

On The Universality of Visual and Multimodal Representations

Jury

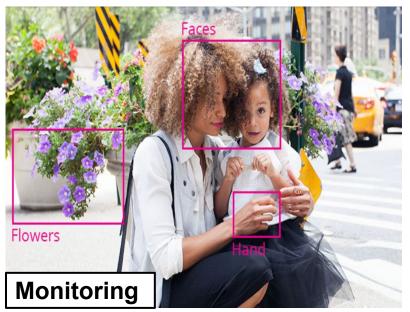
Mathieu Cord Céline Hudelot Hervé Le Borgne Pablo Piantanida

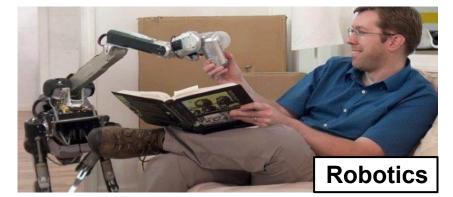
Philippe-Henri Gosselin lasonas Kokkinos Florent Perronnin

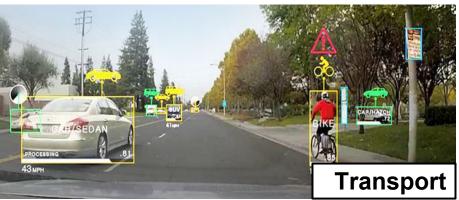
Youssef Tamaazousti | Ph.D. Defense

June 1st, 2018

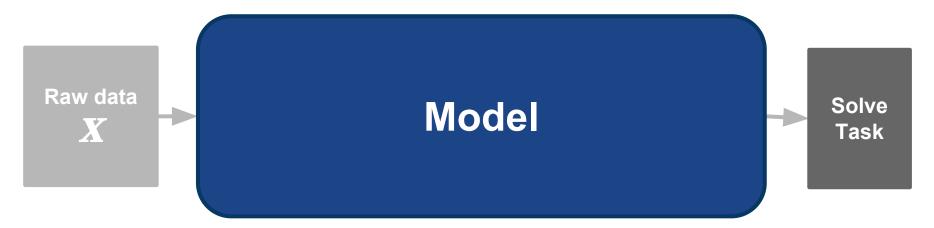
Al Today: performing systems in many tasks and domains



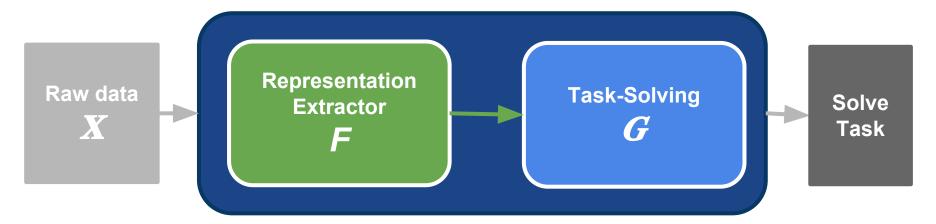




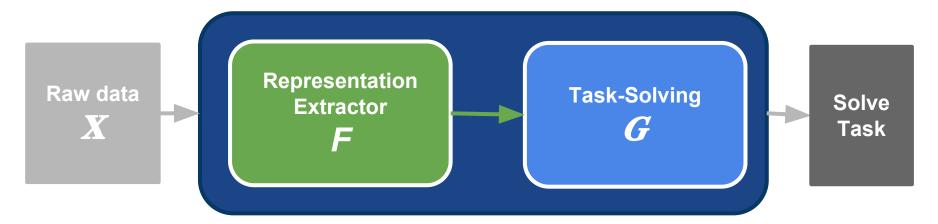
Medical



- Learning-based Al
 - Aims at performing tasks from raw data



- Learning-based Al
 - Aims at performing tasks from raw data
 - Consists in a Representation-extractor (F) and a Task-solving (G)

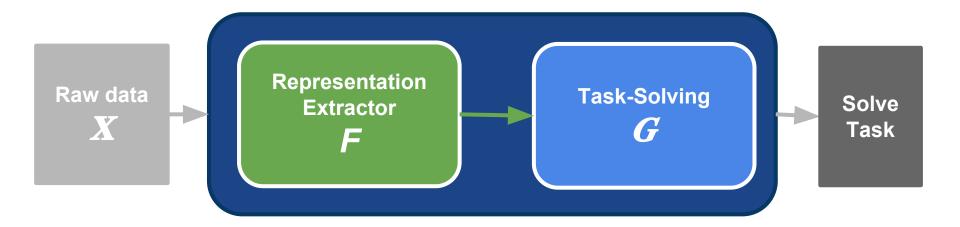


Learning-based Al

- Aims at performing tasks from raw data
- Consists in a Representation-extractor (F) and a Task-solving (G)

Main Characteristics:

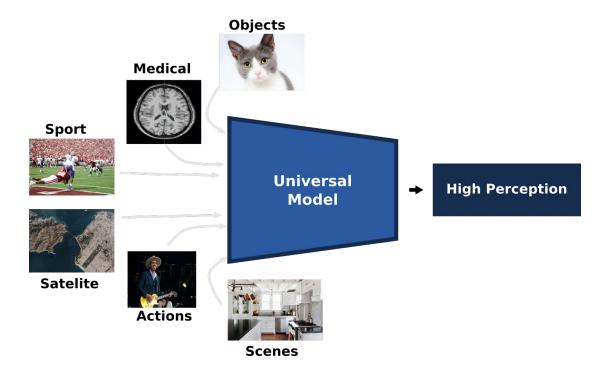
- F learned from data
- **F** and **G** learned jointly
- **G** could be omitted, **F** used with another **G** to solve another task: "Transferability"



- Goal in the literature:
 - Learning a model (F and G) in order to excel at a given task

Challenge

- Learning a <u>universal model</u>:
 - Model that provides high-level representation of raw data from different nature (modalities, visual domains and semantic domains)
 - high task-solving abilities for different tasks (recognition, detection, segmentation, etc.).



Motivation

Humans:

able to perform an enormous variety of different tasks.

Machines:

able to perform one task at time (``expert model'')

I am good at painting, counting, talking, and so many other things !!



I am an expert in cat recognition !

Motivation

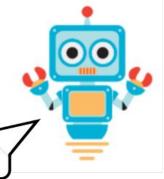
Humans:

 able to perform an enormous variety of different tasks.

Machines:

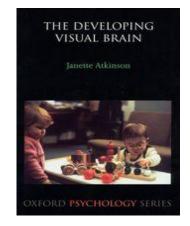
 able to perform one task at time (``expert model'')

I am good at painting, counting, talking, and so many other things !!



I am an expert in cat recognition !

