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Abstract

In this paper, we propose an algorithm for the diffeomorpidn-linear registration of diffusion
tensor images. Previous diffusion tensor registratioorilgms using full tensor information suffer from
difficulties in computing the differential of the Finite &in tensor reorientation strategy and the gradient
of the objective function. In contrast, we borrow resulsnirthe pose estimation literature in computer
vision to derive an analytical gradient of the registratidijective function. By leveraging on the closed-
form gradient and the velocity field representation of oneapeeter subgroups of diffeomorphisms, the
resulting registration algorithm is diffeomorphic andtfdsnplemented under the Insight Toolkit (ITK)
framework, registration of a pair of 128x128x60 diffusi@nsor volumes takes 15 minutes, faster than
many non-linear scalar image registration algorithms im literature. We contrast the algorithm with
a classic alternative that does not take into account theergation in the gradient computation and
show that using the exact gradient achieves significanttiebeegistration at the cost of being a few
times slower. Registration is performed and evaluated cgt afslO diffusion tensor brain images, using
both Euclidean and Log-Euclidean interpolation and bothlilaan and Log-Euclidean Sum of Squares

Difference similarity measure.
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Diffusion Tensor Imaging, Registration, Diffeomorphismnite Strain Differential

. INTRODUCTION

Diffusion Tensor Imaging (DTI) non-invasively measures thiffusion of water inin-vivo biological
tissues [6]. The diffusion is anisotropic in tissues suchcasebral white matter. DTI is therefore a
powerful imaging modality for studying white matter struas in the brain. The rate and anisotropy of
diffusion at each pixel of a diffusion tensor image is sumaett by a rank 2 symmetric positive definite
tensor. This is in contrast to scalar values in traditionagmetic resonance images. The eigenvectors of
the tensor correspond to the three principal directionsfaision while the eigenvalues measure the rate
of diffusion in these directions.

To study the variability or similarity of white matter stituces across a population or to track white
matter changes of a single subject through time, registras necessary to establish correspondences
across different diffusion tensor (DT) images. Registrattan be simplistically thought of as warping
one image to match another. For scalar images, such a warpocaxample be defined by a defor-
mation field and an interpolation scheme. For DT images hewene also needs to define a tensor
reorientation scheme. Reorientation of tensors is nepgessavarp a tensor image consistent with the
anatomy [2]. There are two commonly used reorientatiortesjias: the Finite Strain (FS) reorientation
and the Preservation of Principal Directions (PPD) redaton. Their empirical performances are very
similar [15], [31].

Many DTI registration algorithms have been proposed [11L],[116], [20], [21], [24], [31], [32].
Because the reorientation strategies cause the computttithe gradient of the registration objective
function to be non-trivial [31], many of these registratitethniques use scalar values or features that
are invariant to image transformations. This includes the af fractional anisotropy [21] and fibers [32].
Leemanset al. [20] use mutual information to affinely align the diffusioreighted images from which
the DT images are estimated from.

Alexander and Gee [1] perform elastic registration of tersmges by reorientating the tensors after
each iteration using PPD reorientation. The reorientatomot taken into account in the objective
function. Caoet al. [11] propose a diffeomorphic registration of tensor imagsgg PPD reorientation.
The diffeomorphism is parameterized by a non-stationafgcity field under the Large Deformation
Diffeomorphic Metric Mapping (LDDMM) framework [7]. An exa gradient of the PPD orientation is

computed by a clever analytical reformulation of the PPDriegniation algorithm.
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For a general transformation, such as defined by B-splinemoparametric free form displacement
field, the FS reorientation [2] is defined by the rotation comgnt of the deformation field. This
rotation is given by the polar decomposition of the Jacoloiithe deformation field using principles of
continuum mechanics. Furthermore, the rotation produgethe polar decomposition of the Jacobian
is the closest orthogonal operator to the Jacobian undewunitgry invariant norm [18]. However, the
polar decomposition requires computing the square root pbsitive definite matrix, defined by the
replacement of the eigenvalues of the original matrix whkitt square roots. The dependence of the
rotation matrix on the Jacobian of deformation is therefaymplicated and the gradient of any objective
function incorporating the reorientation is hard to congput

Zhanget al. [30], [31] propose and validate a novel piecewise local affiagistration algorithm to
register tensor images using FS reorientation. The temsage is divided into uniform regions and
optimal affine transformations are then found for each ofe¢heegions. This is possible because the
transformation considered is affine. Therefore, the rmtatiomponent of the deformation neaus be
computed. Instead, since rotation is already explicitlyirojzed in affine registration, the gradient due
to FS reorientation can be easily computed. These pieceafiise transformations are fused together
to generate a smooth warp field. The algorithm is iterated inuitiscale fashion with smaller uniform
regions. However, it is unclear how much of the optimalitylast through the fusion of these optimal
piecewise affine transformations.

In this paper, we borrow results from the pose estimatiarndiure in computer vision to compute the
analytical differential of the rotation matrix with respgdo the Jacobian of the displacement field. We
propose a diffeomorphic DTI registration algorithm, whiextends the recently introduced diffeomorphic
demons registration of scalar images [27] to tensor imafes availability of the exact analytical gradient
allows us to utilize the Gauss-Newton method for optim@atiThe resulting DT registration is fast, taking
about 15 minutes. This is comparable to the non-linear tregiisn of scalar images whose runtime might
range from a couple of minutes to hours.

The diffeomorphic demons registration algorithm is an egien of the popular demons algorithm [25].
It guarantees that the transformation is diffeomorphids Hiffeomorphism is parameterized by a compo-
sition of deformations, each of which is parametrized byatiaghary velocity field. Such a representation is
not unlike that used by the Large Deformable Diffeomorphiettit Mapping (LDDMM) framework [7].
However, unlike LDDMM, the diffeomorphic demons algoritittoes not seek a geodesic of the Lie group
of diffeomorphism. One can therefore consider diffemacpémons to be part of the small deformation

framework: at each iteration, the diffeomorphic demonsoalgm seeks the best diffeomorphism to
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be composed with the current transformation. The restricbf each diffeomorphism update to be a
one parameter subgroup of diffeomorphism results in a mastef algorithm than the typical algorithms
under the LDDMM framework or even algorithms that paramegediffeomorphism by stationary velocity

field [5], [17].

