learned from each network at the last layer (conv5). To

do so, we follow the literature [11, 39, 40]. In particular,

for each convolutional-filter, we display in a two by two

block the top-four image-patches (extracted from the large

set of ILSVRC validation images) that highly activate them.

Figure 5 shows those unique filters. More visualizations

of unique filters are reported in supp. material, especially
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for the other layers. We clearly observe that Net-S has

learned specific filters such as breed of objects (e.g., they

highly activate only tennis-ball, hairy-cat, or even white-

dog patches) while in the Net-G, generic filters that are in-

variant to the breed of objects have been learned (e.g., they

highly activate cat, bird, or ball patches). This visualiza-

tion confirms that different filters are generated by different

categorical-level networks.

This analysis shows that solving different discriminative

problems (through different categorical-level labels) with a

CNN forces the generation of different convolutional-filters.

This latter, is quite surprising since the same training-

images are used in the two discriminative problems.

4.2. Is the difference between each set of categorical
level features relevant?

In the previous section, we have shown that each compo-

nent of a MuCaLe-Net generates different features. How-

ever, difference does not mean relevance, thus, it is crucial

to evaluate whether this diversity in the feature’s space be-

comes relevant in the final representation. For evaluating

the relevance of a descriptor, we follow Peng et al. [28] and

Herranz et al. [14] that estimate the relevance of a set of fea-

tures by its discriminability on a set of categories. Formally,

we define the discriminability of a N -dimensional represen-

tation Φ(x) = {ϕ1(x), · · · , ϕN (x)} with respect to a class

bj belonging to a set of M classes B = {b1, · · · , bM} as

D(Φ(x), bj) =
1

N

N
∑

i=1

I(ϕi(x), bj), (7)

where I(ϕi(x), bj) is the mutual information of filter ϕi(x)
and class bj . The filter ϕi(x) is a continuous variable, thus,

as in [28], we use a density estimation method (e.g., Parzen

windows) to approximate I(ϕi(x), bj).
In Figure 6, we plot the discriminability on the 31 cate-

gories of the Nus-Wide Object dataset (details in Sec. 5.1)

of the fc7 representations generated by three networks:

(i) Net-G, (ii) Net-S, and (iii) MuCaLe-Net. Note that,

the MuCaLe descriptor obtained by (iii) corresponds to the

combination of those obtained by the first two. From this

graph, we observe that the representation generated by Net-

S is roughly more discriminating and thus different than the

one learned by Net-G, confirming the results of the previ-

ous section. More interestingly, the graph shows that their

combination (MuCaLe), is more discriminating (for all the

categories) than each of them independently, meaning that

the difference between the features is highly relevant.

To resume, this analysis shows that CNNs are able to

generate different features with the same training-images by

varying their categorical-level labels and that this difference

is highly relevant. This means that the proposed MuCaLe-

Net strategy is going on the direction of our main goal, that

consists to diversify the set of features generated by CNNs

in order to result in a more universal image representation.

Figure 6. Comparison of the discriminability (ordered by decreas-

ing values) of representations generated by Net-G, Net-S and

MuCaLe-Net, on the categories of the NWO dataset.

5. Experimental Results

After describing the experimental settings and the

datasets (Section 5.1), we compare (Section 5.2) the diver-

sification performances of the proposed strategy with those

of the literature. Then, we compare (Section 5.3) the perfor-

mances of the MuCaLe representation with state-of-the-art

CNN-based descriptors on an image classification task.

5.1. Experimental Settings

Network training. We train the networks using two pop-

ular architectures, AlexNet [18] and VGG-16 [32]. Since

VGG is much deeper than AlexNet, it is technically hard to

get convergence with full back propagation as for AlexNet.

Thus, following the original paper [32], we initialize the

first layers with those of a pre-trained network and re-train

the whole network on the training database (more details in

supplementary material). In fact, for the training-databases,

we use two subsets of ImageNet, (i) ILSVRC0.5: a large and

clean set released in [30], containing half a million images

labeled among 483 fine-grained categories and (ii) ILSVRC

containing 1.2 million images labeled among 1, 000 fine-

grained categories. Since the process is faster, (i) is used

when many network-trainings are necessary.

Target-datasets. We used five popular object-recognition

datasets, namely Pascal VOC 2007 [8] (VOC07), Pas-

cal VOC 2012 [9] (VOC12), Caltech-101 [10] (CA101),

Caltech-256 [12] (CA256) and Nus-Wide Objects [4]

(NWO). We follow standard protocols for all the bench-

marks, that we report in details in the supp. material.

Transfer-learning. We apply the common scenario that

consists to consider a pre-trained network (on a large image

database) as an image representation extractor and, each im-

age is represented by one layer of the pre-trained network.