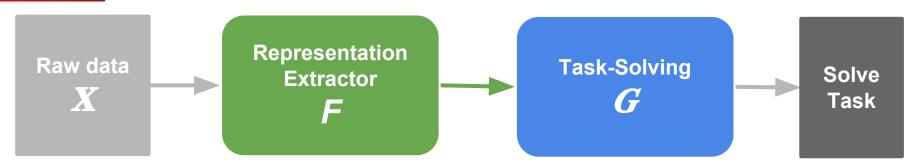
Humans develop powerful internal representation in their infancy and re-use it later in life to solve many problems [Atkinson, OPP'00]



Motivation

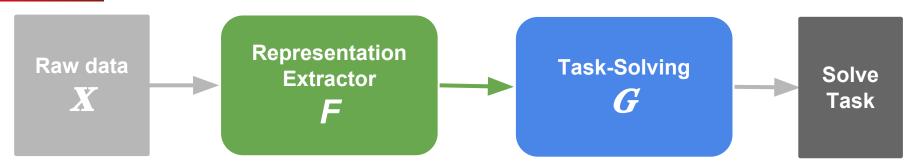
- Universality: recent growing interest in Al community
- Motivations of other works
 - Same motivation than us: "mimic" humans
 - [Bilen & Vedaldi, ArXiv'17]; [Rebuffi et al., NIPS'17]; [Nie et al., ArXiv'17]; [Rebuffi et al., CVPR'18]
 - **Practical motivation**: even if we want to build an expert AI, it is always beneficial to have a good starting point (universal model)
 - [Conneau *et al.*, EACL'17]; [Conneau *et al.*, EMNLP'17]; [Cer et al., ArXiv'18]; [Subramanian & Bengio, ICLR'18];
 - Build a ``swiss-knife" that may be useful for general Al
 - [Kokkinos, CVPR'17]; [Wang et al., WACV'18]

General Problem Formulation



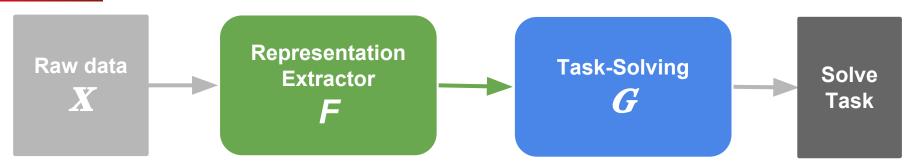
At least, two different aspects to address the problem

General Problem Formulation



- At least, two different aspects to address the problem
 - Universal Task-Solving: make G able to handle the largest set of tasks GENERAL AI
 [Kokkinos, CVPR'17]; [Wang et al., WACV'18]

General Problem Formulation



- At least, two different aspects to address the problem
 - Universal Task-Solving: make G able to handle the largest set of tasks GENERAL AI
 [Kokkinos, CVPR'17]; [Wang et al., WACV'18]
 - Universal Representation-Extractor: make F able to handle the largest set of modalities, visual & semantic domains UNIVERSAL REPRESENTATIONS

[Bilen & Vedaldi, ArXiv'17]; [Rebuffi et al., NIPS'17]; [Nie et al., ArXiv'17]; [Rebuffi et al., CVPR'18]; [Conneau et al., EACL'17]; [Conneau et al., EMNLP'17]; [Cer et al., ArXiv'18]; [Subramanian & Bengio, ICLR'18]

Problem Formulation (1/4)

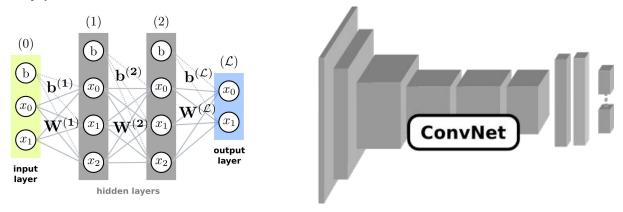
- A priori, no representation is completely universal
- Learned representations contain some level of universality

- Our goal:
 - Increase the universality of the representation

Problem Formulation (2/4)

Learning algorithm:

(Deep) neural-networks



Data:

Visual or Multimodal (visual & textual)

Problem Formulation (3/4)

- Learning strategy:
 - According to a supervised approach
 - better than semi-supervised and unsupervised approaches

With many annotated data

Problem Formulation (4/4)

Evaluation scenario of universality:

Close to [Atkinson, OPP'00]: Humans learn a visual representation of the world in their infancy and use it (as-is) later in life to solve different problems

- In Transfer-Learning scheme, a. **Infancy**: source-task; **later**: target-task
- **b.** As-is: w/o modifying the learned representation
- **Different problems: Large set of Undetermined Target-Tasks (UTT)**

Close to the real-world: most tasks (in academy & industry) contain few annotated data because hard to collect & annotate

- d. UTT with few annotated data
- e. Aggregated performance on set of UTT

Outline

- State-Of-The-Art (S.O.T.A)
- Contributions
 - Evaluation of Universality
 - Universality in Features Learned with Explicit Supervision
 - Universality in Features Learned with Implicit Supervision
 - Universality via Multimodal Representations
- Conclusions
- Perspectives

Works	Univ. Aspect
[Conneau et al., EACL'17] [Conneau et al., EMNLP'17]	Repres- entation
[Cer et al., ArXiv'17]	
[Subramanian & Bengio, ICLR'18]	
[Kokkinos, CVPR'17] [Wang et al., WACV'18]	Task Solving
[Bilen & Vedaldi, ArXiv'17] [Rebuffi et al., NIPS'17]	Repres- entation
[Rebuffi et al., CVPR'18]	
This Thesis	

Works	Univ. Aspect	Mod.
[Conneau et al., EACL'17] [Conneau et al., EMNLP'17]	Repres- entation	Textual
[Cer et al., ArXiv'17]		
[Subramanian & Bengio, ICLR'18]		
[Kokkinos, CVPR'17] [Wang et al., WACV'18]	Task Solving	Visual
[Bilen & Vedaldi, ArXiv'17] [Rebuffi et al., NIPS'17]	Repres- entation	
[Rebuffi et al., CVPR'18]		
This Thesis		Visual & Multimodal