We also propose a simpler and faster algorithm that igndresréorientation during the gradient
computation. Reorientation is done after each iteratidns Taster algorithm is therefore a diffeomorphic
variant of the one proposed by Alexander and Gee [1] with &&Newnton optimization. We compare
the two algorithms and show that using the exact gradientlteetn significantly better registration at
the cost of computation time. In particular, we show that minsing Log-Euclidean interpolation [3]
and Log-Euclidean Sum of Squares Difference (LOG-SSD)laiity measure with a small deformation
regularization, the resulting registration with the exgiadient not only has a lower Log-Euclidean Sum
of Squares Difference (LOG-SSD) but also a lower Euclideam $f Squares Difference (EUC-SSD).
This is true for the entire spectrum of deformation pensltiEhe same holds when using Euclidean
interpolation and EUC-SSD in the registration objectivadiion. The use of Euclidean interpolation
and EUC-SSD in warping and comparing tensor images is qoitenmon [1], [2], [31]. More recently,
Log-Euclidean interpolation and metrics have also becoamijar [3], [14]. A second experiment shows
that the exact gradient is also able to recover randomly rgéee deformation fields significantly better
than when using the approximate gradient that ignoreseetation.

We emphasize that there is no theoretical guarantees thag thee true gradient will lead to a better
solution. After all, the registration problem is non-coxnand any solution we find is a local optimum.
In practice, the experiments show that taking reorientiatito account does significantly improve the
registration results. We believe that the reorientatioteators provides an additional degree of freedom,
in the sense that local rotation of tensors does not incwrdeftion penalty. Taking the reorientation into
account therefore allows us to match two tensor images nasityeOn the other hand, the reorientation
also provides an additional constraint. The registratityorithm cannot arbitrarily pull in a far-away
region for matching because this induces the reorientatiotensors in other regions (think of the
famous ‘C’ example in large deformation fluid registratid®]). This additional constraint acts as a
further regularization, leading to a better solution.

This paper is organized as follows. The next section dessiifie computation of the FS differential. We
then give an overview of the diffeomorphic demons algorithreection Ill. We extend the diffeomorphic
demons to tensor images in section IV using the exact FSreliftml. We also propose a simpler and

faster algorithm that ignores the reorientation duringdhedient computation. In section V, we compare
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the two algorithms with a set of 10 DT brain images.

To summarize, our contributions are:

1) Derivation of the exact Finite Strain (FS) differential.

2) Incorporation of the FS differential into a fast diffeorphic DT image registration algorithm. We
emphasize that the FS differential is useful, even if oneeteiuse a different model of deformation
or a different similarity metric.

3) Demonstration that the use of the exact gradient lead®ti@rbregistration, in the sense that for
any deformation energy, we obtain lower LOG-SSD and EUC-S8bardless of whether we use
LOG-SSD or EUC-SSD in the objective function. We also shoat the exact gradient is able to
recover randomly generated deformation fields signifigamgtter than when using an approximated
gradient that ignores reorientation.

4) Our implementation allows for Euclidean interpolationdaEUC-SSD metric, as well as, Log-

Euclidean interpolation and LOG-SSD metric.

Il. FINITE STRAIN DIFFERENTIAL

Deforming a tensor image by a transformatisrinvolves tensor interpolation followed by tensor
reorientation [2]. To compute a deformed tensor at a vexadne first interpolate the tensor to get the
interpolated tensof’(n). Interpolation can for example be done using Euclideanrpatation [2], Log-
Euclidean interpolation [3], affine-invariant framewo2] or Geodesic-Loxodromes [19]. In this work,
we will focus on Euclidean and Log-Euclidean interpolatgince they are currently the most commonly
used interpolation scheme for tensors and because thepugutationally simple. The Finite Strain (FS)
differential we compute in this section is related to tensmrientation, and the discussion is therefore
independent of the interpolation strategy.

More formally, the transformation sends a poin to the points(p). Letu = s—I be the displacement

field associated with the transformatienThen

s(p)=p+u 1)

The '~ in v 2 s — I is used in a loose sense and is meant to convey:thatthe transformatiors

without the identity part of the transforih Similarly, we denote = I +w. Note that even for parametric
representation of transformations, such as splines, amaleays derive the equivalent displacement field

representation.
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According to the FS tensor reorientation strategy [2] fonliveear deformation, one first computes the
rotation component of the deformation at theh pixel:
R(n) = (J(n)J(n)") "% J(n) )

where J(n) is the Jacobian of the spatial transfosnat then-th pixel:

9s:(n)  9sz(n) Os.(n) Auz(n) duy(n) Ous(n)
ox oy Oy Oox Jy Oy
— OJsy(n Osy(n Osy(n _ Ouy (n duy(n Juy(n
J(n) = ) a;(/ ) 83(/ b =1+ i a@f ) a@f ) (3)
9s.(n) 9s.(n) 9s.(n) Ou.(n) Odu.(n) Ju.(n)
ox oy Oy Oox Jy Oy

ug, Uy, u, are the displacementfield in thgy andz directions.R(n) is known as the polar decomposition
of the matrix.J(n) and is therefore the function of the displacement fielth the neighborhood of.
Notice that under identity transformation, i.e., zero tispments,J(n) = I and R(n) = I.

The interpolated tensdF(n) is then reoriented, resulting in the final tengd(n):
T'(n) = R"(n)T(n)R(n) (4)

For registration using the FS strategy, it is therefore ssagy to compute the differential of rotation
R with respect to the transformation and thus by chain rule, with respect to JacobianDenoting
S = (JJT)§ and using the results of pose estimation literature [13]getethe3x3 matrix (see Appendix
A):

@
dR = —R|RT(tr(S)I - S)'R> (R"); ® (dJ7); (5)
where® denotes th&D cross product(-); denotes the-th column of(-) and® is the operator defined
as
0 —m3 my
m® = (Imy,mae,ma) "2 | gy 0 —my (6)
—my My 0

Let J;; be theij-th component of/. Eq. (5) tells us the variation of rotatiadR in terms of the components
of Jacobian/. In other WOI’dS,gT}i is simply dR from Eq. (5) by setting the matrix.dto 0, except for

(dJ);; which is set tol.

