
DRAFT FOR IEEE TRANSACTIONS ON MEDICAL IMAGING 1

Diffeomorphic Registration of Diffusion Tensor

Images with Exact Finite-Strain Differential
B.T. Thomas Yeo Tom Vercauteren Pierre Fillard

Xavier Pennec Polina Golland Nicholas Ayache Olivier Clatz

Abstract

In this paper, we propose an algorithm for the diffeomorphicnon-linear registration of diffusion

tensor images. Previous diffusion tensor registration algorithms using full tensor information suffer from

difficulties in computing the differential of the Finite Strain tensor reorientation strategy and the gradient

of the objective function. In contrast, we borrow results from the pose estimation literature in computer

vision to derive an analytical gradient of the registrationobjective function. By leveraging on the closed-

form gradient and the velocity field representation of one parameter subgroups of diffeomorphisms, the

resulting registration algorithm is diffeomorphic and fast. Implemented under the Insight Toolkit (ITK)

framework, registration of a pair of 128x128x60 diffusion tensor volumes takes 15 minutes, faster than

many non-linear scalar image registration algorithms in the literature. We contrast the algorithm with

a classic alternative that does not take into account the reorientation in the gradient computation and

show that using the exact gradient achieves significantly better registration at the cost of being a few

times slower. Registration is performed and evaluated on a set of 10 diffusion tensor brain images, using

both Euclidean and Log-Euclidean interpolation and both Euclidean and Log-Euclidean Sum of Squares

Difference similarity measure.
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I. INTRODUCTION

Diffusion Tensor Imaging (DTI) non-invasively measures the diffusion of water inin-vivo biological

tissues [6]. The diffusion is anisotropic in tissues such ascerebral white matter. DTI is therefore a

powerful imaging modality for studying white matter structures in the brain. The rate and anisotropy of

diffusion at each pixel of a diffusion tensor image is summarized by a rank 2 symmetric positive definite

tensor. This is in contrast to scalar values in traditional magnetic resonance images. The eigenvectors of

the tensor correspond to the three principal directions of diffusion while the eigenvalues measure the rate

of diffusion in these directions.

To study the variability or similarity of white matter structures across a population or to track white

matter changes of a single subject through time, registration is necessary to establish correspondences

across different diffusion tensor (DT) images. Registration can be simplistically thought of as warping

one image to match another. For scalar images, such a warp canfor example be defined by a defor-

mation field and an interpolation scheme. For DT images however, one also needs to define a tensor

reorientation scheme. Reorientation of tensors is necessary to warp a tensor image consistent with the

anatomy [2]. There are two commonly used reorientation strategies: the Finite Strain (FS) reorientation

and the Preservation of Principal Directions (PPD) reorientation. Their empirical performances are very

similar [15], [31].

Many DTI registration algorithms have been proposed [1], [11], [16], [20], [21], [24], [31], [32].

Because the reorientation strategies cause the computation of the gradient of the registration objective

function to be non-trivial [31], many of these registrationtechniques use scalar values or features that

are invariant to image transformations. This includes the use of fractional anisotropy [21] and fibers [32].

Leemanset al. [20] use mutual information to affinely align the diffusion weighted images from which

the DT images are estimated from.

Alexander and Gee [1] perform elastic registration of tensor images by reorientating the tensors after

each iteration using PPD reorientation. The reorientationis not taken into account in the objective

function. Caoet al. [11] propose a diffeomorphic registration of tensor imagesusing PPD reorientation.

The diffeomorphism is parameterized by a non-stationary velocity field under the Large Deformation

Diffeomorphic Metric Mapping (LDDMM) framework [7]. An exact gradient of the PPD orientation is

computed by a clever analytical reformulation of the PPD reorientation algorithm.
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For a general transformation, such as defined by B-splines ornon-parametric free form displacement

field, the FS reorientation [2] is defined by the rotation component of the deformation field. This

rotation is given by the polar decomposition of the Jacobianof the deformation field using principles of

continuum mechanics. Furthermore, the rotation produced by the polar decomposition of the Jacobian

is the closest orthogonal operator to the Jacobian under anyunitary invariant norm [18]. However, the

polar decomposition requires computing the square root of apositive definite matrix, defined by the

replacement of the eigenvalues of the original matrix with their square roots. The dependence of the

rotation matrix on the Jacobian of deformation is thereforecomplicated and the gradient of any objective

function incorporating the reorientation is hard to compute.