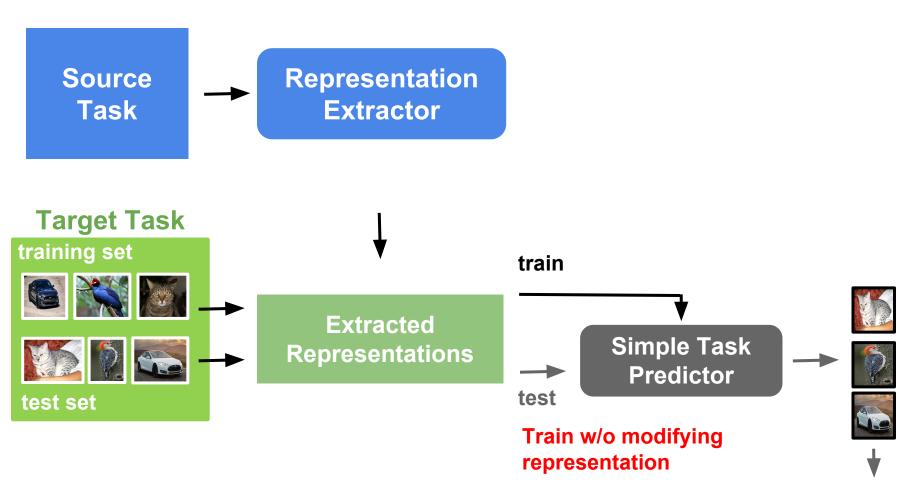
Works	Univ. Aspect	Mod.	Eval. Scenario
[Conneau et al., EACL'17] [Conneau et al., EMNLP'17]	Repres- entation	Textual	Transfer Learning
[Cer et al., ArXiv'17]			
[Subramanian & Bengio, ICLR'18]			
[Kokkinos, CVPR'17] [Wang et al., WACV'18]	Task Solving	Visual	End2End
[Bilen & Vedaldi, ArXiv'17] [Rebuffi et al., NIPS'17]	Repres- entation		
[Rebuffi et al., CVPR'18]			Fine Tuning
This Thesis		Visual & Multimodal	Transfer Learning

Works	Univ. Aspect	Mod.	Eval. Scenario	SP Domain-Task
[Conneau et al., EACL'17] [Conneau et al., EMNLP'17]	Repres- entation	Textual	Transfer Learning	1 domain - 1 task
[Cer et al., ArXiv'17]				1 domain - No annotation
[Subramanian & Bengio, ICLR'18]				Multi-task
[Kokkinos, CVPR'17] [Wang et al., WACV'18]	Task Solving	Visual	End2End	Multi-task
[Bilen & Vedaldi, ArXiv'17] [Rebuffi et al., NIPS'17]	Repres- entation			Multi-domain - 1 task
[Rebuffi et al., CVPR'18]			Fine Tuning	Multi-domain - 1 task
This Thesis		Visual & Multimodal	Transfer Learning	1 domain - 1 task

Works	Univ. Aspect	Mod.	Eval. Scenario	SP Domain-Task	Approach	
[Conneau et al., EACL'17] [Conneau et al., EMNLP'17]	Repres- entation	Textual	Transfer Learning	1 domain - 1 task	Best task & algorithm	
[Cer et al., ArXiv'17]				1 domain - No annotation	Tricks to auto. get annotations	
[Subramanian & Bengio, ICLR'18]				Multi-task	Best tasks & algorithm	
[Kokkinos, CVPR'17] [Wang et al., WACV'18]	Task Solving	Visual	End2End	Multi-task	Get better learning algorithm	
[Bilen & Vedaldi, ArXiv'17] [Rebuffi et al., NIPS'17]	Repres- entation			Multi-domain - 1 task	Domain-Specific Scaling parameters	
[Rebuffi et al., CVPR'18]			Fine Tuning	Multi-domain - 1 task		
This Thesis		Visual & Multimodal	Transfer Learning	1 domain - 1 task	Automatically get more annotations	

Outline

- State-Of-The-Art (S.O.T.A)
- Contributions
 - Evaluation of Universality
 - Universality in Image Representations Learned w/ Explicit Supervision
 - Universality in Image Representations Learned w/ Implicit Supervision
 - Universality In Multimodal Representations Learned w/ Implicit Supervision
- Conclusions
- Perspectives



[Donahue et al., ICML'14], [Zeiler & Fergus, ECCV'14], [Agrawal et al., ECCV'14], [Oquab et al., CVPR'14], [Razavian et al., CVPRW'14], etc.

Evaluate using standard metrics

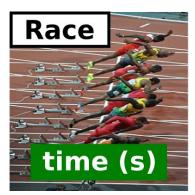


24s

1.7m

3/10

8/10



24s

1.7m

3/10

8/10

17**s**

1.5_m

4/10

9/10

What is desirable for the evaluation:

Coherent aggregation

24s

1.7m

3/10

8/10

17s

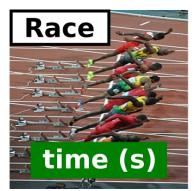
1.5m

4/10 (+1)

9/10 (+1)

What is desirable for the evaluation:

- Coherent aggregation, Merit bonus



24s

1.7m

3/10

8/10

17s

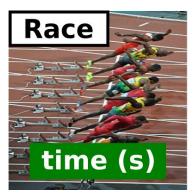
1.5m

4/10

9/10

What is desirable for the evaluation:

Coherent aggregation, Merit bonus, Penalty for damage



24s

1.7m

3/10

8/10

50s

4.5m

1/10

1/10

What is desirable for the evaluation:

- Coherent aggregation, Merit bonus, Penalty for damage, Independent to outliers

24s

1.7m

3/10

8/10

17s

1.5m

4/10

9/10

What is desirable for the evaluation:

 Coherent aggregation, Merit bonus, Penalty for damage, Independent to outliers, consistence with time

- Average raw scores (Avg) [Baseline]
- Visual Decathlon Challenge (VDC) [Rebuffi et al., NIPS'17]
 - Average error classification gain over baseline
- Borda Count (BC) [ours]
 - Based on order statistics
- Average/Median Relative Gain (aRG / mRG) [ours]
 - Based on relative gain compared to reference

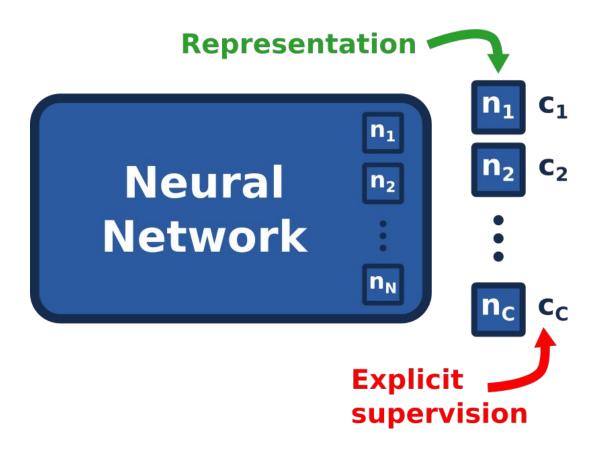
Property	Avg	VDC	BC	aRG	mRG
Coherent aggregation		1	1	1	1
Merit bonus		1		1	1
Penalty for damage	1		1	1	1
Indep. to ref. method	1		1		
Indep. to outliers			1		1
Consistent with time	1	1		1	1

Outline

State-Of-The-Art (S.O.T.A)

