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Abstract

Fine-tuning neural networks is widely used
to transfer valuable knowledge from high-
resource to low-resource domains. In a stan-
dard fine-tuning scheme, source and target
problems are trained using the same architec-
ture. Although capable of adapting to new do-
mains, pre-trained units struggle with learning
uncommon target-specific patterns. In this pa-
per, we propose to augment the target-network
with normalised, weighted and randomly ini-
tialised units that beget a better adaptation
while maintaining the valuable source knowl-
edge. Our experiments on POS tagging of so-
cial media texts (Tweets domain) demonstrate
that our method achieves state-of-the-art per-
formances on 3 commonly used datasets.

1 Introduction
POS tagging is a sequence labelling problem, that
consists on assigning to each sentence’ word, its
disambiguated POS tag (e.g., Pronoun, Noun) in
the phrasal context in which the word is used.
Such information is useful for higher-level ap-
plications, such as machine-translation (Niehues
and Cho, 2017) or cross-lingual information re-
trieval (Semmar et al., 2006, 2008).

One of the best approaches for POS tag-
ging of social media text (Meftah et al., 2018a),
is transfer-learning, which relies on a neural-
network learned on a source-dataset with suffi-
cient annotated data, then further adapted to the
problem of interest (target-dataset). While this
approach is known to be very effective (Zen-
naki et al., 2019), because it takes benefit from
pre-trained neurons, it has one main drawback by
design. Indeed, it has been shown in computer-
vision (Zhou et al., 2018a) that, when fine-tuning
on scenes a model pre-trained on objects, it is the
neuron firing on the white dog object that became
highly sensitive to the white waterfall scene. Sim-
ply said, pre-trained neurons are biased by what
they have learned in the source-dataset. This is

Figure 1: Given a word representation xi, a BiLSTM
(Φ) models the sequence, and a FC layer (Ψ) performs
classification. In standard fine-tuning, the units are
pre-trained on a large source-dataset then adapted to
the target one. In this work, we propose to add ran-
domly initialised units (green branch) and jointly adapt
them with pre-trained ones (gray branch). An element-
wise sum is further applied to merge the two branches.
Before merging, we balance the different behaviours
of pre-trained and random units, using an independent
normalisation (N ). Finally we let the network learn
which of pre-trained or random neurons are more suited
for every class, by adding learnable weighting vectors
(u and v initialised with 1-values) on the FC layers.

also the case on NLP (see experiments). Con-
sequently, pre-trained units struggle with learn-
ing patterns specific to the target-dataset (e.g.,
“wanna” or “gonna” in the Tweets domain). This
last is non-desirable, since it has been shown re-
cently (Zhou et al., 2018b) that such specific units
are important for performance. To overcome this
drawback, one can propose to take benefit from
randomly initialised units, that are by design non-
biased. However, it is common to face small
target-datasets that contain too few data to learn
such neurons from scratch. Hence, in such setting,
it is hard to learn random units that fire on specific
patterns and generalise well.

In this article, we propose a hybrid method
that takes benefit from both worlds, without their
drawbacks. It consists in augmenting the source-
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network (set of pre-trained units) with randomly
initialised units and jointly learn them. We call
our method PretRand (Pretrained and Random
units) and illustrate it in Fig. 1. The main difficulty
is forcing the network to consider random units,
because they have different behaviours than pre-
trained ones. Indeed, while these last strongly fire
discriminatively on many words, these first do not
fire on any word at the initial stage of fine-tuning.
Therefore, random units do not significantly con-
tribute to the computation of gradients and are thus
slowly updated. To overcome this problem, we
proposed to independently normalise pre-trained
and random layers. This last balances their range
of activations and thus forces the network to con-
sider them, both. Last but not least, we do not
know which of pre-trained and random units are
the best for every class-predictor, thus we propose
to learn weighting vectors on top of each branch.

Evaluation was carried on 3 POS tagging
Tweets datasets in a transfer-learning setting. Our
method outperforms SOTA methods and signifi-
cantly surpasses fairly comparable baselines.

2 Proposed Method: PretRand
2.1 Base Model
Given an input sentence S = [w1, . . . , wn] of
n successive tokens wi, the goal of a POS tag-
ger is to predict the POS-tag ci ∈ C of every
wi, with C ∈ RC being the tag-set. Hence, for
our base model, we used a common sequence la-
belling model which first, computes for each token
wi, a word-level embedding (denoted Υw) and
character-level embedding using biLSTM encoder
(Υc), and concatenates them to get a final repre-
sentation xi. Second, it feeds the later representa-
tion into a biLSTM features extractor (denoted Φ)
that outputs a hidden representation, that is itself
fed into a fully-connected (FC) layer (denoted Ψ)
for classification. Formally, given wi, the logits
are obtained using: ŷwi = Ψ ◦ Φ ◦ Υ(wi), with
Υ being the concatenation of the output of Υc

and Υw for wi. In a standard fine-tuning scheme
(Meftah et al., 2018b), Υ and Φ are pre-trained
on the source-task and Ψ is randomly initialised.
Then, the three modules are further jointly trained
on the target-task by minimising a Softmax Cross-
Entropy (SCE) loss using the SGD algorithm.

