

Diverse Concept-Level Features for Multi-Object Classification

Youssef Tamaazousti, Hervé Le Borgne and Céline Hudelot

youssef.tamaazousti@cea.fr

List Image description

- Low/Mid-Level Features
 - Image described in terms of contours and shapes
- Semantic Features
 - Image described in terms of semantic concepts

list **Semantic Features** Ceatech

- Torresani et al., 2010 Li et al., 2010
 - Describe images in terms of outputs of conceptdetectors
 - Each value is associated to a humanly-understandable

word

universite

• Wang et al., 2010 – Ginsca et al., 2015

 Keep only the K highest values of the vector and set all others to zero

universite

Sparsification

	No	Yes
el	Csurska et al., 2004 (Bag of Visual Words)	Wang et al., CVPR 2010
lid-lev	Perronnin et al., 2007 (Fischer Kernels)	
R	Krizhevsky et al., NIPS 2012 (Fully-connected layers of CNNs)	
ntic	Torresani et al., CVPR 2010	Ginsca et al., MMM 2015
mar	Li et al., NIPS 2010	Tamaazousti et al., ICMR 2016 (Ours)
Se	Bergamo et al., CVPR 2012	

List
Classificatin with Semantic
Features

Object classification

- Without sparsification
 - No missing information but noisy values (not good)
- With sparsification
 - **No missing** information (good)

Classificatin with Semantic Features

Multi-Object classification

- Without sparsification
 - No missing information but noisy values (not good)
- With sparsification
 - **Missing** information (not good)

- Typical problematic case
 - Image with multiple objects

- Observation
 - When the concept of the largest object is activated, a set of its annex concepts is also activated

• Why are we loosing information?

- Naive sparsification
 - Would select one <u>principal concept</u> and its <u>annex</u> <u>concepts</u>
 - Other principal concepts could be set to zero

universite

- **Sparsification** [Wang *et al.*, 2010, Ginsca *et al.*, 2015]
 - Principle
 - Set to zero « some » values of the vector
 - Objective
 - Keep the good concepts and delete the bad ones
- Usual definition
 - Good concepts = <u>highest</u> values
 - Bad concepts = all others (**lowest** values)

List Proposed formalism

Proposed definition

- Good concepts = principal concepts and their annex concepts (<u>not necessarly the highest</u> values)
- Bad concepts = all others (<u>not necessarly the lowest</u> values)
- Questions
 - **1.** How to get the good concepts?
 - **2.** What are the good concepts ?

ICMR 2016 | Tamaazousti Youssef | 12

1. How to get the good concepts ?

- Get the good concepts is a hard problem !
- Bergamo et al., 2012 (Bottom-up)
 - Get generic concepts (good concepts) using unsupervised clustering (hard)
 - Bottom-up: Low-level errors are propagated to upper concepts → limited performances

• Our proposal (Top-Down)

 Get the good concepts using largely available Human Knowledge databases (hierarchies, humancategorization rules, databases, etc.)

List 2. What are the good concepts?

- Inspired by Psychological studies
- Rosch, 1978 Jolicoeur et al., 1984
 - Different levels of good concept in Human minds
 - The concepts mostly known and used by Humans are
 - Superordinate: vehicle
 - Basic-level: car
 - Subordinate: ford mustang

	Number of concepts- detectors	Range of values of concept-detectors
Superordinate	Low	Low
Basic-level	Normal	Normal
Subordinate	High	High

ICMR 2016 | Tamaazousti Youssef | 15

List CEDITECT Proposed approach

- Concept-detectors
 - Superordinate
 - Basic-level
 - Visual process
 - Subordinate
 - Visual process + reduction of number of concepts
 - → Low number of concepts

	Number of concepts	Range of values
Superordinate	Low	Low — High
Basic-level	Normal	Normal
Subordinate	High — Low	High

• S.O.T.A semantic feature

$$\mathcal{F} = \begin{bmatrix} * \cdots & * 0 & \cdots & 0 \end{bmatrix}$$

• Our final semantic feature (D-CL)

• Hard to set the list of *superordinate*, *basic-level* and *subordinate* concepts

	Pascal VOC 07	Pascal VOC 12	Nus-Wide Object
Benchmark			
Rate of multi-label	45%	30%	20%

- Evaluation metric
 - mean Average Precision (mAP)
- Pascal VOC 07
 - Train/val: 5k images Test: 5k images
- Pascal VOC 12
 - Train/val: 10k images Test: 10k images
- Nus-Wide Object
 - Train/val: 20k images Test: 15k images

List Multi-Object Classification Results

Mothod	Nus-Wide Object	Pascal VOC 2007	Pascal VOC 2012
Method	(20%)	(45%)	(30%)
Li et al., 2010	n.a	45.2	n.a
Torresani et al., 2010	n.a	43.8	n.a
Torresani et al. (reimpl.)	70.3	82.4	81.7
Bergamo et al., 2011	n.a	43.7	n.a
Bergamo et al., 2012	36.5	53.2	49.3
Simonyan et al., 2015	67.3	77.4	77.2
Ginsca et al., 2015	74.7	82.8	81.7
D-CL (ours)	76.0	85.1	83.0
Naive sparsification	Without sparsific	ation	

• Novelty:

- New semantic image-representation
- New formalism of sparsification
- New sparsification process based on Human-cognition

• Results:

- Multi-object classification
 - 3 publicly available benchmarks
 - +2 points of mAP compared to the best state-of-the-art semantic features

Thank you (questions ?)

Commissariat à l'énergie atomique et aux énergies alternatives Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142 91191 Gif-sur-Yvette Cedex - FRANCE www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019