- Contributions
 - Evaluation of Universality
 - Universality in Image Representations Learned w/ Explicit Supervision
 - Universality in Image Representations Learned w/ Implicit Supervision
 - Universality in Multimodal Representations Learned w/ Implicit Supervision
- Conclusions
- Perspectives

Starting Point: Semantic Features



Starting Point: Semantic Features

- Implementation of [Ginsca et al., MM'15]
 - Independent classifiers (on top of internal layer of CNN)
 - Generic and specific classifiers



Starting Point: Semantic Features

- Advantages to increase of universality:
 - Adding classes w/o retraining all CNN
 - No limit of capacity (cover large range of data)

Starting Point: Semantic Features

Increase universality by increasing capacity

Starting Point: Semantic Features

- Increase universality by increasing capacity
- Problems
 - When N large, statistical redundancy between neurons
 - Sparsity adapted to each sample image

Starting Point: Semantic Features

- Increase universality by increasing capacity
- Problems
 - When N large, statistical redundancy between neurons
 - Sparsity adapted to each sample image

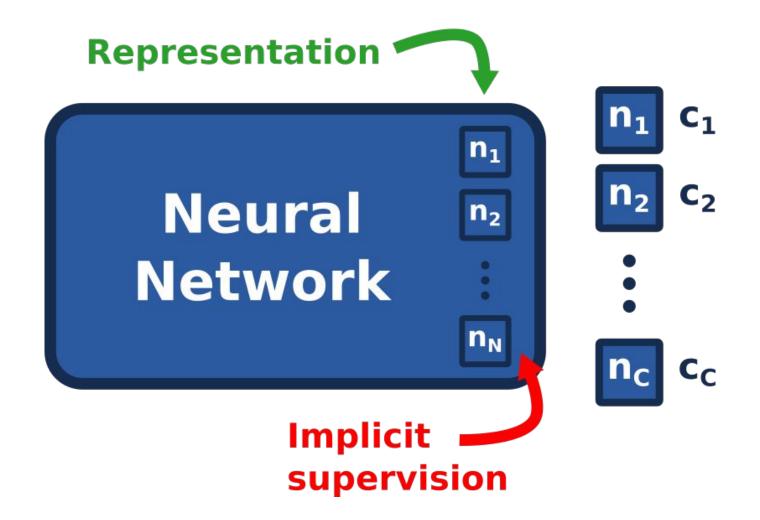
- Do not benefit from generic classifiers (because low intra-class variance ⇒ low output scores)
 - Boosting outputs of generic classifiers with scores of their child nodes

Outline

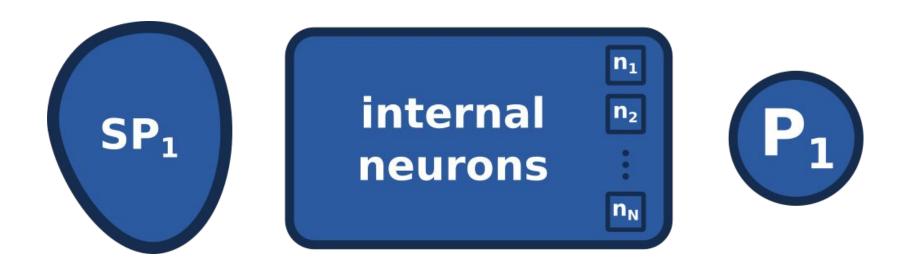
State-Of-The-Art (S.O.T.A)

- Contributions
 - Evaluation of Universality
 - Universality in Image Representations Learned w/ Explicit Supervision
 - Universality in Image Representations Learned w/ Implicit Supervision
 - Universality in Multimodal Representations Learned w/ Implicit Supervision
- Conclusions
- Perspectives

Starting Point: Internal layers of CNN

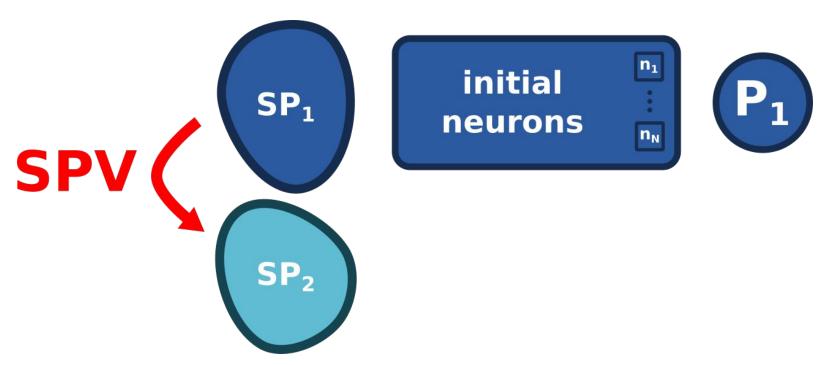


Starting Point: Internal layers of CNN



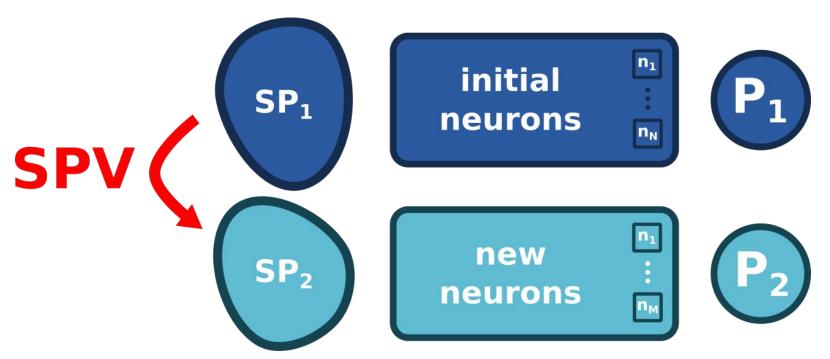
- Source-problem (SP);
- Network trained on SP
 - According learning-strategy + architecture
- ⇒ Set of learned neurons

Proposed Approach: Step 1/4



- 1. Source Problem Variation (SPV)
 - Automatic variation of raw data (pixels) and/or labels

Proposed Approach: Step 2/4



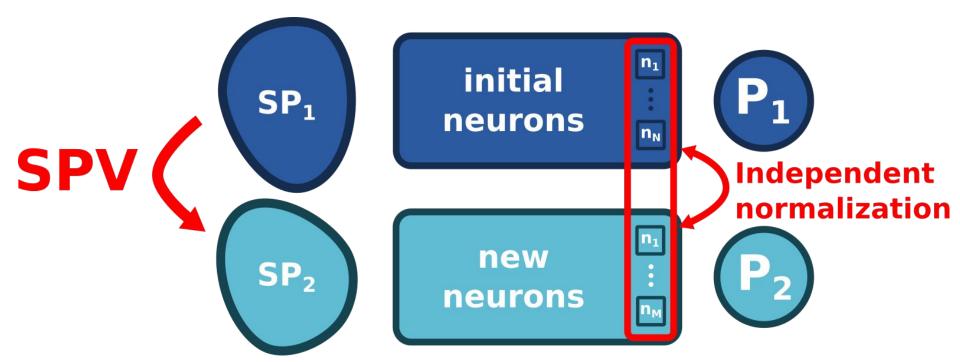
- 1. Source Problem Variation (SPV)
- 2. Train new neurons
 - 1 network on each new SP w.r.t same strategy & archi.