2.2 Adding Random Branch
As mentioned in the introduction, pre-trained neu-
rons are biased by design, thus limited. This mo-

tivated our proposal to augment the pre-trained
branch with additional random units (as illustrated
in Fig. 1). To do so, theoretically one can add the
new units in any layer of the base model. How-
ever in practice, we have to make a trade-off be-
tween performances and the number of parameters
(model complexity). Thus, given that deep layers
are more task-specific than shallow ones (Peters
et al., 2018; Mou et al., 2016), and that word em-
beddings (shallow layers) contain the majority of
parameters, we choose to expand only the top lay-
ers. With this choice, we desirably increase the
complexity of the model only by 1.02× compared
to the base one. In terms of the layers expanded,
we specifically add k units to Φ resulting in an ex-
tra biLSTM layer: Φr (r for rand); and C units in
Ψ resulting in an extra FC layer: Ψr. Hence, for
every wi, the additional random branch predicts
class-probabilities following: ŷrwi

= Ψr ◦Φr(xi)
(with xi = Υ(wi)). Note that, having two FC
layers obviously outputs two predictions per class
(one from the pre-trained FC ŷpwi and one from
the random ŷrwi

), that thus need to be merged.
Hence, to get the final predictions, we simply ap-
ply an element-wise sum between the output of
both branches: ŷwi = ŷpwi⊕ŷrwi

. As in the classical
scheme, SCE is minimised but here, both branches
are trained jointly.

2.3 Independent Normalisation
Nevertheless, while at the initial stage of fine-
tuning, the pre-trained units are strongly fir-
ing on many words, the random ones are fir-
ing very weakly. As stated in some computer-
vision works (Liu et al., 2015; Tamaazousti et al.,
2018), the later setting causes an absorption of
the weights, outputs and thus gradients of the ran-
dom units by the pre-trained ones, which thus
makes them useless at the end. We encountered
the same problem with textual data on the POS-
tagging problem. Indeed, as illustrated in the left
plot of Fig.2, at the end of training, the distribu-
tion of the random units’ weights is still absorbed
(closer to zero) by that of the pre-trained ones.

To prompt the two classifiers to work cooper-
atively, we normalise (using an `p-norm) both of
them independently before merging them. For-
mally, we apply Np(x) =

x
||x||p on ŷpwi and ŷrwi

.
The normalisation is desirably solving the weights
absorption problem since at the end of the train-
ing, the distributions of the pre-trained and ran-
dom weights become very similar (right of Fig. 2).
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Figure 2: Distributions of learned weight-values for
the randomly initialised (green) and pre-trained (gray)
fully-connected layers after joint training. Left: with-
out normalisation, right: with normalisation.

Furthermore, we have observed that despite the
normalisation, the performances of the pre-trained
classifiers were still much better than the randomly
initialised ones. Thus, to make them more compet-
itive, we propose to start with optimising only the
randomly initialised units while freezing the pre-
trained ones, then, launch the joint training. This
is called random++ in the following.

2.4 Learnable Weighting Vectors
Back to the extra predictor (FC layer of random
branch), it is important to note that both branches
are equally important for making a decision for
every class, i.e., no weight is applied on the di-
mensions of ŷpwi and ŷrwi

. However, this latter
is sub-optimal since we, a priori, do not know
which kind of units (random or pre-trained) is bet-
ter for making a decision. Consequently, we pro-
pose to weight the contribution of the predictions
for each class. For this end, instead of simply per-
forming an element-wise sum between the random
and pre-trained predictions, we first weight each
of them with learnable weighting vectors, then
compute a Hadamard product with their associ-
ated normalised predictions; the learnable vectors
u ∈ RC and v ∈ RC , respectively correspond-
ing to the pre-trained and random branch, are ini-
tialised with 1-values and are learned by SGD.
Formally, the final predictions are computed fol-
lowing: ŷwi = u�Np(ŷ

p
wi)⊕ v �Np(ŷ

r
wi
).