I1l. BACKGROUND ONDIFFEOMORPHISM

In this section, we discuss the diffeomorphic extensiof & T hirion’s demons algorithm [25]. We will
also discuss numerical issues related to representingodiibrphism by velocity fields and optimization

methods we will be using in this paper.
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A. Diffeomorphic Demons
We consider the modified demons objective function [10] &gistering a moving scalar imagé to
a fixed scalar imagé":

E(c,s) = || HF - Moc)|* + %dist(s,c) + %Req,s) (7)

xT

wheres is the non-parametric dense spatial transformation to Iienged, c is an auxiliary vector field
and|| - || denotes thd.,-norm of a vector (or vector field depending on the contex®. 8&n think of the
fixed imageF’ and warped moving imag#{ o ¢ as a one dimensional vector of lengthvoxels.X is a
NxN diagonal matrix that defines how much variability one obssrat a particular voxel. This allows
a fast and simple optimization procedure by alternatelynuping the first two terms and the last two
terms of Eq. (7). Typically, digt, s) = ||c — s||*> and Regs) = ||Vs||2. However the regularization can
be modified to handle fluid-like constraints.

For the demons algorithm and its variants, the objectivetfon is optimized over the complete space of
non-parametric spatial transformations [10], [23], [2&B]. This non-parametric spatial transformation
is usually represented by a displacement field. Unfortupatee resulting deformation might not be
diffeomorphic. Instead, Vercauterash al. [27] optimize over a composition of deformations, each of
which is parametrized by a stationary velocity field. At edehation, the diffeomorphic demons algorithm
seeks the best diffeomorphism (represented by the stagiaetocity v) to be composed with the current
transformation.

In this caseyp is an element of the Lie algebreandexp(v) is the diffeomorphism associated with the
velocity fieldv. The operatoexp(-) is the group exponential relating the Lie GroGpto its associated
Lie algebrag. More formally, let®,,(xo) be the solution at time to the following Ordinary Differential

Equation (ODE) with stationary velocity field:

Cfl—j =wv(z)  with initial condition  z(0) = z (8)

We define

exp(v)(x) £ y(x) = w(z) (9)

An imageM oexp(v) is therefore a deformed version of imagde by transforming the coordinate system
of M by exp(v): the pointz in the deformed coordinate system corresponds to the @ajifit) in the
old coordinate system.

We can summarize the diffeomorphic demons algorithm [28]] s follows:
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1) Choose a starting spatial transformatidf) (represented by a displacement field)

2) lterate until convergence:

(i) Givens), compute a stationary velocity field updatét!) by minimizing the first two terms
of Eq. (7):

,U('i—i—l) — argmin HE_l(F _ M o S(i) o) exp(’U))HQ—i—%d|St(8(l)’ 8(7’) le) eXp(U)) (10)

T

wherev is an element of the Lie algebgaassociated with the Lie group.

(i) If a fluid like regularization is used, let*+1) — Kjqiq  vt1). The convolution kernel will
typically be Gaussian.

(i) Let D — 50) o exp(vt1)

(iv) If a diffusion-like regularization is used, let™*) — I+ K x (<0t — 1) (else lets(+1) —
c"+1)). The convolution kernel will also typically be Gaussiamd® again, the ‘- and ‘+’

are used in a loose sense.

Steps 2(ii) to 2(iv) essentially optimize the last two terofsEq. (7). For detailed discussion of using

convolution kernels to achieve elastic and fluid regulaidra see [9], [10].

B. Numerical Issues in Velocity Field Representations

While v and ®,(z) = exp(v)(z) are technically defined on the entire continuous image doniai
practice,v andu are represented by vector fields defined on discrete pointeeofmage, such as at
each pixel [25], [26], [27] or control points [5], [7]. Fronié theories of ODEs [8], we know that the
integral curvesu = exp(v) (or trajectories) of a velocity field(x,t) exist and are unique if(x,t)
is Lipschitz continuous inc and continuous irt. Uniqueness means that the trajectories do not cross,
implying that the deformation is invertible. Furthermoves know from the theories of ODEs that(d
continuous velocity field produces & continuous deformation fielé, (). Therefore, a sufficiently
smooth velocity field results in a diffeomorphic transfotioa.

Since the velocity field is stationary in the case of the one parameter subgroup fefodiforphism,

v is clearly continuous (and in faect>°) in ¢. A smooth interpolation ot is continuous in the spatial
domain and is Lipschitz continuous if we consider a compaantain (which holds since we only consider
images that are closed and bounded).

To compute the final deformation of an image, we have to estima(v) at least at the set of image
grid points. For example, we can computep(v) by numerically integrating the smoothly interpolated

velocity field v with Euler integration, such as that in [7]. In this case, éséimate becomes arbitrarily
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close to the trueexp(v) as the number of integration time steps increases. With ficiguitly large
number of integration steps, we expect the estimate to bertible and the resulting transformation to
be diffeomorphic.

The parameterization of diffeomorphism by stationary ejofield is made popular by the use of the
fast “scaling and squaring” approach [4] in computing(v). Instead of Euler integration, the “scaling

and squaring” approach works by multiple composition optiisement fields:

o () = x—i—%v(m)

oN

(@)

o) = Du,(r)os,(a) (11)

3V 3

While this method is correct in the continuous case, in tieerdie case, composition of the displace-
ment field requires interpolation of displacement field$;oiducing errors in the process. In particular,
supposeb, ,(x) and®y,,(x) are the true trajectories found by performing an accuraterkutegration
up to timety and 2ty respectively. Then, there does not exist a trivial intesipoh scheme, so that
Dot v () = Py (x) 0Py (x). In practice however, it is widely reported that “scalinglasguaring” tends
to preserve invertibility even with rather large deformati[5], [27]. In this work, we will use trilinear
interpolation because it is fast. We find that in practices ttansformation is indeed diffeomorphic.
Technically speaking, since we use linear interpolationtfie displacement field, the transformation is
only homeomorphic rather than diffeomorphic. However, vk follow the convention of [4], [5], [27]

who call their transformation diffeomorphic even thougbyttare technically homeomorphic.