Proposed Approach: Step 3/4



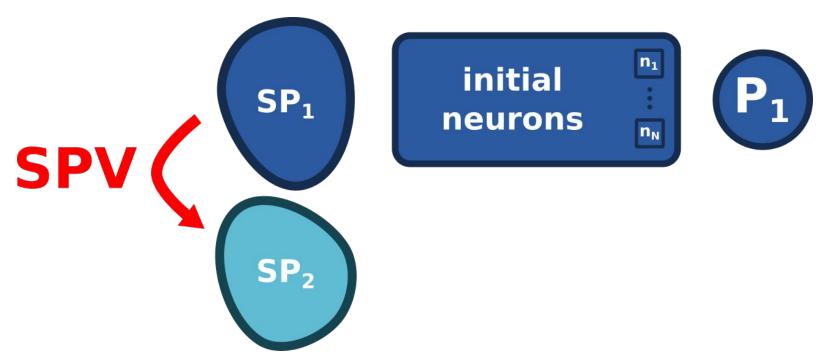
- 1. Source Problem Variation (SPV)
- 2. Train new neurons
- 3. Representation
 - Independent normalization

Proposed Approach: Step 4/4



- 1. Source Problem Variation (SPV)
- 2. Train new neurons
- 3. Representation
 - Independent normalization
 - Combination (concatenation) + Dim. Reduction (FSFT)

Proposed Approach: Step 1/4

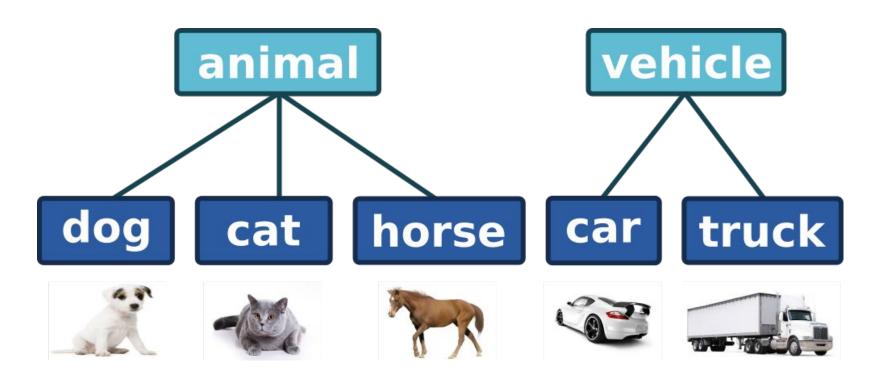


- 1. Source Problem Variation (SPV)
 - Automatic variation of raw data (pixels) and/or labels

How to get new SPs?

images associated to labels

New SPs by Grouping-SPV



- **Getting generic labels**
 - by random grouping
 - using clustering
 - using an external ontology (e.g., ImageNet, WordNet)

New SPs by Grouping-SPV

- Re-annotation of images
 - according obtained generic labels
- Generic classes contain:
 - more images per class
 - more diverse set of images

Getting Generic Labels according Categorical-Levels

- Human Categorization according three levels
 [Rosch, 1978] [Jolicoeur, 1984]
 - Concepts mostly known and used by Humans:
 - Superordinate (vehicle)
 - Basic-level (car)
 - Subordinate (ford mustang)

⇒ Getting generic labels according categorical-levels

Experimental Settings

- Source-task: ILSVRC-half (subset of ImageNet)
- 10 Target-datasets (classification, many domains, few data)

Datasets	(1)	(2)	(3)	(4)	(5)	(6)	(7)
ILSVRC* [13]	objects	483	1,2K	Х	569,000	48,299	Acc.
ILSVRC [13]	objects	1K	1,2K	X	1.2M	50,000	Acc.
VOC07 [5]	objects	20	250	1	5,011	4,952	mAP
NWO [3]	objects	31	700	1	21,709	14,546	mAP
CA101 [6]	objects	102	30	X	3,060	3,022	Acc.
CA256 [7]	objects	257	60	X	15,420	15,187	Acc.
MIT67 [10]	scenes	67	80	X	5,360	1,340	Acc.
stACT [16]	actions	40	100	X	4,000	5,532	Acc.
CUB [15]	birds	200	30	X	5,994	5,794	Acc.
FLO [9]	plants	102	10	X	1,020	6,149	Acc.
FOOD [2]	food	101	50	X	5050	5050	Acc.
AIRC [8]	airplanes	100	66	X	6,667	3,333	Acc.

For each class: one-vs-rest SVM classifier

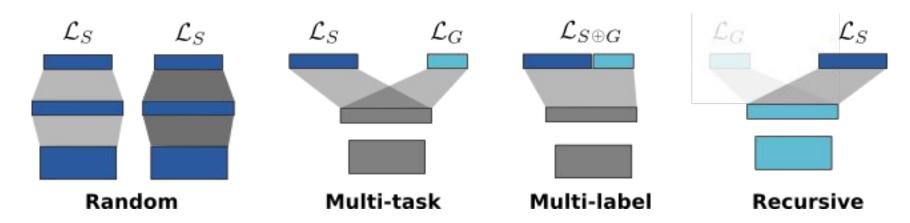
Comparison to S.O.T.A

Method	VOC07	VOC12	CA101	CA256	NWO	MIT67	stACT	CUB	stCA	FLO	mRG
	mAP	mAP	Acc.	Acc.	mAP	Acc.	Acc.	Acc.	Acc.	Acc.	BLC WARE
REFERENCE	66.8	67.3	71.1	53.2	52.5	36.0	44.3	36.1	14.4	50.5	n/a
Azizpour et al., PAMI'15	66.6	67.5	74.7	54.7	53.2	37.4	45.1	36.0	13.7	51.9	+1.5
Mettes et al., ICMR'16	67.7	68.1	73.0	54.3	50.5	37.1	44.9	36.8	14.6	50.3	+1.4
Chami et al., ICMR'17	61.1	62.1	58.7	40.6	45.8	24.3	32.7	26.1	13.1	36.4	-17.7
Huh et al., NIPS-W'16	64.0	62.7	69.4	50.1	45.6	33.7	41.9	15.0	12.5	42.8	-7.5
Wu et al., ACM'16	62.5	65.4	68.8	50.7	28.5	37.9	42.6	34.0	13.3	50.0	-4.3
Wang et al.v1, CVPR'17	68.4	68.3	73.1	54.7	49.3	38.4	46.5	37.5	14.7	54.8	+3.5
Wang et al.v2, CVPR'17	69.1	69.0	74.8	55.9	50.4	40.0	48.4	38.6	14.8	56.1	+6.0
MulDiP-Net (Ours)	<u>69.5</u>	<u>69.8</u>	76.0	<u>56.8</u>	54.7	41.3	48.5	35.6	15.7	54.8	<u>+7.7</u>
MulDiP+FSFT (Ours)	69.8	70.0	77.5	58.3	47.9	43.7	50.2	37.4	16.1	59.7	+9.8

Some insights...

