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Abstract

This document reports some supplementary material that is not required to under-
stand the main article but provide complements or illustrations. Hence, the additional
elements were produced using the same version of the approach explained in our main
paper and include the following items: (i) the detailed characteristics of the datasets used
in this paper (Section 1); (ii) detailed results of the comparison of our method with the
baselines (Section 2); and finally (iii) some illustrations of the clusters obtained by the
different methods as well as some statistics (Section 3).

1 Datasets: Detailed Characteristics
In Table 1, we report the characteristics of all datasets used in the article to learn CNN
on a source-task and to estimate the performances of a universalizing method, that is to
say, its performances on a set of target-tasks in the context of transfer-learning. For this,
we used the most commonly used dataset as source-task, namely ILSVRC [13] which is
a subset of ImageNet [4] that contains 1.2 millions images labeled among 1,000 specific
categories. We also follow the literature [16] for fair comparisons and thus used as source-
task the ILSVRC* dataset, that corresponds to half of ILSVRC. Regarding the target-tasks,
we follow the literature [1, 11, 12, 16] and used ten target-datasets in a classification task. In
particular, here we used benchmarks from various domains, namely objects, actions, scenes,
as well as, fine-grained objects like aircrafts, birds, cars and plants. In order to show the
visual variability of the chosen target-datasets we used to evaluate universalizing methods,
we report in Figure 1, some example images of each of them.

2 Comparison to Baselines: Detailed Results
In Figure 3 of the main paper, we reported the synthesis results of the comparison of our
methods with several baselines. Thus here, we provide detailed results, that is to say, re-
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Figure 1: Illustration of some examples of the ILSVRC source-task as well as the ten target-
tasks used to evaluate universality. Note the high visual and semantic variability between the
different datasets. Best view in PDF.

Datasets (1) (2) (3) (4) (5) (6) (7)
ILSVRC* [13] objects 483 1,2K 7 569,000 48,299 Acc.
ILSVRC [13] objects 1K 1,2K 7 1.2M 50,000 Acc.

VOC07 [5] objects 20 250 3 5,011 4,952 mAP
NWO [3] objects 31 700 3 21,709 14,546 mAP
CA101 [6] objects 102 30 7 3,060 3,022 Acc.
CA256 [7] objects 257 60 7 15,420 15,187 Acc.
MIT67 [10] scenes 67 80 7 5,360 1,340 Acc.
stACT [18] actions 40 100 7 4,000 5,532 Acc.
CUB [17] birds 200 30 7 5,994 5,794 Acc.
FLO [9] plants 102 10 7 1,020 6,149 Acc.
FOOD [2] food 101 50 7 5050 5050 Acc.
AIRC [8] airplanes 100 66 7 6,667 3,333 Acc.

Table 1: Detailed descriptive of the different datasets used in the article. On top of the table,
we describe datasets used as source-task and at bottom, those used as target-task. For each
dataset, we detail seven characteristics. Each column of the table corresponds to a certain
characteristic: (1) domain of the images; (2) amount of categories; (3) average amount of
training-images per category; (4) whether the dataset contains multiple categories per image
(3) or no (7); (5) amount of training examples; (6) amount of test examples; and (7) the
standard evaluation metric (Accuracy and mean Average Precision, respectively denoted by
Acc. and mAP). Example images of each dataset are presented on Figure 1.

sults of all the methods on each benchmark as well as their average performance on all of
them. This is reported in Table 2. Even if already mentioned in the main paper, let recall
the most salient results: (i) SpeFiNet is always better than FiNet which is always better
than SpeNet, regardless the splitting method; (ii) the proposed BUCBAM splitting method
gives better results than the best Kmeans one, at zero cost of parameter cross-validation;
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Method
VOC07 CA101 CA256 NWO MIT67 stACT CUB FLO AIRC FOOD

Avg.
mAP Acc. Acc. mAP Acc. Acc. Acc. Acc. Acc. Acc.