C. Gauss-Newton Nonlinear Least-Squares Optimization

We now focus on the optimization of step 2(i) of the diffeopldc demons algorithm. We first note

that the objective function in step 2(i) can be written in a#ioear least-squares form:

- 2
Euv) = YHF — M osoexp(v)) (12)

L exp(v)
- 2

_ @' (s 0 exp(v)) (13)

| P25 0 exp())
(s o exp(v))P (14)
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where we have made the choice that distpexp(v)) = [|s~tosoexp(v)|? = || exp(v)||? = ||ul|?, where
u = exp(v) — I. Here, we are “subtracting” out the identity transformatsm that identity transformation

corresponds to no penalty. One can rewrite the above asvillo

1 2
D?'(0)

v+ O(||v]|?
DF(0) + O([lv]%)

Es(v) = |le(s) + (15)

To interpret the above equation, fxdim images withV voxels, letv be a3 Nx1 vector:{v,(1),vy(1),v,(1), -
Uz (N),vy(N), v (N)}. Then,DY' (0) isaNx3N block diagonal matrix, where theth block corresponds

: ! _ Op} (soexp(v))
to a 1x3 matrix [Df (0)], = % )0
exp(v)(n)) is then-th component ofy!. Using the chain rule, we get:

where ol (s o exp(v)) = S7'(n)(F(n) — Mo so

! dpp(s 0 exp(v)) dexp(v)(n)
PEOb = et 00 oo (19
il (s 0exp(v))
dexp(v)(n) |, =0 ()
_ Opl(sow)
R R (o)
= 27 n)V(M os)(n) (19)

wherew(n) = exp(v)(n) = ®,(n) is the transformation of voxet. In Eq. 17, we made use of the fact
that the differential of the exponential map is the identi(M o s)(n) is the spatial derivative of the
image intensity at voxel of the warped moving imaga/ o s: { %=, &l 251} Therefore, we denote

—S1(V(M o 5)) to be Df (0).

Similarly, D¢’ (0) is equal to- I where[ is a3Nx3N identity matrix. By ignoring theD(|[v[|?) term

within the norm in Eq. (15), we end up with the classic linesadt squares problem, which can be solved

be re-written as:
2

&Q

E;(v)

via the normal equations. This is the Gauss-Newton optitieizanethod. In particular, Eq. (12) can then
Y F—-Mos X (V(Mos
( >]+[ (v ))]v 0)

H 0 1
= b Av|? (21)

which is a linear least squares problem. Despite the sizheofrtatrices, it is easy to solve the resulting
linear systemAv = b since we can consider each pixel separately. In fact, wighhilp of the Sherman-
Morrison matrix inversion lemma, no matrix inversion is eveeded to invert the resulting block diagonal
3Nx3N matrix AT A [26].
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We note that in the original demons algorithm [25](M] o s) is replaced byV F'. This can be justified

by the fact that at the optimum, the gradient of the warpedingpimage is the same as the fixed image.

IV. TENSORIMAGE REGISTRATION
A. Diffeomorphic Demons for Vector Images

We define a vector image to be an image with a vector of infessét each voxel. We can treat a
vector image like a scalar image in the sense that each vectoponent is independent of the other
components. Deformation of a vector image works just likeaas image, by treating each component
of the vector separately. We extend the diffeomorphic desmragistration of scalar images to vector
images. The discussion here will be used for computing @psi&ps when ignoring tensor reorientation
in section IV-D.

It is fairly straightforward to re-derive the results frotretprevious section for vector images. IFthe
the dimension of the intensity vector at each voxel. For eaience, we defing;, to be theK'x1 intensity
vector{F,(1),--- , F,,(K)} of the n-th voxel andF' to be theN Kx1 vector F' = {F},--- ,Fy}. Then
the diffeomorphic demons algorithm from the previous sectpplies exactly to vector images except
V(M o s) is now a sparsé&V Kx3N block diagonal matrix, where each block Ax3. In particular, the

n-th block corresponds to:

O(Mos),(1) O(Mos), (1) O(Mos), (1)
oz dy 0z

(22)

O(Mos),(K) 9(Mos),(K) 98(Mos),(K)
oz dy 0z

The resulting least squares linear systdm= b is slightly harder to solve than before. For each pixel

n, we have to solve &8x3 linear system for speed vector updaie:).

B. Diffeomorphic Demons for Tensor Images

A DT image is different from a vector image because of the timthl structure present in a tensor.
In particular, the space of symmetric positive definite ma# (tensor) is not a vector space. When
deforming a DT image, reorientation is also necessary. Wenelxthe diffeomorphic demons registration
of scalar images to tensor images.

In this work, we use the modified demons objective function. (B)) and the Finite Strain (FS)
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reorientation strategy in our registration. Then Eq. (18ydmes

- 2
Euv) = S7H[F = RT (M o soexp(v)) R| 23)

I o exp(v)
r 2

_ 801(3 o exp(v)) (24)

| (s 0 exp(v))
(s o exp(v))|P (25)

Here, [FF — RT (M o s o exp(v)) R] is the Euclidean Sum of Squares Difference (EUC-SSD) betwee
the tensor images. In particuldr, can be seen as@®@Vx1 vector by “rasterizing” the3x3 rank 2 tensor
at each voxel into a column vecta¥! o soexp(v) should be interpreted as the interpolated tensor image.
In practice, since the tensor is symmetric, we can get aw#ty wging a6/ N x 1 vector and by adjusting
the weights of some of the entries Bf ! by /2. Each interpolated tensor is then reoriented using the
rotation matrixR of each pixel and “rasterized” into a column vector. Note tRas implicitly dependent
on the transformation o exp(v). [F — RT (M o s o exp(v)) R] then computes the SSD between each
tensor of the fixed image and the corresponding reorientddraerpolated tensor in the warped moving
image (by treating each tensor as a vector) and summing tBef@Sall voxels.

Eq. (23) can also be interpreted as the LOG-SSD betweenrieiisb and M are the Log-Euclidean
transforms of the original tensor images. This is done byeding each tensdr in the original image
to a log-tensotfog(7"). Note thatlog(7') is simply a symmetric matrix [3]M o s o exp(v) is then the
interpolated log-tensor image am’ (M o s o exp(v)) R is the interpolated and reoriented log-tensor
image. This works becaudeg(RTTR) = R log(T)R for any rotation matrixR. Therefore, reorien-
tating a tensor followed by Log-Euclidean transformatiertie same as Log-Euclidean transforming a
tensor followed by reorientation. This is convenient simee can perform a one time Log-Euclidean
transformation of the tensor images into log-tensor imdggfere registration and then treat the resulting
log-tensors as tensors.

The differential of? denoted astz(O) is the 3NX3N matrix %I. On the other handel(O) is
a sparse9 Nx3N matrix. One can interpreDf1 (0) as NxN blocks of 9 x 3 matrices. In particular,
the (n, j)-th block [Dfl(o)]nj is equal to%&%m(v(j) = 0), where we remind the readers that=
exp(v) = Dy.