Comparison to "baseline" universalizing methods

- Reference: specific
- Ours: specific + generic
- Random: 2 specific with ≠ Initialization
- Multi-task
- Multi-label
- Recursive: Fine-tune generic on specific

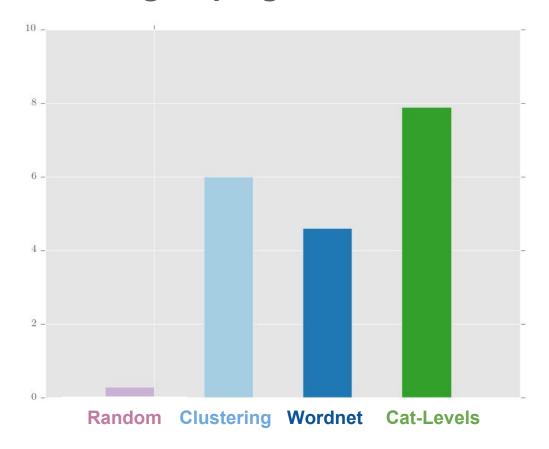


Some insights...

Method	VOC07	CA101	CA256	NWO	MIT67	stACT	CUB	FLO	mRG
	mAP	Acc.	mAP	Acc.	Acc.	Acc.	Acc.	Acc.	iiitG
REFERENCE	66.8	71.1	53.2	52.5	36.0	44.3	36.1	50.5	n/a
Random	67.8	72.2	54.5	52.0	37.2	45.0	34.7	51.8	+2.3
Multi-Task	61.5	61.8	45.4	49.4	30.7	36.4	25.6	38.7	-16.2
Multi-Label	44.7	46.8	26.4	25.1	27.2	28.0	15.2	38.1	-45.0
Recursive	65.3	68.6	50.8	52.4	33.4	50.8	29.4	45.5	-4.8
Ours	69.5	76.0	56.8	54.7	41.3	48.5	35.6	<u>54.8</u>	+7.9
Ours+FSFT	69.8	77.5	58.3	47.9	43.7	50.2	37.4	59.7	+10.7

Some insights...

Comparison of "grouping methods"



Cognitive knowledge (Categorical-levels) useful!

Deeper networks, More data

Comparison with deeper architectures

- AlexNet [Krizhevsky et al., NIPS'12]
- VGG-16 [Simonyan & Zisserman, ICLR'14]
- DarkNet [Redmond et al., CVPR'16]: fully convolutionnal; base of YOLO

Method	Network	VOC07	CA101	CA256	NWO	MIT67	stACT	CUB	FLOW	вс
	Network	mAP	Acc.	mAP	Acc.	Acc.	Acc.	Acc.	Acc.	ВС
Reference	AlexNet	71.7	79.7	62.4	58.3	46.9	51.2	36.3	58.4	19
$\mathrm{SPV}_{\mathbf{G}}^{\mathbf{cat}}$	AlexNet	71.5	77.4	60.4	57.8	42.8	49.3	19.5	52.4	10
MulDiP-Net	AlexNet	74.4	82.5	65.2	60.8	48.4	54.2	36.1	62.5	25
Reference	VGG-16	86.1	88.8	78.0	71.8	66.7	73.5	69.8	78.9	52
$\mathrm{SPV}_{\mathbf{G}}^{\mathbf{cat}}$	VGG-16	85.7	87.6	76.9	70.3	65.8	72.2	67.0	75.0	43
MulDiP-Net	VGG-16	87.5	92.0	80.9	72.6	68.9	75.0	71.5	81.9	68
Reference	DarkNet-20	82.7	91.0	78.4	70.5	64.8	72.2	59.5	80.0	44
$\mathrm{SPV}_{\mathbf{G}}^{\mathrm{cat}}$	DarkNet-20	83.2	91.5	78.1	73.2	64.4	72.6	52.5	78.9	46
MulDiP-Net	DarkNet-20	84.1	92.7	80.1	73.9	66.4	74.5	61.2	82.1	<u>62</u>

- Deeper network are not always more universal
- Net-G > Net-S with Darknet

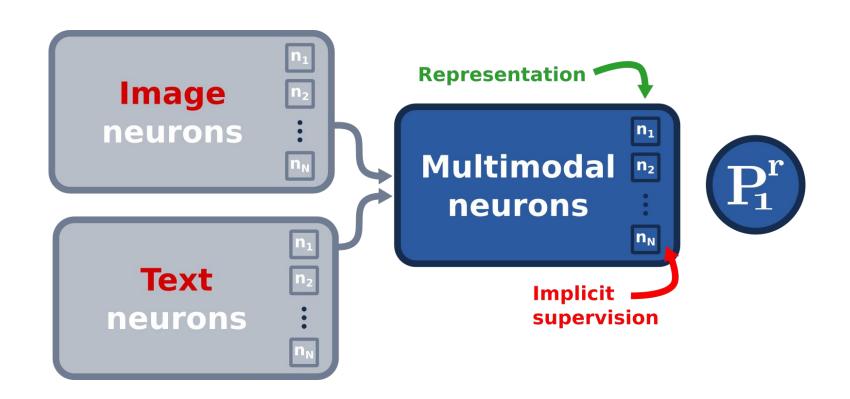
Outline

State-Of-The-Art (S.O.T.A)

Contributions

- Evaluation of Universality
- Universality in Image Representations Learned w/ Explicit Supervision
- Universality in Image Representations Learned w/ Implicit Supervision
- Universality in Multimodal Representations Learned w/ Implicit Supervision
- Conclusions
- Perspectives

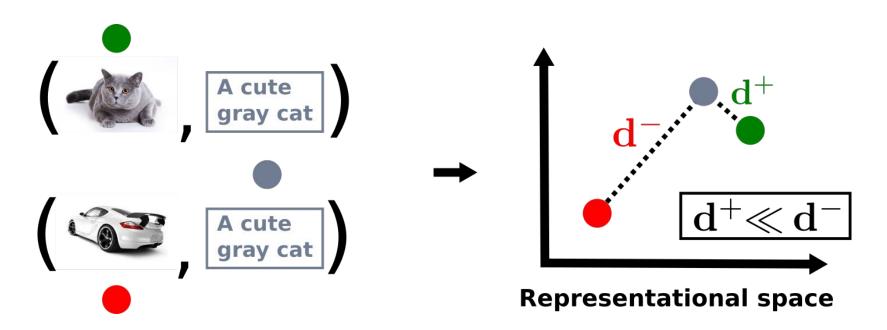
Starting point: Multimodal Representations