SpeNet (REFERENCE) 66.8 71.1 53.2 52.5 36.0 44.3 36.1 50.5 21.6 25.0 45.7
FiNet Random-K2 66.6 71.8 52.7 52.6 38.9 45.9 34.4 50.9 22.7 24.0 46.0
FiNet Random-K4 66.8 73.1 54.4 52.7 38.9 47.0 34.7 53.5 23.6 25.0 47.0
FiNet Random-K8 67.3 71.9 54.2 51.7 38.7 46.9 34.4 53.6 24.3 24.9 46.8
FiNet Random-K16 66.4 72.4 53.2 51.0 39.7 46.9 35.7 55.9 25.2 26.2 47.3
FiNet Kmeans-K2 66.3 72.2 53.7 52.1 37.7 45.4 33.8 51.5 22.6 24.2 45.9
FiNet Kmeans-K4 66.9 73.0 53.0 51.4 39.2 46.3 35.6 54.3 22.7 25.2 46.8
FiNet Kmeans-K8 66.0 73.2 54.6 50.9 40.7 47.2 36.4 55.6 24.2 26.5 47.5
FiNet Kmeans-K16 64.9 73.8 54.4 50.3 39.0 47.6 36.0 56.8 26.9 26.4 47.6
FiNet Kmeans-K32 63.9 72.1 53.4 48.9 40.2 47.6 36.0 57.8 26.0 26.2 47.2
FiNet Spectral-K16 65.4 72.4 53.7 51.3 39.5 47.4 37.4 55.9 25.3 26.6 47.4
FiNet Affinity 64.5 70.5 52.1 48.5 38.7 45.9 34.8 56.0 25.3 25.5 46.2
FiNet BUCBAM-AS 66.2 72.8 54.3 51.6 39.8 46.7 35.9 56.1 25.3 25.0 47.4
FiNet BUCBAM-SS 65.3 75.4 56.0 48.6 41.6 49.4 37.8 59.8 29.2 28.4 49.2
SpeFiNet Random-K2 70.0 76.0 56.8 54.9 41.3 49.4 40.4 57.4 26.4 27.9 50.0
SpeFiNet Random-K4 69.4 76.0 57.9 55.0 41.4 49.5 40.0 57.7 27.9 27.6 50.2
SpeFiNet Random-K8 69.8 75.7 57.5 54.6 41.2 50.0 39.8 58.3 27.8 28.6 50.3
SpeFiNet Random-K16 69.4 76.0 55.8 54.3 41.7 49.6 40.3 60.4 28.0 28.9 50.4
SpeFiNet Kmeans-K2 69.2 76.3 57.1 54.7 41.2 49.0 39.0 57.8 26.4 28.3 49.9
SpeFiNet Kmeans-K4 69.6 76.2 57.1 54.2 40.1 49.6 40.8 59.1 26.7 28.3 50.2
SpeFiNet Kmeans-K8 69.1 76.6 57.8 54.1 42.2 49.6 40.4 59.8 28.3 29.3 50.7
SpeFiNet Kmeans-K16 68.6 77.9 58.1 53.9 41.3 50.5 40.8 60.1 29.8 28.4 50.9
SpeFiNet Kmeans-K32 68.4 76.6 57.5 53.5 42.3 50.3 40.4 60.7 28.8 29.0 50.7
SpeFiNet Spectral-K16 68.9 76.0 57.0 54.4 41.0 49.5 41.2 59.3 28.9 29.4 50.5
SpeFiNet Affinity 68.6 75.7 57.1 53.4 41.9 49.1 40.1 59.5 27.6 28.6 50.2
SpeFiNet BUCBAM-AS 69.4 76.3 57.6 54.4 41.1 49.6 40.2 60.1 28.4 28.7 50.6
SpeFiNet BUCBAM-SS 69.1 78.3 59.3 54.0 42.7 52.0 41.8 61.7 31.4 30.8 52.1

Table 2: Comparison of the proposed universalizing methods (BUCBAM) to baselines
(Random, Kmeans, Spectral and Affinity) and the reference one (SpeNet). The comparison
is carried in a transfer-learning scheme on the ten target-datasets presented in Section 1, for
which we report the performances of the methods on each dataset (with standard evaluation-
metrics) and the average performance on all the benchmarks (in the last column). All the
methods have been learned with the same architecture (AlexNet) on the same initial source-
problem (ILSVRC*). As in all the Tables of the main paper, for each dataset, we highlight
the score of the best method in bold and those of the second is underlined.

and (iii) the proposed BUCBAM is always better than all other methods, especially Ran-
dom, Spectral and Affinity. Additionally, in Figure 2, we display the average performances
of FiNet-Kmeans-K and SpeFiNet-Kmeans-K according different values of K, which are
compared to the performance of a classical SpeNet.