3 Experiments
3.1 Implementation Details
In the word-level embeddings, tokens are lower-
cased while the character-level component still re-
tains access to the capitalisation information. We
set the character embedding dimension at 50, the
dimension of hidden states of the character-level
biLSTM at 100 and used 300-dimensional word-
level embeddings. The latter were pre-loaded from
publicly available Glove pre-trained vectors on 42
billions words from a web crawling and contain-

Corpus TPoS Ark TweeBank
Train 10,652 26,594 24,753
Dev 2,242 n/a 11,742
Test 2,291 7,707 19,112

Table 1: Number of tokens in every used dataset.

ing 1.9M words (Pennington et al., 2014). Note
that, these embeddings are also updated during
fine-tuning. For biLSTM (token-level feature ex-
tractor), we set the number of units of the pre-
trained branch to 200 and experimented our ap-
proach with k added random-units, with k ∈
{50, 100, 150, 200}. For the normalisation, we
used `2-norm. Finally, in all experiments, training
was performed using SGD with momentum and
mini-batches of 8 sentences. Evidently, all the hy-
perparameters have been cross-validated.

3.2 Datasets
For the source-dataset, we used the Wall Street
Journal (WSJ) part of Penn-Tree-Bank (PTB),
a large English dataset containing 1.2M+ tokens
from the newswire domain annotated with the
PTB tag-set. Regarding the target-datasets, we
used three Tweets datasets: TPoS (Ritter et al.,
2011), annotated with 40 tags ; ARK (Owoputi
et al., 2013) containing 25 coarse tags; and the re-
cent TweeBank (Liu et al., 2018) containing 17
tags (PTB universal tag-set). The number of to-
kens in the datasets are given in Table 1.

3.3 Comparison Methods
To assess the POS tagging performances of our
PretRand model, we compared it to 5 baselines:
Random-200 and Random-400: randomly ini-
tialised neural model with 200 and 400 biLSTM’s
units; Fine-tuning: pre-trained neural model,
fine-tuned with the standard scheme; Ensemble (2
rand): averaging the predictions of two base mod-
els randomly initialised and learned independently
(with different random initialisation) on Tweets
datasets; and Ensemble (1 pret + 1 rand): same
as the previous but with one pre-trained on WSJ
and the other randomly initialised.

We also compared it to the 3 best SOTA
methods: Derczynski et al. (2013) (GATE) is a
model based on HMMs with a set of normalisa-
tion rules, external dictionaries and lexical fea-
tures. They experiment it on TPoS, with WSJ
and 32K tokens from the NPS IRC corpus. They
also used 1.5M additional training tokens anno-
tated by vote-constrained bootstrapping (GATE-
bootstrap). Owoputi et al. (2013) proposed a
model based on first-order Maximum Entropy
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Method #params TPoS ArK TweeBank
Dev Test Test Dev Test Avg

GATE (Derczynski et al., 2013) n/a 89.37 88.69 n/a n/a n/a n/a
GATE-bootstrap (Derczynski et al., 2013) n/a n/a 90.54 n/a n/a n/a n/a
ARK (Owoputi et al., 2013) n/a n/a 90.40 93.2 n/a 94.6 n/a
TPANN (Gui et al., 2017) n/a 91.08 90.92 92.8 n/a n/a n/a
Random-200 1× 88.32 87.76 90.67 91.20 91.56 89.90
Random-400 1.03× 89.01 88.89 90.99 91.38 91.63 90.38
Standard fine-tuning 1× 90.96 90.7 91.72 92.59 92.99 91.79
Ensemble Model (2 rand) 2× 89.20 88.8 91.36 91.73 92.05 90.62
Ensemble Model (1 pret + 1 rand) 2× 89.77 88.61 91.41 92.57 92.85 91.04
PretRand (Ours) 1.02× 91.56 91.46 93.77 94.51 94.95 93.24

Table 2: Comparison of our method to state-of-the-art (top) and baselines (bottom) in terms of token-level accuracy
(in %) on 3 Tweets datasets. Note that, baselines are more fairly comparable to our method. In the second and last
columns, we respectively highlighted the number of parameters and the average performance on the 3 datasets.

Figure 3: Performances (on dev-set of TweeBank)
according different training-set sizes for the target-
dataset. Transparent green highlights the difference be-
tween our PretRand and standard fine-tuning.

Method TPoS ArK TweeBank Avg
PretRand 91.46 93.77 94.95 93.39
-learnVect 91.25 93.46 94.59 93.10
-random++ 90.97 93.11 94.13 92.73
-l2 norm 90.76 92.11 93.38 92.08

Table 3: Ablation study. Token level accuracy (in %)
when progressively ablating PretRand components.

Markov Model (MEMM) with greedy decoding
and using brown clustering and careful hand-
engineered features. Recently, Gui et al. (2017)
proposed TPANN that uses adversarial training to
leverage huge amounts of unlabelled Tweets.