Using the chain rule, the fact that the differential of th@@xential map is the identity and the product
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rule, we get
pr oy = 28 9)
N 1
> o0 s @)
1 ow

- &pgz(us(j) ) w(j)=j @)

_ _z—%m[iizﬁ)m4osowm»zam

+RTona”w§£&f“”Uan)
() (M 050 w(u) G| . 29)

Recall thatR(n) is a function of the Jacobian of displacement figlth) at then-th pixel and that
Eq. (3) gives an analytical expression.ffn). In practice,J(n) is defined numerically using finite central

difference as

$0Wg (Mg ) —80Ws (Nep—)  S0Ws (Nyy)—S0Ws(Ny—)  Sowg(n.q)—sows(n._)
2Ax 2Ay 2Nz
— $0Wy (Mg ) —80Wy (Np—)  SOWy(Nyy)—Sowy (ny—)  sow,(n.4)—sow,(n._)
J(n) 2Ax 2Ay 2Nz (30)
50w, () —50ws (Ma-)  50ws(mys)—s0ws(ny ) s0ws (M) —s0ws (na-)
2Ax 20y 20z

where{n,_, ny4,ny—,ny4,n-—,n.4} are the neighbors of voxel in the z, y andz directions respec-
tively. Thereforew,(n,) denotes they-coordinate ofn, after transformations(n,) andw,(n,_)
denotes thegj-coordinate ofn,_ after transformationv(n,_). Az, Ay and Az are the voxel spacings
in the z, y and z directions respectively.

Therefore,
(D" (O = == (n)R"(n)V(M o 5)(n)R(n) (31)

and for neighborg of voxel n, we get

ORT (n) OR(n)
Ow(j) 8“’(]')] w(j)=j

Note that the first and second terms in the expression ab@véramspose of each other. Using the

(D (0)]n; = —27'(n) (M os) (n)R(n) + R (n) (M o) (n) (32)

differential of R (Eq. (5)) and the expression df(Eq. (30)), we can comput w((?)) using the chain rule.
For completenes%ﬁ—((?)) are derived in Appendix B.

In summary, we have computed the full gradient of our objectunction:

(33)
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Whereo—lgl is a3NXx3N identity matrix, WhiIeDfl(O) is a spars@ Nx3N matrix.

C. Optimization: Gauss-Newton Method

From the previous sections, we can now write
2

Q

Ey(v) + v (34)

0 Lr
= ||b— Av|? (35)

l Y~YF — RT(M o s5)R) D? (0)

The resulting least-squares problem is harder to solve lleéore, since the linear systems of equations
cannot be separated into a per voxel basis. In practice, Wwe #loe linear systems of equations using
the free Gmm++, a generic C++ template library for sparseioest At the finest resolution, solving the
sparse linear system requires about 60 seconds. This isotflenteck of the algorithm. However, due
to the fast convergence of Gauss-Newton method, we typically need to solve the linear systems 10
times per multi-resolution level. The resulting registrattakes about 15 minutes.
We note that the efficiency of the Demons algorithm comes filoendivision of the optimization into

2 phases: optimization of the similarity measure and op@tion of the regularization term. This avoids
the need to solve a non-separable system of linear equatibaa considering the 2 phases together.
Because of the reorientation in tensor registration, weshiavsolve a sparse system of linear equations
anyway. In this case, we can incorporate the optimizatiothefregularization term together with the
optimization of the similarity measure without loss of afficcy. In this work, we keep the two phases
separate to allow for fair comparison with the case of igmpthe reorientation of tensors in the gradient
computation (see section 1V-D) by using almost the sameéamphtation. Any improvement must then
clearly come from the use of the true gradient and not froomgusi one-phase optimization scheme

versus a two-phase optimization scheme.

D. Classical Alternative: Ignoring the Reorientation of Tensors

Previous work [1] performs tensor registration by not imihg the reorientation in the gradient
computation, but reorienting the tensors after each itevatising the current estimated displacement
field. To illustrate the utility of the true gradient, we adapr algorithm to ignore the reorientation part
of the objective function in the gradient computation. Imtjgallar, we can emulate the Gauss-Newton op-
timization from previously by settingDf" (0)],,; = 0 and[DE (0)]n = 51V (R (n)(M o s)R(n)),

effectively ignoring the effects of the displacement fiefdaosoxel on the reorientation of its neighbors.
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Note that[Df1 (0)]nn is slightly different from before. At each iteration, we th#ore treat the tensor like
a vector, except when deforming the moving image. The resuleast-squares problem degenerates to
that of section IV-A. The algorithm is thus much faster simze only need to invert 8x3 matrix per

voxel at each iteration. Registration only takes a few n@sut

V. EXPERIMENTS AND DISCUSSIONS

In our experiments, we use 10 DT images (128x128x60, 25 gnadlirections). These images are
kindly contributed by Denis Ducreux, M.D., Ph.D., Bicékespital, Paris, France. A foreground mask for
each of the 10 DT images is computed. When computing the S$ttoke function, only voxels which
are considered foreground in both the fixed image and warpmdng image are included. As a result,
the final SSD might depend on the number of overlapped fotegtovoxels between the fixed image
and warped moving image. To correctly compare the resultwofdifferent algorithms, we consider the
average SSD, which we call the Mean Square Error (MSE).

In this paper, we perform pairwise registration betweenspaf the 10 DT images. via a standard
multiresolution optimization, by smoothing and downsangplthe data for initial registration and using
the resulting registration from a coarser resolution téidhke the registration of a finer resolution. We

find that the algorithms are able to recover global deforomasti

A. Qualitative Evaluation

We first qualitatively compare the registration results fed £xact FS gradient and the approximated
gradient. Figure 1 shows the registration of a pair of subjdeéigure 1(a) and figure 1(b) show the fixed
and moving images respectively. Figure 1(c) and figure lfdjsthe output of the registration algorithm
when using the exact FS gradient and approximated gradéspiectively. Log-Euclidean interpolation
and LOG-SSD are used in the objective function. Figure 1ifejvs the LOG-SSD (computed pixelwise)
attained by the exact FS gradient minus LOG-SSD (computeglyise) attained by the approximated
gradient. Black region implies exact FS gradient is perfogrbetter in the region. White region implies
approximated gradient is performing better in the regio®fs of the foreground pixels attain better
LOG-SSD using the exact FS gradient than using the appragignadient, even though the amount of
deformation as reflected in the harmonic energy is the same.

We note that the percentage of improved voxels is an undes@sin because in general the exact FS

gradient results in more foreground overlap between thel fared moving images. In this particular pair
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of images, the distribution of improved voxels appears taliffese across the brain. This is in contrast

to the pair of subjects in figure 2.