3 Splitting Methods: Statistics and Visualization

In this section we illustrate some interesting properties of the random, cluster and BUCBAM
splitting methods. In particular, we first highlight some statistics in Figure 3. Indeed, on top
we plot, for each method, the histogram of amount of images per cluster for all the specific
categories of the initial dataset. Note that, the more the histogram forms a pointed spike,
the more the data are balanced. Here we clearly observe that the random splitting method
provides the most balanced data, while in contrast other methods tend to contain clusters
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Figure 2: Average performances of FiNet-Kmeans-K and SpeFiNet-Kmeans-K according
different values of K. The black line corresponds to the average performance of SpeNet.

Figure 3: Illustration of some statistics of the different splitting methods, namely random,
clustering and BUCBAM. On top, we illustrate the histogram of the amount of samples per
cluster for all the specific categories of ILSVRC, with the different splitting methods. At
bottom, we illustrate the histogram of the intra-class variance of the cluster. On vertical axis
is the number of cluster.

of various sizes. highly imbalanced data, However, if they provide imbalanced data, it is
important to mention that clustering and BUCBAM provide relevant clusters that are based
on the semantic encoded on the image features, which contain thus samples that are more
visually similar. Let also note that, compared to the histogram of clustering that has a long
tail and starts at near-zero, the histogram of BUCBAM is more flat and starts around 20,
meaning that no tail is modeled in the data and very small clusters are not considered.

At bottom of Figure 3, we reported the histogram of intra-class variance of the clusters
obtained from all the specific categories, by the three splitting methods. In this, it is important
to note that a small width of the histogram means that the set of clusters contains very similar
samples. While random provides the smallest width of the peak, it is necessary to observe
this is due to the fact that it has almost the same amount of images per cluster, thus it is
not relevant. In contrast, BUCBAM that provides a large set of amount of categories, also
provides a width of the peak that is lowest than clustering, meaning that it provides clusters
with more similar samples.
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Figure 4: Illustration of the finer categories obtained from five specific categories (five
row blocks) with the different methods: random split (left), Kmeans clustering with K=16
(middle) and our BUCBAM proposal (right). In each of the five block, each line shows the
five most representative images of a cluster at the new finest-level. Best view in PDF.

While previously, we reported some global statistics of the resulting clusters from the
different splitting methods, here we rather show the most representative samples of the clus-
ters obtained by each splitting method. Indeed, this is reported on Figure 4, on which we
highlight three clusters (three rows of images) for five specific categories (five blocks of three
rows of images). On the left, the clusters are determined from a random distribution within
the full specific category, leading to clusters that contain its full diversity. Note by the way,
how diverse the specific categories are, and imagine how generic categories (used in [14, 15])
could be, which may explain why the GenNet of [15] may not provide good results (since
it is hard from it to discover relevant features). On the contrary, with our splitting method
and more precisely the K-means clustering (middle), the clusters exhibits a more coherent
aspect. For example, for the goldfish category, the c1

3 cluster report close-up views of fish
that are rather seen on their profile. We have a similar behaviour for the bicycle category with
cluster c4

2 and c4
3. With the method we propose (right), the clusters are even more specific

than in the K-means case. For instance, for the goldfish category, we clearly identify a cluster
that represents “many golfishes” (c1

1), “on goldfish in a close-up view” (c1
2) and some images

on which the fish tank is visible (c1
3). Also for the banjo class, we also clearly observe that
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Figure 5: Illustration of the projection of the samples of the clusters on their two first
principal components (obtain by PCA) for the three different methods: random split (left)
clustering with Kmeans, K=16 (middle) and our BUCBAM proposal (right). In each graph,
each color represents a certain cluster. For all the methods, each line represents the instances
of a specific category, that is the same than the one represented at the same line in Figure 4.
Note that, in contrast to other methods, ours provide clusters with different amount of colors
for each specific category. Best view in PDF.

our method identified a cluster that represents “person playing banjo” c3
1 and even “person
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playing banjo in a concert” c3
3. Importantly, while the clustering method tend to results in

duplicate clusters (e.g., c1
2 with c1

3; c3
1 with c3

2; c4
1 with c4

2 etc.), ours tend to provide only
dissimilar results, thank to our merging process.

Finally, we also computed a principal component analysis of the representations of each
specific category and projected the vectors on the first two principal components, keeping
a different color for each (new) finer category (Figure 5). As expected, with the random
split, the vectors are uniformly distributed while the two other methods tend to form some
groups. Although these results are qualitative, one can see that the proposed BUCBAM
method exhibits slightly more grouped points than the K-means.
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