

Constrained Local Enhancement of Semantic Features by Content-Based Sparsity

Youssef Tamaazousti, Hervé Le Borgne and Adrian Popescu

youssef.tamaazousti@cea.fr

List Classification & Retrieval are linked

List Classification & Retrieval are linked

List Image Description

• Low/Mid-Level Features

- Bag of Visual Words [Csurska et al. 2004]
- Fischer Kernels [Perronnin & Dance 2007]
- Fully-connected layers of a pre-trained CNN [Kriszhevshy *et al.* 2012]

Semantic Features

- Image described in terms of semantic concepts
- [Torresani et al., Li et al. 2010] (200 1500)
- [Bergamo et al. 2012] (15000)

ICMR 2016 | Tamaazousti Youssef | 5

• Ginsca *et al.* 2015

• First to use CNNs as mid-level features

- Sparsification [Wang et al. 2010]
 - keep only the K largest concepts and set all others to 0
 - Inverse index scheme can be used

universite

ICMR 2016 | Tamaazousti Youssef | 9

K = 4

Missing relevant information

K = 4

Missing relevant information

State-of-the-Art

K = 4

Missing relevant information

State-of-the-Art

K = 4

Missing relevant information

Keep noisy information

K = 4

n.c = noisy concept

How many concepts should we retain for each image?

ICMR 2016 | Tamaazousti Youssef | 14

ICMR 2016 | Tamaazousti Youssef | 17

NUMBER OF DOMINANT CONCEPTS

Modelisation

Amount of concepts in the image

~

Amount of information in the Semantic Feature

ICMR 2016 | Tamaazousti Youssef | 25

universite

• Estimation : Shannon Entropy

NUMBER OF DOMINANT CONCEPTS

ICMR 2016 | Tamaazousti Youssef | 30

universite

ICMR 2016 | Tamaazousti Youssef | 32

UNIVERSITE PARIS-SACLAY

List Proposed Approach: CBS

Modelisation

Confidence = value of the output detectors

Estimation

- Maximum value of the feature
- Final Estimation of the Threshold
 - Trade-off between entropy and confidence

List Proposed Approach: CBS

Entropy (# dominant concepts) high low

Local Regions

Make more sense at local scale

- consider rich-information regions
- ignore low-information regions

universite

	Pascal VOC 07	Pascal VOC 12	MIT 67
Classification	mAP	mAP	Accuracy
Retrieval	mAP@K		mAP@K

- Pascal VOC 07
 - Train/Collection: 5k Test/Queries: 5k
- Pascal VOC 12
 - Train: 10k Test: 10k
- MIT Indoor 67
 - Train/Collection: 5k Test/Queries: 1k

Method		VOC 2007	VOC 2012
		mAP (in%)	mAP (in%)
	Oquab et al., 2014	77.7	n.a.
NN	Chatfield et al., 2014	82.42	83.2
G	Wei et al., 2014	81.5	81.7
	Simonyan et al., 2015 (VGG fc7)	86.1	84.5
ntic	Simonyan et al., 2015 (VGG fc8)	77.4	77.2
	Bergamo et al., 2012	53.2	49.3
mai	Torresani et al. (reimpl.)	82.4	81.7
Sei	Ginsca <i>et al.</i> , 2015	82.8	81.7
	CLE (ours)	88.2	86.6
	Without	sparsification	
	Fixed sparsification		IN STITUT

Classification Results Scene classification

Method		MIT Indoor 67 Classification Accuracy (in%)
Doersch et al., 2013		66.9
Oquab et al., 2014		69.0
VGG (fc7)		65.8
Zhou et al., 2014		68.2
Xie et al., 2015 (Best paper)		70.1
Semantic	VGG (fc8)	48.7
	Bergamo et al., 2012	44.6
	Torresani et al., 2010 (r.)	58.9
	Ginsca <i>et al.</i> , 2015	61.5
	CLE (ours)	71.6
	Without sparsification	
	Naive sparsification	

ICMR 2016 | Tamaazousti Youssef | 43

• Novelty:

- New semantic image-representation
- Level of sparsity adapted to the content of each image
- Constrained local regions

• Results:

- Image Classification
 - +2 points of mAP compared to the best CNN Feature
 - +5 points of mAP compared to the best Semantic Feature
- Image Retrieval
 - +5 points of mAP compared to the best CNN Feature
 - +3 points of mAP compared to the best Semantic Feature

Thank you (questions ?)

Commissariat à l'énergie atomique et aux énergies alternatives Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142 91191 Gif-sur-Yvette Cedex - FRANCE www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019