3.4 Results
From the results given in Table 2, one can first see
that our approach outperforms the SOTA and base-
line methods on all the datasets. More interest-
ingly, PretRand significantly outperforms the pop-
ular fine-tuning baseline by +1.4% absolute point
on average and is better on all classes (see per-
class improvement on Fig. 4). PretRand also out-
performs the challenging Ensemble Model by a
large margin (+2.2%), while using much less pa-
rameters. This clearly highlights the difference of

Figure 4: Sorted class-accuracy improvement (%) on
TweeBank of PretRand compared to fine-tuning.

our method with ensemble methods and the im-
portance of having a shared word representation
as well as our normalisation and weighting learn-
able vectors during training. A key asset of Pre-
tRand, is that it uses only 0.02% more parameters
compared to the fine-tuning baseline.

An interesting experiment is to evaluate the gain
of performance of PretRand compared to fine-
tuning, according different target-datasets’ sizes.
From the results in Fig. 3, PretRand has desirably a
bigger gain with bigger target-task datasets, which
clearly means that the more target training-data,
the more interesting our method will be.

To assess the contribution of different com-
ponents of PretRand, we performed an ablation
study. Specifically, we successively ablated the
main components of PretRand, namely, the learn-
able vectors (learnVect), the longer training for
random units (random++) and the normalisation
(`2-norm). From the results in Table 3, we can
observe that the performances are only marginally
better than standard fine-tuning when ablating the
three components from PretRand. More impor-
tantly, adding each of them successively, makes
the performances significantly better, which high-
lights the importance of every component.

4 Analysis
Bias when fine-tuning pre-trained units
Here our goal is to highlight that as in (Zhou
et al., 2018a), pre-trained units can be biased in
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Figure 5: Correlation between units’ activations before
fine-tuning (columns) and after fine-tuning (rows).

the standard fine-tuning scheme. To do so, we
follow (Tamaazousti et al., 2017) and analyse the
units of Φ (biLSTM layer) before and after fine-
tuning. Specifically, we compute the Pearson’s
correlation between all the units of the layer before
and after fine-tuning. Here, a unit is represented
by the random variable being the concatenation of
its output activations from all the validation sam-
ples of the TweeBank dataset. From the result-
ing correlation matrix illustrated in Fig. 5, one can
clearly observe the white diagonal, highlighting
the fact that, every unit after fine-tuning is more
correlated with itself before fine-tuning than with
any other unit. This clearly confirms our initial
motivation that pre-trained units are highly biased
to what they have learned in the source-dataset,
making them limited to learn patterns specific to
the target-dataset.

Additionally, we visualise in Fig. 6 a concrete
example of a biased neuron when transferring
from newswire to Tweets domain. Specifically,
we show the top-10 words activating unit-169 of
Φ (from the standard fine-tuning baseline), before
fine-tuning (at this stage, the model is trained on
the source-dataset WSJ) and during fine-tuning
on the TweeBank dataset. We can observe that
this unit is highly sensitive to proper nouns (e.g.,
George and Washington) before fine-tuning, and
to words with capitalised first-letter whether
the word is a proper noun or not (e.g., Man
and Father) during fine-tuning on TweeBank
dataset. Indeed, we found that most of tokens
with upper-cased first letter are mistakenly pre-
dicted as proper nouns (PROPN) in the standard
fine-tuning scheme. In fact, in standard English,
inside sentences, only proper nouns start with
upper-cased letter thus fine-tuning the pre-trained
model fails to slough this pattern which is not
always respected in Tweets.

Figure 6: Top-10 words activating unit-169 of stan-
dard fine-tuning scheme, before fine-tuning (Final-
WSJ) and during fine-tuning on TweeBank.

Figure 7: Top-10 words activating unit-99 of the ran-
dom branch of PretRand, before and during training.

Unique units emerge in random branch
Finally, we highlight the ability of randomly ini-
tialised units to learn patterns specific to the target-
dataset and not learned by the pre-trained ones be-
cause of their bias problem. To do so, we visu-
alise unique units – i.e., random units having a
correlation lower than 0.4 with pre-trained ones
– emerging in the random branch. While only
one shown in Fig. 7, many unique units have been
learned by the random branch of our PretRand
model: 37.5% of the 200 random units have cor-
relation lower than 0.4 with the pre-trained ones.
Regarding unit-99, it is highly discriminative to to-
kens ”na”, ”ta” and ”n’t”. Indeed, in TweeBank,
words like ”gonna” (going to) are tokenized into
two tokens: ”gon” and ”na”, with the later an-
notated as a particle and the former as a verb. Im-
portantly, not even one unit from the standard fine-
tuning scheme has been found firing on the same
important and target-dataset specific pattern.

5 Conclusion
In this paper, we introduced a method to improve
fine-tuning using 3 main ideas: adding random
units and jointly learn them with pre-trained ones;
normalising the activations of both to balance their
different behaviours; applying learnable weights
on both predictors to let the network learn which
of random or pre-trained one is better for every
class. We have demonstrated its effectiveness on
domain adaptation from newswire domain to three
commonly used Tweets-datasets for POS tagging.
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