(a) Fixed image (b) Moving image  (c) Exact FS gradient(d) Approximated gra{e) Pixelwise LOG-
dient SSD(a,c) minus pixelwise
LOG-SSD(a,d)

Fig. 1. Qualitative comparison between the use of exact ESlignt and approximated gradient for registering a pair of
subjects. Log-Euclidean interpolation and LOG-SSD arel usehe objective function. (a) Fixed Image (b) Moving Ima@g
Registration result from using exact FS gradient. LOG-SSID39. Harmonic Energy $.16 (d) Registration result from using
approximated gradient. LOG-SSDG45. Harmonic Energy .16 (e) Pixelwise LOG-SSD between image (a) and (c) minus
pixelwise LOG-SSD between image (a) and (d). Black regioplies exact FS gradient is performing better in the regiohite/
region implies approximated gradient is performing bettethe region.59% of the foreground pixels attain better LOG-SSD
using the exact FS gradient than using the approximate egrgdéven though the amount of deformation as reflected in the
harmonic energy is the same. The distribution of improvexeloappears to be diffuse across the brain. This is in csintoa

the pair of subjects in figure 2.

Figure 2 shows the registration of a second pair of subjége again, Log-Euclidean interpolation
and LOG-SSD are used in the objective functi66% of the foreground pixels attain better LOG-SSD
using the exact FS gradient than using the approximate gyradiven though there is more deformation
when using the approximated gradient, as reflected in theadrdc energy. As shown in figure 2(e-i),

the corpus callosum appears to be significantly better etigmhen the exact FS gradient is used.

B. Quantitative Evaluation |

To more quantitatively compare the performance of the ek&cgradient, the approximated gradient
and the fixed image gradient, we will consider pairwise tegi®on of the 10 DT images. Since our
registration is not symmetric between the fixed and movinggdes, there are 90 possible pairwise

registration. We randomly select 40 pairs of images forvpiag registration. From our experiments,
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(a) Fixed image (b) Moving image  (c) Exact FS gradient(d) Approximated gra{e) Pixelwise LOG-

dient SSD(a,c) minus
pixelwise LOG-
SSD(a,d)

(f) Fixed image (g) Moving image  (h) Exact FS gradient(i) Approximated gra-(j) Pixelwise LOG-

dient SSD(a,c) minus
pixelwise LOG-
SSD(a,d)

Fig. 2. Qualitative comparison between the use of exact B8ignt and approximated gradient for registering a secaid p
of subjects. Log-Euclidean interpolation and LOG-SSD aeduin the objective function. (a) Fixed Image (b) Moving ¢rea
(c) Registration result from using exact FS gradient. LO&BS= 0.54. Harmonic Energy =0.15 (d) Registration result from
using approximated gradient. LOG-SSD0=9. Harmonic Energy .12 (e) Pixelwise LOG-SSD between image (a) and (c)
minus pixelwise LOG-SSD between image (a) and (d). Blackoregmplies exact FS gradient is performing better in the
region. White region implies approximated gradient is perfing better in the regiorh6% of the foreground pixels attain better
LOG-SSD using the exact FS gradient than using the appragigradient, even though there is more deformation whergusin
the approximated gradient, as reflected in the harmonicggném this case, the corpus callosum appears to be sigrifjcan

better aligned when the exact FS gradient is used. (f-j) zomto the red box bounding the corpus callosum in (a-e).

we find that the statistics we compute appear to converge afteut 30 pairwise registrations, hence 40
pairwise registrations appear sufficient for our purpose.

As implied by previous literature [10], it does not make getts compare two registration algorithms
with a fixed tradeoff between the similarity measure andlaipation, especially when the two algorithms

use different similarity measures and/or regularizatidhgthermore, one needs to be careful with the
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tradeoff selection for optimal performance [29] in a givgrplication.

In this paper, even though we are considering algorithm# whe same similarity measure and
regularization (and effectively the same implementatibo) different optimization schemes, we find
that for a fixed-size smoothing kernel, using the exact Ffemdiftial tends to converge to a solution of
lower harmonic energy, i.e., a smoother transformatiort fié¥e define the harmonic energy to be the
average over all pixels of the squared Frobenius norm of seehlan of the displacement field. Here,
the Jacobian exclude the identity in Eq. (3).

Smaller harmonic energy implies a smoother deformatioris Tinovides some evidence that the
reorientation provides additional constraint on the regi®n problem. Therefore, to properly compare
the algorithms, we consider smoothing kernels of siZ6s3,0.6,--- ,1.9,2.0}. Note that bigger kernel
sizes lead to more smoothing and thus lower harmonic enérgyarticular, we perform the following
experiment:

For each pair of subjects
For each kernel size
i) Run the diffeomorphic demons registration algorithmngsEuclidean interpolation and
EUC-SSD using
(a) Exact FS gradient.
(b) Approximate gradient by ignoring reorientation.
(c) Fixed image gradient. This is the gradient proposed ifridiis original demons
algorithm [25].
i) Repeat (i) using Log-Euclidean interpolation and LOGES

For each pair of subjects, we therefore obtain a set of MSk @dtresponding harmonic energies. We
note that the harmonic energies and MSE across differenopaubjects are different. To average across
trials, we linearly interpolate the MSE over a fixed set ofrhanic energies for each pair of subjects. We
can then compute the mean as well as the standard error of Mi®Esatrials for a particular harmonic
energy.

Exact vs Approximated Gradient. Figure 3(a) and 3(b) show the differences between the EUE-MS
(and the LOG-MSE) of the exact FS gradient and the approximgeddient when using Euclidean inter-
polation and EUC-SSD in the registration objective funetibigure 3(c) and 3(d) show the differences
between the EUC-MSE (and the LOG-MSE) of the exact FS gradiad approximate gradient when

using Log-Euclidean interpolation and LOG-SSD in the regt®n objective function. A negative values
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imply a lower MSE for a given harmonic energy. The error bdmswsthe standard error in MSE across
different pairs of subjects, thus conveying the confiderfcth® results. In particular, we see that using

the exact FS gradient yields a lower EUC-MSE and LOG-MSE dkerentire spectrum of harmonic

energies.
EUC-SSD similarity measure LOG-SSD similarity measure
-0.0 0.0 -0.0 0.0
-0.0: -0.0:
-0.0 00 -0.0 00
-0.0 -0.0 -0.0 -0.0:
-0.0 -0.0 -0.0 -0.0
-0.0 -0.0
0 0.1 0.2 0 0.1 0.2 0 0.1 0.2 0 0.1 0.2

(a) Final EUC-MSE (b) Final LOG-MSE (c) Final EUC-MSE (d) BINLOG-MSE

Fig. 3. Comparison of exact FS gradient and approximatedigmi over an entire spectrum of harmonic energy (x-axis).
Harmonic energy is increased by decreasing the size of tlwothing kernel. Y-axis corresponds to differences in MSke T
error bars show the standard error in MSE across differein$ pa subjects. Negative values imply the FS gradient iiolitg
lower MSE.