Each class of the target-dataset is then learned by a one-vs-

all SVM classifier. Fine-tuning could also be used to learn

the target-classes but it will result in the adaptation of the

representation to the target-dataset (i.e, domain adaptation),

which is out of the scope of the paper. The performances

are evaluated either with mean Average Precision (mAP) or

6716



Strategy VOC07 NWO

Standard 70.3 51.2

Random Difference (RD) 70.5±0.3 51.3±0.2

Random Grouping (RG) 70.6±0.1 51.0±0.3

Joint Training (JT) 71.5 53.4

MuCaLe-Net (ours) 72.5 54.1

Table 1. Comparison of MuCaLe-Net to baseline-strategies on two

datasets. For random methods (RD and RG), we conducted four

random draws and report the mean and standard-deviation.

Set of Label-Sets (B) VOC07 NWO

{C} (Subordinate) 70.3 51.2

{L1} (Basic-Level) 70.0 51.0

{L2} (Superordinate) 58.9 37.4

{C,L1} 72.5 54.1

{C,L1,L2} 73.0 54.9

Table 2. Impact of the set of label-sets (B) used in MuCaLe-Net.

Accuracy (Acc.) for mono-label benchmarks. The cost pa-

rameter of the SVM is optimized for each dataset through

cross-validation on the usual train/val splits.

Implementation details. As depicted in Sec. 3.2, we set

B ∈ {C,L1,L1} with C, L1 and L2 respectively corre-

sponding to the subordinate, basic and superordinate label-

sets. Practically, we used the 483 subordinate categories

released in [5] for C, 200 basic ones released in [30] for L1

and we re-labeled L1 according to our re-labeling protocol

(detailed in supp. material) to get 12 superordinate cate-

gories for L2. We used the WordNet hierarchy as input for

our re-labeling function (Eq. (2)). We respectively set K to

7 (15) in Eq. (5) for AlexNet (VGG). Thus, we always ex-

tract the penultimate layer (fc7) from each categorical-level

network. Regarding the normalization step, the infinite-

norm (L∞) obtains slightly better results than L1 or L2-

norms, thus L∞ is applied in the following.

5.2. Comparison with DiversificationStrategies

In this section, we compare the diversification ability

of the proposed MuCaLe-Net strategy with baselines and

strategies of the literature. The diversification ability is

defined as the ability of a strategy to produce an image

representation that is more universal (more performing in

a transfer-learning scheme), than a representation obtained

from a reference strategy. The comparison is thus carried on

a transfer-learning scheme through four target-datasets. For

all the strategies, we used the same database (ILSVRC0.5)

to train the networks (AlexNet, if not specified) and the

same transfer-learning protocol.

Comparison with Baseline-Strategies

We compare out method to three baseline-methods, namely

RD (Random Difference), RG (Random Grouping) and

JT (Joint-Training). RD and RG are ensemble-model

Strategy
Add. VOC07 VOC12 CA101 NWO

Im. mAP mAP Acc. mAP

Standard n/a 70.3 70.6 79.6 51.2

NSD +105 71.7 71.7 82.6 52.9

NGD +105 72.1 72.2 82.2 53.1

NNILM +108 64.7* n/a n/a n/a

NSM +105 69.9 70.0 80.9 49.0

Ours +0 72.5 72.2 82.6 54.1

Standard n/a 79.9 79.2 83.5 59.3

NGD +105 81.7 81.1 85.1 62.1

Ours +0 83.0 82.6 88.5 65.2

Table 3. Comparison of diversification-strategies on four datasets

with AlexNet and VGG (three last lines) networks. For VGG, we

compare our method only with the best strategy (NGD). To be

fair, we only used two models (B ∈ {C,L1}) in our method. In

the second column, we highlight the number of unique images and

annotations added compared to the standard strategy. Evaluation

metrics are specified under each dataset name. Results marked

with * are those reported in the original papers.

methods containing the Standard network (details in next

subsection) and another one: for RD, it is a network trained

on the same specific database than the former network but

with another (random) initialization of the weights; for

RG, it is one trained on the re-labeled database obtained

by grouping its specific categories into G subsets through

random partitioning, instead of semantic partitioning (our

method). JT consists to jointly train one network using both

annotations (specific and generic) through a multi-label

loss layer (hinge-loss). It can be seen as a multi-task

learning strategy. The results are presented in Table 1 in

which our method outperforms all the baselines. More

specifically, the performances of RD are very close to the

Standard method meaning that the random initialization of

the weights does not relevantly diversify the features like

our method. Even with RG, the results are also very close to

the Standard method (and thus far from our method), which

clearly highlights the utility of the semantic partitioning

of our method. Another salient result is that, JT increases

the performances compared to the Standard strategy, but

the improvement is below our proposal, which clearly

demonstrates the utility of the disjoint-learning (ours)

compared to the joint one (JT). To have fair comparisons in

this experiment, we only used two networks in our method

(i.e, MuCaLe-Net with B ∈ {C,L1}), but others could

be used. Hence, we evaluated the impact of the set of

label-sets used in our method (results in Table 2).

