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Supplementary Material for: Learning More
Universal Representations for Transfer-Learning

Youssef Tamaazousti, Hervé Le Borgne, Céline Hudelot, Mohamed-El-Amine Seddik
and Mohamed Tamaazousti

Abstract—This supplementary material of our main paper contain the following: (i) a comparison of our methods to the state-of-the-art
according all the universality evaluation-metrics of the literature (Sec. 1); (ii) an evaluation of the impact of more and different grouping
SPVs used in our MulDiP-Net (Sec. 2); and (iii) the evaluation of MulDiP-Net with more training data and deeper architectures (Sec. 3).

F

1 COMPARISON TO STATE-OF-THE-ART ACCORD-
ING OTHER UNIVERSALITY METRICS

In the Sec. 5 of the main paper, we proposed the mNRG
universality evaluation metric and used it for the comparison
of our methods with state-of-the-art. However, since our metric
is novel, it is important to also perform the same comparison
according the metrics of the literature, and compare the advantages
and drawbacks of each metric. Such comparison is provided in
Table 1 and should be analyzed with Table 3 of the main paper,
which contain the detailed results on each benchmark. First of
all, from the results we see that our MulDiP+FSFT method is
the best universalizing method regardless the evaluation-metric.
Moreover, still regardless the evaluation-metric, our FSFT is quite
promising, since it significantly outperforms SPV spe

A , SPV gen
G

and GrowBrain-WA at zero cost of annotation and without adding
any additional parameter.

Regarding the comparison of the metrics, we can observe that
our mNRG metric respects some of the properties highlighted in
Sec. 5 of the main paper (e.g., merit bonus, penalty for damage,
penalty malus), which is not the case for the baseline Avg, the
RG [1], the VDC [2], the BC and the aNRG (being our method
with an average operator instead of the median). For instance,
compared to Avg and RG that gives almost the same universality
scores to GrowBrain-WA and FSFT, our mNRG is able to give
more points to FSFT since it gives significantly better results than
GrowBrain-WA on seven of the ten datasets. Moreover, beside the
significantly better results on the seven benchmarks, mNRG gives
only +0.5 compared to GrowBrain-WA, since it penalizes its loose
of performance on the NWO dataset.

We also observe that the VDC do not penalize the methods that
performs less than the reference on some benchmarks (e.g., it gives
to our MulDiP+FSFT almost twice the universality-score than
MuCaLe-Net, while compared to the former, the latter never de-
creases performance in any of the benchmarks), while our mNRG
is able to penalize it (MulDiP+FSFT outperforms MuCaLe-Net
by only 2.1 points in terms of our mNRG metric). This is even
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more visible on the ISM method that should clearly give negative
universality scores. Indeed, compared to the reference, ISM gives
lower results on nine of the ten benchmarks (higher results only
on the MIT67 benchmark), but since VDC do not perform penalty
for damage, it gives 0.0 points on the the nine benchmarks and 0.9
points on the MIT67 one, which undesirably results in a positive
universality-score. Moreover, VDC perform neither penalty for
damage nor penalty malus, and as a consequence, is unable to
say which method between AMECON and WhatMakes performs
worse. A metric that has such ability (say method A is worse
than B, even if they are both lower than the reference) could
be interesting in a case, were for example, the methods A and
B have some practical advantages compared to the reference
and we would like to know which of these practically advan-
tageous methods should be used as a reference for improving
universality. Finally, regarding the VDC metric, we observe that
compared to the scores (around 2000) reported in their paper,
the scores reported in this experiment are much lower (around
100). It is important to note that, this is due to the fact that our
evaluation scheme (transfer-learning: training the representation
in the source-problem and evaluate on target-problem unseen
during training) is much more challenging than theirs (end-to-
end learning: training the representation in the source-problem
and evaluate on the test-set of the same source-problem). Simply
said, while we do not have access to the target-problems during
the learning of the representation, they have, making it easier.

We also observe that compared to aNRG, our mNRG is able to
decrease the SPVspe

A to a similar universality score than SPVgen
G ,

since the former seems to be well suited on some datasets like
CA101 and CA256 (compared to other absolute improvements).
Finally, while not visible here, by construction, the Avg do not
provide coherent aggregation. For the same reason, our BC do
not provide the same results according the comparison methods,
making it not consistent with time. Note however that, as the best
universality metric (our mNRG), BC has some good advantages
like penalty for damage or independence to outliers.

2 MULDIP-NET WITH DIFFERENT AND MORE
GROUPING-SPVS

Our MulDiP-Net method is based on a grouping SPV using
categorical-levels. Here, we assess what is the impact of using
different grouping methods. In particular, we compared it to
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Method Avg RG VDC BC aNRG mNRG

REFERENCE 49.2 0.0 0.0 50 0.0 0.0

SPVspe
A [3], [4], [5] 50.1 +0.9 18.3 62 +2.3 +1.5

SPVgen
G [6], [7], [8] 49.7 +0.5 6.7 56 +1.4 +1.4

AMECON [9] 40.1 -9.1 0.0 17 -20.2 -17.7

WhatMakes [10] 43.8 -5.4 0.0 22 -10.8 -7.5

ISM [11] 45.4 -3.8 0.9 32 -8.8 -4.3

GrowBrain-WA [12] 50.6 +1.4 20.1 71 +3.0 +3.5

GrowBrain-RWA [12] 51.7 +2.5 50.9 87 +5.6 +6.0

MuCaLe-Net [13] 52.3 +3.1 69.6 92 +7.0 +7.7

FSFT (Ours) 50.7 +1.5 36.7 76 +3.0 +4.0

MulDiP+FSFT (Ours) 53.1 +3.9 136.9 103 +8.6 +9.8

TABLE 1
Comparison to state-of-the-art, according different universality evaluation metrics (those mentioned in Sec. 5 of the main paper). Note that, for

a set of 11 methods and 10 datasets, the best achievable BC score is 110, while the worse is 10.