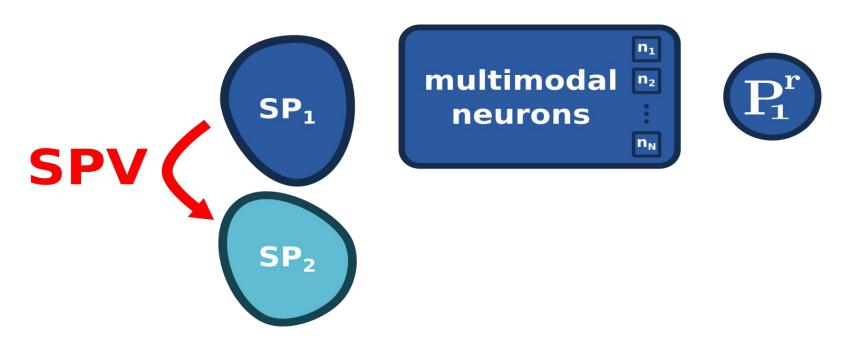
- [Wang & Lazebnik, CVPR'16] [Wang & Lazebnik, TPAMI'18] Two-branches networks
- [Salvador et al., CVPR'17]: Adding semantic loss for regularization
- [Zheng et al., Arxiv 2017]: Dual-Path Convolutional Image-Text Embedding
- [Engilberge et al., CVPR 2018]: Semantic-visual embedding with localization

Starting point: Multimodal Representations

- Ranking Objective
 - Make positive couple of data as close as possible
 - Make negative couple of data as far as possible

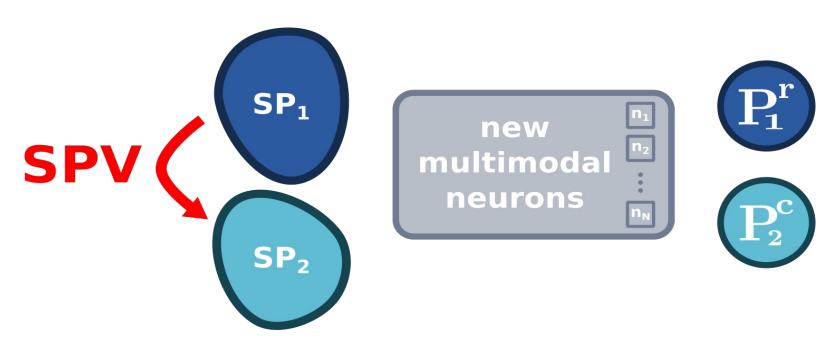


Proposed Approach: step 1/2



1. Source Problem Variation (SPV)

Proposed Approach: step 1/2



- 1. Source Problem Variation (SPV)
- 2. Retrain new neurons
 - According multi-task objective (joint training)

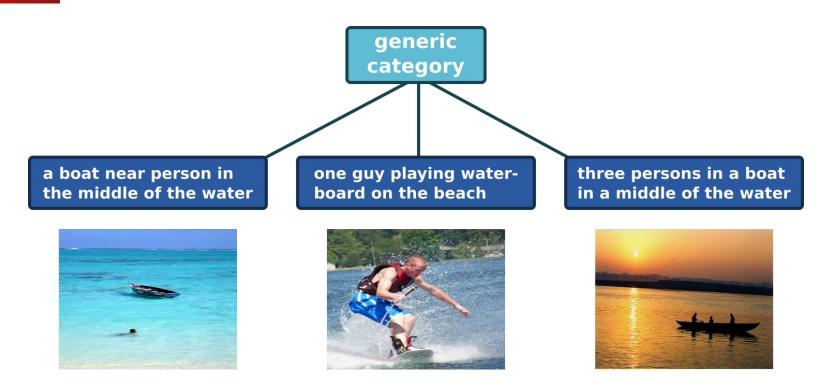
New SPs by Grouping-SPV

a boat near person in the middle of the water

one guy playing waterboard on the beach three persons in a boat in a middle of the water

- Starting point
 - Complex images and textual descriptions

New SPs by Grouping-SPV



- Getting generic labels
 - Not easy to rely on an existing ontology (complex data)
 - using clustering of visual & textual representations

Experimental Settings

- Task: Cross-modal retrieval
 - Image annotation
 - Text illustration
- Metric: Recall (R@K)
- Flickr-30K
- End-to-end scheme
- Simple predictors (L2 normalized representations + k-NN)

Comparison to S.O.T.A

Method	Imag	ge-Anno	tation	Text	Ava		
Method	R@1	R@5	R@10	R@1	R@5	R@10	Avg
Wang & Lazebnik, CVPR'16	26.6	53.0	65.9	22.7	50.1	63.3	46.9
Karpathy et al., NIPS'14	12.6	32.9	44.0	10.3	31.4	44.5	29.3
Kiros et al., ArXiv'14	14.8	39.2	50.9	11.8	34.0	46.3	32.8
Karpathy et al., CVPR'15	22.2	48.2	61.4	15.2	37.7	50.5	38.7
Dong et al., ToM'18 (txt2im)	16.8	40.3	53.0	0.1	5.6	10.0	21.0
Chami et al., ICMR'17 (txt2im)	18.3	41.3	53.5	6.1	9.8	12.2	23.5
Chami et al., ICMR'17 (im2txt)	9.6	13.5	19.2	20.0	49.8	64.2	29.4
NAMRank (Ours)	30.4	55.3	69.1	23.8	52.0	65.5	49.4

Outline

- State-Of-The-Art (S.O.T.A)
- Contributions
 - Evaluation of Universality
 - Universality in Features Learned with Explicit Supervision
 - Universality in Features Learned with Implicit Supervision
 - Universality via Multimodal Representations
- Conclusions
- Perspectives

Conclusions

- Unified framework to tackle universality of representations
- A new protocol to evaluate the increase of universality
 - Identify desirable properties
 - 3 new metrics
- A new approach for learning more universal representations
 - Without additive data
 - Very low annotation cost
 - Relying on cognitive knowledge about Human categorization
 - Efficient universal & dimensionality reduction method (FSFT)
- Extend the universality question to the multimodal aspect

Publications

Journals (1 international)

- <u>Tamaazousti</u>, Le Borgne, Popescu, Gadeski, Ginsca and Hudelot, Vision-Language Integration using
 Constrained Local Semantic Features, CVIU 2017
- Tamaazousti, Le Borgne, Popescu, Gadeski, Ginsca and Hudelot, Déscripteur Sémantique Local Contraint Basé sur un RNC Diversifié, Traitement du Signal, 2017