Comparison with Strategies of the Literature

The reference strategy and the strategies of the literature

used for comparison are: Standard [18, 32]: Training

a CNN on the 483 specific categories of the training-

database. It corresponds to the standard learning strat-

egy, thus we use it as reference for all the diversification-
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Method Network
Caltech-101 Caltech-256 VOC 2007 VOC 2012

Accuracy Accuracy mAP mAP

Krizhevsky et al. [18]* AlexNet 87.8 70.8 76.1 75.9

Chatfield et al. [3] VGG-S 87.8 77.6 79.7 82.9

Szegedy et al. [33]* GoogleNet 90.5 77.7 82.7 81.9

Simonyan et al. [32]* VGG-16 88.8 78.0 86.1 84.5

He et al. [13]* ResNet-50 90.8 78.9 84.4 83.1

He et al. [13]* ResNet-101 91.4 80.1 85.6 84.4

Our approach
AlexNet 89.4 73.4 77.5 77.2

VGG-16 92.0 80.9 87.5 86.1

Table 4. Comparison of the proposed MuCaLe representation with the state-of-the-art CNN-based descriptors on an image classification

context over four publicly available benchmarks. Results of the methods marked with * are obtained using online code.

strategies. NSD [2, 41] (New Specific Data): Adding

100 new fine-grained classes (randomly obtained from Im-

ageNet) and thus 100, 000 new images manually annotated,

resulting on the learning of a network on 533 specific cat-

egories. NGD [18, 21] (New Generic Data): Adding 100
new generic categories and thus 100, 000 new images man-

ually annotated, resulting to the joint learning of 483 spe-

cific categories and 100 generic ones. The generic cate-

gories are obtained from the internal-nodes of the ImageNet

hierarchy at random levels. NNILM [17] (New Noisy Im-

ages and Labels Model): Concatenation of the features ex-

tracted from two CNN-models, the Standard one and one

trained on 100 million noisy labeled images collected from

Flickr. For hard-reproducibility reasons, we present the re-

sults they reported in the paper. NSM [2] (New Specific

Model): Concatenation of the features extracted from two

CNN-models, the standard one and one trained on 100, 000
images annotated among 100 new categories (randomly ob-

tained from ImageNet).

Results are presented in Table 3. We observe that the

MuCaLe-Net strategy always performs better than the stan-

dard one, regardless the network architecture (+2.4 absolute

points for AlexNet and +4.3 for VGG). Moreover, MuCaLe-

Net outperforms all other state-of-the-art techniques with a

big advantage to be at zero-cost additional data and near-

zero cost annotations. This experiment clearly demonstrates

the diversification ability of the proposed learning-strategy

and confirms the analyses conducted in previous sections.

5.3. Comparison with the StateoftheArt

In this section, we compare the performances of the Mu-

CaLe representation with state-of-the-art CNN-based de-

scriptors on four publicly available benchmarks of image

classification in a transfer-learning scheme. To get better

performances, many methods [7, 24, 37] assist the classifi-

cation pipeline with costly object-detectors (by extracting a

lot of regions per image). Such a costly refinement is out

of the scope of the paper. Hence, the comparison is car-

ried with methods that use only the full image on the target-

datasets and we report the results obtained with online code

of the best comparison methods. Regarding our method,

we implemented it with the whole ILSVRC dataset and two

network architectures, namely AlexNet and VGG-16. More

implementation details are given in supp. material.

Comparison results are reported in Table 4, in which

we observe that our proposal outperforms all state-of-the-

art methods, on the four benchmarks. More specifically,

our approach based on AlexNet is always better than the

standard one [18]. Compared to [32], the proposed Mu-

CaLe descriptor learned with the same network architecture

(VGG-16), significantly increases their performances with

an absolute improvement of 2.8% on Caltech-101, 2.9% on

Caltech-256, 1.5% on VOC07 and 1.6% on VOC12. More-

over, it is worth noting that in [32], the network has been

learned with scale-jittering, i.e, five scales of the training-

images, while here we only use one scale (224× 224). An-

other salient result is that our approach that is based on a

network of 16 layers (VGG-16) desirably outperforms (on

the four benchmarks) the approach of He et al. [13] that

has been learned with networks of 50 and even 101 layers.

These results clearly illustrate the positive impact of diver-

sifying the features (e.g., incorporating new relevant convo-

lutional and unit-filters in the features’ space) generated by

deep CNNs through categorical-levels variation.

6. Conclusion
We proposed a novel ensemble-model strategy for learn-

ing CNNs that consists to vary the discriminative problems

solved by each network of the ensemble. The variation of

the discriminative problems is based on categorical-levels

used in the human-categorization process. We have shown

good image classification results on four publicly avail-

able benchmarks in a transfer-learning scheme. We also

shown, through an in-depth analysis, that our method works

better because of its two core properties, namely “filters-

diversification” and “diversification-relevance”. The find-

ings here are quite promising and we will pursue the work

by investigating whether other kind of discriminative prob-

lems variation could desirably respect the same properties.
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