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Image description

• Low/Mid-Level Features

• Image described in terms of contours and shapes

• Semantic Features

• Image described in terms of semantic concepts
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Semantic Features

• Torresani et al., 2010 – Li et al., 2010
• Describe images in terms of outputs of concept-

detectors
• Each value is associated to a humanly-understandable

word
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Sparsification

• Wang et al., 2010 – Ginsca et al., 2015
• Keep only the K highest values of the vector and set all 

others to zero
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Positioning
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• SVM one-vs-all

• Multi-Layer neural network

• etc.



Classificatin with Semantic

Features

• Object classification
• Without sparsification

• No missing information but noisy values (not good)
• With sparsification

• No missing information (good)
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Classificatin with Semantic

Features

• Multi-Object classification

• Without sparsification
• No missing information but noisy values (not good)

• With sparsification
• Missing information (not good)
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• Typical problematic case
• Image with multiple objects

• Observation

Problem
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• Observation

• When the concept of the largest object is activated, a 
set of its annex concepts is also activated

• Why are we loosing information?

• Naive sparsification
• Would select one principal concept and its annex

concepts
• Other principal concepts could be set to zero



• Sparsification [Wang et al., 2010, Ginsca et al., 2015]

• Principle
• Set to zero « some » values of the vector

• Objective

Usual formalism
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• Objective
• Keep the good concepts and delete the bad ones

• Usual definition

• Good concepts = highest values
• Bad concepts = all others (lowest values)



• Proposed definition
• Good concepts = principal concepts and their annex

concepts (not necessarly the highest values)

• Bad concepts = all others (not necessarly the lowest
values)

Proposed formalism
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values)

• Questions

1. How to get the good concepts? 

2. What are the good concepts ? 



• Get the good concepts is a hard problem !

• Bergamo et al., 2012 (Bottom-up)
• Get generic concepts (good concepts) using

unsupervised clustering (hard)
• Bottom-up: Low-level errors are propagated to upper

1. How to get the good concepts ?
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• Bottom-up: Low-level errors are propagated to upper
concepts → limited performances

• Our proposal (Top-Down)

• Get the good concepts using largely available Human
Knowledge databases (hierarchies, human-
categorization rules, databases, etc.)



• Inspired by Psychological studies

• Rosch, 1978 - Jolicoeur et al., 1984  
• Different levels of good concept in Human minds
• The concepts mostly known and used by Humans

2. What are the good concepts?
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•
are

• Superordinate: vehicle

• Basic-level: car

• Subordinate: ford mustang



Observations

Basic 
level

Subordinate

Super-
ordinate
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Subordinate

Number of concepts-

detectors

Range of values of 

concept-detectors

Superordinate Low Low

Basic-level Normal Normal

Subordinate High High



Proposed approach

• Concept-detectors
• Superordinate

• Semantic process High range of values
• Basic-level

• Visual process
• Subordinate
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• Subordinate
• Visual process + reduction of number of concepts 

Low number of concepts

Number of concepts Range of values

Superordinate Low Low High

Basic-level Normal Normal

Subordinate High Low High



Proposed approach

• S.O.T.A semantic feature

• Our final semantic feature (D-CL)

0 0DD
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• Our final semantic feature (D-CL)



In practice

• Hard to set the list of superordinate, basic-

level and subordinate concepts

input image
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Final Semantic feature Get the diverse levels of concepts



Experimental Protocol

Pascal VOC 07 Pascal VOC 12 Nus-Wide Object

Benchmark

Rate of multi-label 45% 30% 20%

• Evaluation metric

• mean Average Precision (mAP)
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• mean Average Precision (mAP)

• Pascal VOC 07

• Train/val: 5k images - Test: 5k images 
• Pascal VOC 12

• Train/val: 10k images - Test: 10k images 
• Nus-Wide Object

• Train/val: 20k images - Test: 15k images 



Multi-Object Classification Results
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Without sparsification
Naive sparsification



• Novelty: 
• New semantic image-representation
• New formalism of sparsification
• New sparsification process based on Human-cognition 

Conclusions
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• Results: 

• Multi-object classification
• 3 publicly available benchmarks
• +2 points of mAP compared to the best state-of-the-art 

semantic features



Thank you

(questions ?)
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