Exact vs Fixed Image Gradient. Figure 4 compares the registration results of the exact ESignt
with the fixed image gradient. Like before, we see that ushmy éxact FS gradient yields a lower

EUC-MSE and LOG-MSE over the entire spectrum of harmoniages

EUC-SSD similarity measure LOG-SSD similarity measure
-0.05 -0.05 -0.05 -0.05
-0.1 -0.1 -0.1 -0.1
-0.15 -0.15 -0.15 -0.15
0 0.1 0.2 0 0.1 0.2 0 0.1 0.2 0 0.1 0.2

(a) Final EUC-MSE (b) Final LOG-MSE (c) Final EUC-MSE (d) BINLOG-MSE

Fig. 4. Comparison of exact FS gradient and fixed image gnadiger an entire spectrum of harmonic energy (x-axis).
Harmonic energy is increased by decreasing the size of tlwmthing kernel. Y-axis corresponds to differences in MSke T
error bars show the standard error in MSE across differein$ p& subjects. Negative values imply the FS gradient isiolig

lower MSE.

Further Discussion. We emphasize that the improvements persist in figures 3émd)4(b,c) even

though a different similarity measure from the original eatijve function is used. From figure 3 and
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figure 4, we see that there is improvement over the entireerahfarmonic energies and the improvement
is statistically significant (one-sided paired-samplésst-p-value less that0—> for the entire range of
harmonic energies).

Since Figures 3 and 4 only display the MSE differences, inislear whether the improvement is big.
In figure 5, we plot the average MSE (over the 40 pair-wisestegfions) with respect to the harmonic
energies. We see that using the exact FS gradient gives sterdmuilts followed by the approximate
gradient and the fixed image gradient. The amount of impr@rgrincreases as the harmonic energies
increase. In our experiments, a harmonic energy.8fcorresponds to severe distortion (pushing the
limits of the numerical stability of scaling and squaringhile a harmonic energy df.03 corresponds to
very smooth warps. Previous literature, such as [29], ssigghat extreme distortion causes overfitting,
while extremely smooth warps might result in insufficiertiriig. Only a concrete application can inform
us the optimal amount of distortion and is the subject of fatstudies. For now, we assume a “safe”
range to assess the different gradients to be between harmoergies 0.1 and 0.2. From the values in
figure 5, we conclude that the exact FS gradient provides @mowement of betweef to 10 percent

over the approximate gradient in this “safe” range of harim@mergies.

EUC-SSD similarity measure LOG-SSD similarity measure

0.5

—— Exact FS gradient
- - - Approximate Gradient
- - Fixed Image Gradiernt

0.45

——Exact FS gradient
- - - Approximate Gradient
- - Fixed Image Gradierjt

—— Exact FS gradient T
- - - Approximate Gradient
- .- Fixed Image Gradierjt

0.45

——Exact FS gradient
- - - Approximate Gradient
- - Fixed Image Gradierjt

0 0.1 0.2

(a) Final EUC-MSE

0 0.1

0.2

(b) Final LOG-MSE

0.1

0.2

(c) Final EUC-MSE

0.1

0.2

(d) BINLOG-MSE

Fig. 5.

Harmonic energy is increased by decreasing the size of tlwothing kernel. Y-axis corresponds to differences in MSke T

Comparison of exact FS gradient and fixed image gnadiger an entire spectrum of harmonic energy (x-axis).

error bars show the standard error in MSE across differein$ p& subjects. Negative values imply the FS gradient iiolitg
lower MSE.

Since Gauss-Newton optimization allows the use of “big stép the optimization, this might cause
the approximated gradient to be more sensitive to the net@atien. Another optimization method such
as conjugate gradient might improve the results of usingathigroximated gradient, since it allows the
algorithm to take “smaller steps” and reorientate afterhe@mall step”. However, from optimization

theory and from our experience, Gauss-Newton method regjminuch fewer iterations to converge than
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conjugate gradient. Furthermore, conjugate gradientireg|a line search, resulting in many function
evaluations. Function evaluations are quite expensivaiincase, because of the need to reorientate and
perform “scaling and squaring” of the velocity field. On thither hand, we find that in practice, line

search is not necessary with Gauss-Newton optimization.

C. Quantitative Evaluation Il

We perform a second set of experiments to recover randonmgrgéed synthetic warps. Given a DT
image, we first generate a set of random warps by samplingdmnarelocity at each voxel location from
an independent and identically distributed (1.1.D.) gaaissThe foreground mask is then used to remove
the velocity field from the background voxels. The resultigjocity field is smoothed spatially with a
gaussian filter. We compute the resulting displacement figltscaling and squaring”. This displacement
field is used to warp the given DT image using Log-Euclidedarpolation and FS reorientation. I.1.D.
gaussian noise is added to the warped DT image. We note thse landom synthetic warps follow a
stationary velocity field deformation model of [4], [5], [L@&nd isdifferent from our deformation model.
In this work, we are considering composition of diffeomdgphs parameterized by stationary velocity
field: ¢,, o--- 0o ®, . In general, there does not exist a velocity fieldsuch thatb, = ¢,, 0---0 D, .

We take a single DT image and generate 40 sets of random wW&gpebtain an average displacement
of 9.7mm over the foreground voxels. The average harmonic energylé, and the average sum of
squares energy of the warpslissmm?. We then perform pairwise registration between the DT imau
the warped DT image using LOG-SSD. Once again, we consideda range of smoothing kernel sizes.
For each registration, we compute the SSD between the groutidrandom warps and the deformation
field we obtain from the registration algorithm averagedralkthe foreground voxels. We also compute
the registration error in mm between the random warps andshmated deformation field averaged over
all the foreground voxels. Note that under the identity sfarmation, the average SSD will hé6mm?
and the average registration error will B&mm.