Conferences (5 international)

- <u>Tamaazousti</u>, Le Borgne and Hudelot, MuCaLe-Net: Multi Categorical-Level Networks to Generate More Discriminating Features, CVPR 2017 (poster)
- Chami*, <u>Tamaazousti</u>*, Le Borgne, <u>AMECON: Abstract Meta Concept Features for Text-Illustration</u>,
 ICMR 2017 (oral)
- Daher, Besançon, Ferret, Le Borgne, Daquo, and <u>Tamaazousti</u>, <u>Supervised Learning of Entity</u>
 Disambiguation Models by Negative Sample Selection, <u>ClCling</u> 2017
- Daher, Besançon, Ferret, Le Borgne, Daquo, and <u>Tamaazousti</u>, <u>Désambiguïsation d'entités nommées par apprentissage de modèles d'entités à large échelle</u>, CORIA 2017
- <u>Tamaazousti</u>, Le Borgne and Hudelot, <u>Diverse Concept-Level Features for Multi-Object Classification</u>,
 <u>ICMR</u> 2016, (oral)
- <u>Tamaazousti</u>, Le Borgne and Popescu, Constrained Local Enhancement of Semantic Features by Content-Based Sparsity, ICMR 2016 (oral)
- <u>Tamaazousti</u>, Le Borgne and Hudelot, **Descripteurs à divers niveaux de concepts pour la classification d'images multi-objets**, RFIA 2016
- <u>Tamaazousti</u>, Le Borgne and Popescu, <u>Agrégation de descripteurs sémantiques locaux contraints par parcimonie basée sur le contenu, RFIA 2016
 </u>

Patents

 <u>Tamaazousti</u>, Le Borgne and Hudelot. Procédé d'obtention d'un système de labellisation d'images, programme d'ordinateur et dispositif correspondant, système de labellisation d'images, filled INPI N° 1662013, dec 2016.

Outline

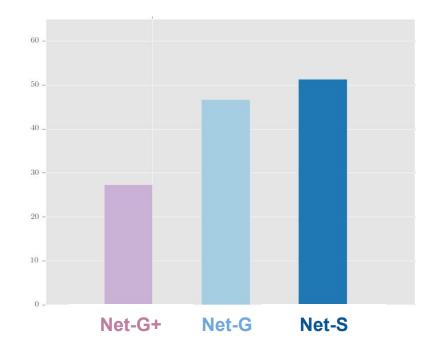
- State-Of-The-Art (S.O.T.A)
- Contributions
 - Evaluation of Universality
 - Universality in Features Learned with Explicit Supervision
 - Universality in Features Learned with Implicit Supervision
 - Universality via Multimodal Representations
- Conclusions
- Perspectives

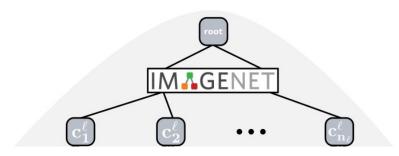
- Independent training of networks
 - Costly in terms of amount of parameters ⇒ Efficient parametrization
 - Decrease #parameters ? Pruning [Mallya & Lazebnik, CVPR'18], Knowledge distillation [Hinton, Arxiv'15], Mapping from master-net to others [in manuscript]
 - Learn efficiently?
 Learning by growing capacity [Wang et al., CVPR'17]
- 1 task in target-tasks (classification or cross-modal retrieval)
 - ⇒ Evaluate on other tasks (detection, segmentation, VQA, etc.)
- Multimodal representations on top of fixed image & textual representations
 - ⇒ Learn them all together

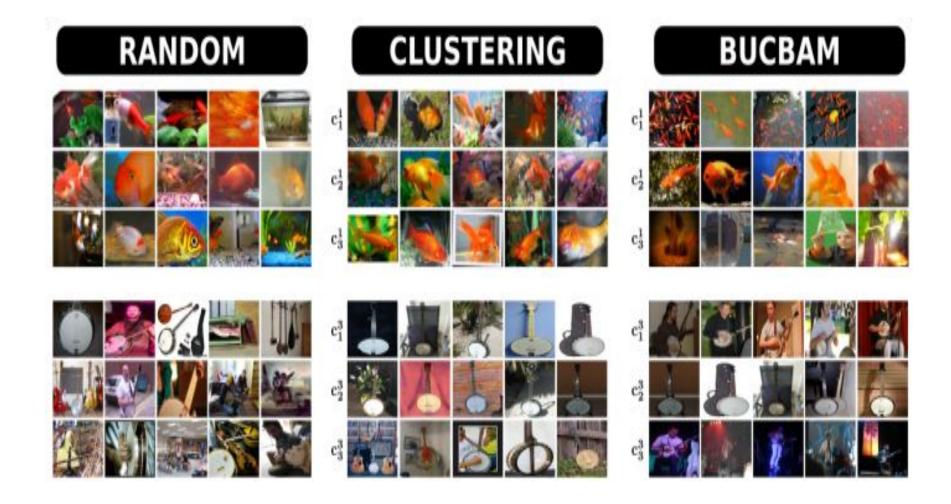
- In 2nd technical contribution
 - Net-G+ < Net-G < Net-S

 Learn a Net-S+, on more specific labels (poses, context, etc.)

Problem: no annotations available

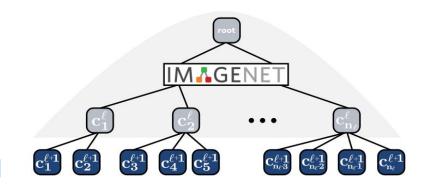




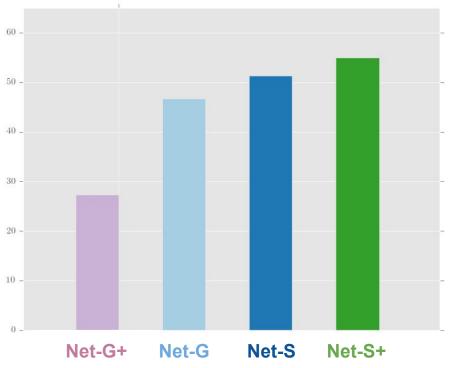


- **Proposal: BUCBAM**
 - Splitting each category
 - A new level to ImageNet hierarchy

Under review at BMVC and patent filled



- Results:
 - +5 (avg) compared to Net-S
 - With ensembling: +8 (avg)
- Above Grouping or Splitting, it seems that the most interesting aspect is SPV!
- How to variate the SPs?



Thank you

Commissariat à l'énergie atomique et aux énergies alternatives Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142 91191 Gif-sur-Yvette Cedex - FRANCE www-list.cea.fr