Method Network
VOC07 CA101 CA256 NWO MIT67 stACT CUB FLOW

mNRG
mAP Acc. Acc. mAP Acc. Acc. Acc. Acc.

Net-S (Ref.) AlexNet 71.7 79.7 62.4 58.3 46.9 51.2 36.3 58.4 0.0
Net-G AlexNet 71.5 77.4 60.4 57.8 42.8 49.3 19.5 52.4 -7.7
MulDiP-Net AlexNet 74.4 82.5 65.2 60.8 47.4 54.2 36.1 62.5 +7.4
Net-S VGG-16 86.1 88.8 78.0 71.8 66.7 73.5 69.8 78.9 +44.8
Net-G VGG-16 85.7 87.6 76.9 70.3 65.8 72.2 67.0 75.0 +38.9
MulDiP-Net VGG-16 87.5 92.0 80.9 72.6 68.9 75.0 71.5 81.9 +55.3
Net-S DarkNet-20 82.7 91.0 78.4 70.5 64.8 72.2 59.5 80.0 +38.9
Net-G DarkNet-20 83.2 91.5 78.1 73.2 64.4 72.6 52.5 78.9 +40.6
MulDiP-Net DarkNet-20 84.1 92.7 80.1 73.9 66.4 74.5 61.2 82.1 +47.1

TABLE 2
MulDiP-Net performances with different network architectures and more training data. To compute the mNRG scores (last column in blue), we

used the Net-S of AlexNet as reference. All the methods have been learned on the same initial SP (whole ILSVRC).

Fig. 1. Impact of the different grouping SPV and more levels consid-
ered in our MulDiP-Net. Net-S (red dashed line) is used as reference.

grouping based on hierarchical-levels [10] of WordNet, clustering
ones [9] and also random. For every grouping method (Random,
Clustering, WordNet and our Categorical), we also compare
MulDiP-Net to each of its subnetworks alone – i.e., the one trained
on specific classes (Net-S) and the one trained on the generic ones
(Net-G). In the main paper, we always used only two levels for

fair comparisons, but as depicted in Sec. 4.4 of the main paper, our
method could benefit from multiple levels. Thus, we implemented
MulDiP-Net with more levels, namely Multi-3: initial specific
SP and generic SPs obtained from from categorical and Wordnet
grouping SPVs; and Multi-4: same as Multi-3 with an additional
clustering-based grouping SPV. The results are presented in Fig. 1.

From the results, a first observation is that, whatever the
grouping SPV, the Net-G is much less performing than Net-
S, which contradicts the work of [10] (limited to few domains
on target-datasets). Even if below than Net-S, our categorical
one is the best grouping SPV, clearly highlighting the interest
to introduce a grouping inspired by cognitive studies. Second,
whatever the grouping, MulDiP-Net always performs better than
its subnetworks (Net-G and especially the reference Net-S), which
demonstrates the interest of combining specific and generic knowl-
edge, in the way we do it. Third, in MulDiP-Net, while the best
results are achieved with our categorical grouping (confirming
its interest), it is worth noting that, the performance of random
grouping is very close to Net-S, which highlights the utility of
semantic grouping SPV. Finally, it is clearly observable that, the
more levels we use in MulDiP-Net, the better performance we get.
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3 MULDIP-NET WITH DEEPER NETWORKS AND
MORE TRAINING-DATA

Increasing network capacity (wider or deeper layers) can be a
very efficient universalizing method, since it can learn to per-
ceive more elements or configuration through its new features.
However, it is important to note that, it is not easy to modify
the architecture (many costly experiments are needed to set all
the hyper-parameters as well as the architecture itself) and no
certainty of convergence is promised. In all cases, our contribution
is orthogonal to this domain, and our aim here is to demonstrate
this orthogonality. To do so, we implemented the reference, as
well as our MulDiP-Net method with three popular architectures,
namely the basic AlexNet (5 convolutional and 2 fully-connected
layers), the deep and wide VGG-16 (16 convolutional and 2
fully-connected layers) and the fast and very-deep DarkNet-20
(20 convolutional layers followed by average pooling). Another
important question is whether our approach of learning from a
fixed set of training data could benefit from more data if they
are available (adding-data approach. Thus, in this experiment,
instead of using ILSVRC* (containing half-million images and
483 categories) as the initial source-problem, we used the whole
ILSVRC which contains 1.2M images and 1K categories. The
results of these experiments are presented in Table 2.

Four observations can be made. First, even with twice more
data than in Table 3, MulDiP-Net still significantly increases
universality compared to the reference. This demonstrates the
orthogonality of our approach with the works that adds more
data (domains [2], [4], [14] or tasks [1]). Second, the deeper
architecture do not learn the more universal representation (Net-S
with VGG-16 is better than Net-S with DarkNet-20). This clearly
highlights that, compared to diversifying the source-problem,
naively increasing the capacity is not safe for improving univer-
sality. Third, we clearly observe that MulDiP-Net outperforms its
subnetworks regardless the architecture, which demonstrates that
our approach could benefit from the field of network architectures.
Last but not least, we can observe that Net-G is always below
Net-S, except for DarkNet. This is surprising since one could
have the intuition that the finer categories we use for training, the
better results we get. However, it seems that this depends on the
architecture, or maybe on the ratio between the number of units in
the representation and the number of classes used for training.
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