Figure 6(a) shows the differences between the SSD of thet &&agradient and the approximated
gradient. Figure 6(b) shows the differences between the &3lie exact FS gradient and the fixed image
gradient. Negative values imply that the exact FS gradmichieving lower SSD. The error bars show
the standard error in SSD, thus conveying the confidenceeofdbults. In particular, we see that using
the exact FS gradient yields the lowest SSD over the entieetspm of harmonic energies. Similarly,
Figure 6(c) and 6(d) show that the exact FS gradient achitheesmallest registration error than both

the approximated and fixed image gradient.
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01 015 02 025 03 01 015 02 025 03 01 015 02 025 03

(@) SSD of exact FS gra- (b) SSD of exact FS gra- (c) Registration error of (d) Registration error of
dient minus approximated dient minus fixed image exact FS gradient minus exact FS gradient minus
gradient gradient approximated gradient fixed image gradient

Fig. 6. Comparison of exact FS gradient, approximated gradind fixed image gradient over an entire spectrum of hammon
energy (x-axis). Harmonic energy is increased by decrgasia size of the smoothing kernel. Y-axes of (a,b) corredpmon
differences in SSD. Y-axes of (c,d) correspond to diffeesnit registration error in mm. The error bars show the stahdaor
in SSD or registration error across different trials. Nagatalues in (a,b) imply that the exact FS gradient is oliairower

SSD. Negatives values in (c,d) imply that the exact FS gradgeachieving lower registration error.

To get a better idea of the magnitude of improvement, figued hows the SSD (averaged over
40 trials) of the three gradients we are considering. Figi(t® shows the average registration error.
Once again, the exact FS gradient obtains the lowest SSDeagistration error. Interestingly, the fixed
image gradient achieves a lower SSD but a higher registratior than the approximated gradient. This
suggests that the approximated gradient suffers relgtivigl errors in some anatomical regions which
are amplified by the quadratic penalty when using SSD. Thesesedominate the average SSD. On the
other hand, the registration error measures the absolffexetice between the random warps and the

estimated deformation field, so there is no extra weight dadaegistration.

—— Exact FS gradient
35/ — Approximate Gradie
— Fixed Image Gradient

—— Exact FS gradient
35 —— Approximate Gradie
—— Fixed Image Gradie

£

30

3l
25 25
20 2
01 015 02 025 01 015 02 025
(a) Average SSD (b) Average registration error in mm

Fig. 7. (a) Average SSD (y-axis) over an entire spectrum ofmbaic energy (x-axis). (b) Average registration errorafys)
over an entire spectrum of harmonic energy (x-axis). Haimenergy is increased by decreasing the size of the smapthin
kernel.
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From the plots, we see that the exact FS gradient is able wveedche ground truth warps up to
1.78mm or 18.3% error with respect to the averagermm random warps. The approximated gradient
achieves2.56mm or 26.4% error. Finally, the fixed image gradient achiev86mm or 29.4% error.
Therefore, the exact FS gradient achieves an averagd %fand 38% reduction in registration error
compared with the approximate gradient and fixed image gnadespectively.

Another interesting fact is that the best registration esowhen the kernel size is such that the
harmonic energy is about 0.14, which is close to the averagmdnic energy of the synthetic warps

reported earlier.

VI. CONCLUSION

In this work, we derive the exact differential of the FS reatation. We propose a fast diffeomorphic
DT image registration algorithm using the exact FS diffiednWe show that the use of the exact
differential improve EUC-SSD and LOG-SSD Byto 10 percent over an entire spectrum of harmonic
energies. The improvements persist even if we use a diffesinilarity measure from the objective
function we optimize. In a second experiment, the exacedifitial reduces registration error on a set of
randomly generated warps by as much3&% compared with the approximated gradient which ignores

reorientation.

APPENDIX A

FINITE STRAIN DIFFERENTIAL

In [13], the differential of the matrix = A(ATA)": is computed, wherel = Y X7 andY and X
are3 x n matrices. In the context of [13]X are the measured coordinates of a set of labeled points and
Y are their measured positions after rigid body motidhandY can be used to estimate the rotation
component of the rigid motion using the least-squares estimate A(ATA)‘%. Finding the differential
dr in terms X andY therefore allows the error analysis of the estimatehen the measuremenis
andY are noisy.

From [13], we know that @7 = —rdr”. Defining §r £ drr’, we have
or & drr’ = —rdr” (36)

Note thator is a skew symmetric matrix, and therefore takes the form

0 —ms3 mo
or = ms 0 —ma = m® (37)
—mo mi 0
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Denotevec(dr) £ (my, ma, ms)T andS £ (AT A)z. Then, the major result of [13] is that
vec(or) = r(tr(S)I — S) 1T <Z(TX)Z ® dY; + (rdX); ® Y;) (38)
where(-); denote the-th column of(-) respectively and» denotes cross product.
Recall that we are interested ilRdwhereR = (J.J7)~zJ. By settingJ £ AT and S £ (ATA)z =
(JJT)z, we getR = rT and dR = dr”. Therefore,

or T = —rdR (39)

Using I = rTr, we get

dR (?i)) —rTsr = —Rér (40)

By setting, X = I and soA = YIT = JT, we finally obtain

(40)

dR —Rér

D

W _R | R r($)I - )T RS (B @ (@7, (41)

APPENDIX B

ROTATION DERIVATIVES

For completeness, we will now derive the expression%%(w(j) = j), wherej are the neighboring
voxels of voxeln. Recall that{n,_, n,,ny—,ny+,n.—,n.4} are the neighbors of voxel in the z, y
and z directions respectivelyu,, u,, u, are the components of the displacement field inithg and =

directions. For convenience, we den w((;‘)) (w(j) = j) = {gff" ,gf((’; ,gfz((’; } = {BR(" }. Using

chain rule, we have

OR(n) ZZaJ dJij(n) a(sowm(nﬁ))(wk(nﬁ) — ) (42)

Owg(ng+) m i (s owm(ngy))  Owg(ng)
B OR(n) OJm1(n)  O(sowpm(ngy)) o (mes) =
T 0T () O(s o wm(ngs))  Owp(ngy) (Wk(nat) = na-) (43)
T
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The second and third equalities come from evaluatjp: JZ“EZ)”)’ which are mostly zeros. Notice that

Jm1(n) and J,.x(n,+) are evaluated at two different voxels. Similarly, we have

OR(n) 1 OR(n) Tk (e
w1y ) 203 = DJ iy (n) T
OR(n) 1 OR(n)
owg(nyy) 24y — 0Jma(n) Tt ()
OR(mn) 1 OR(n) Tk
Owy,(ny—) 20y = 0Jma(n) mh Ty
OR(n) 1 JR(n)
Owp(n.y) 20z — 0Jm3(n) Tk (n+)
OR(n) 1 OR(n)
Gun(n) — 2A5 2 () ) (45)
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