Zhanget al. [30], [31] propose and validate a novel piecewise local affine registration algorithm to

register tensor images using FS reorientation. The tensor image is divided into uniform regions and

optimal affine transformations are then found for each of these regions. This is possible because the

transformation considered is affine. Therefore, the rotation component of the deformation needsnot be

computed. Instead, since rotation is already explicitly optimized in affine registration, the gradient due

to FS reorientation can be easily computed. These piecewiseaffine transformations are fused together

to generate a smooth warp field. The algorithm is iterated in amultiscale fashion with smaller uniform

regions. However, it is unclear how much of the optimality islost through the fusion of these optimal

piecewise affine transformations.

In this paper, we borrow results from the pose estimation literature in computer vision to compute the

analytical differential of the rotation matrix with respect to the Jacobian of the displacement field. We

propose a diffeomorphic DTI registration algorithm, whichextends the recently introduced diffeomorphic

demons registration of scalar images [27] to tensor images.The availability of the exact analytical gradient

allows us to utilize the Gauss-Newton method for optimization. The resulting DT registration is fast, taking

about 15 minutes. This is comparable to the non-linear registration of scalar images whose runtime might

range from a couple of minutes to hours.

The diffeomorphic demons registration algorithm is an extension of the popular demons algorithm [25].

It guarantees that the transformation is diffeomorphic. This diffeomorphism is parameterized by a compo-

sition of deformations, each of which is parametrized by a stationary velocity field. Such a representation is

not unlike that used by the Large Deformable Diffeomorphic Metric Mapping (LDDMM) framework [7].

However, unlike LDDMM, the diffeomorphic demons algorithmdoes not seek a geodesic of the Lie group

of diffeomorphism. One can therefore consider diffemorphic demons to be part of the small deformation

framework: at each iteration, the diffeomorphic demons algorithm seeks the best diffeomorphism to
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be composed with the current transformation. The restriction of each diffeomorphism update to be a

one parameter subgroup of diffeomorphism results in a much faster algorithm than the typical algorithms

under the LDDMM framework or even algorithms that parameterize diffeomorphism by stationary velocity

field [5], [17].

We also propose a simpler and faster algorithm that ignores the reorientation during the gradient

computation. Reorientation is done after each iteration. This faster algorithm is therefore a diffeomorphic

variant of the one proposed by Alexander and Gee [1] with Gauss-Newton optimization. We compare

the two algorithms and show that using the exact gradient results in significantly better registration at

the cost of computation time. In particular, we show that when using Log-Euclidean interpolation [3]

and Log-Euclidean Sum of Squares Difference (LOG-SSD) similarity measure with a small deformation

regularization, the resulting registration with the exactgradient not only has a lower Log-Euclidean Sum

of Squares Difference (LOG-SSD) but also a lower Euclidean Sum of Squares Difference (EUC-SSD).

This is true for the entire spectrum of deformation penalties. The same holds when using Euclidean

interpolation and EUC-SSD in the registration objective function. The use of Euclidean interpolation

and EUC-SSD in warping and comparing tensor images is quite common [1], [2], [31]. More recently,

Log-Euclidean interpolation and metrics have also become popular [3], [14]. A second experiment shows

that the exact gradient is also able to recover randomly generated deformation fields significantly better

than when using the approximate gradient that ignores reorientation.

We emphasize that there is no theoretical guarantees that using the true gradient will lead to a better

solution. After all, the registration problem is non-convex and any solution we find is a local optimum.

In practice, the experiments show that taking reorientation into account does significantly improve the

registration results. We believe that the reorientation oftensors provides an additional degree of freedom,

in the sense that local rotation of tensors does not incur deformation penalty. Taking the reorientation into

account therefore allows us to match two tensor images more easily. On the other hand, the reorientation

also provides an additional constraint. The registration algorithm cannot arbitrarily pull in a far-away

region for matching because this induces the reorientationof tensors in other regions (think of the

famous ‘C’ example in large deformation fluid registration [12]). This additional constraint acts as a

further regularization, leading to a better solution.

This paper is organized as follows. The next section describes the computation of the FS differential. We

then give an overview of the diffeomorphic demons algorithmin section III. We extend the diffeomorphic

demons to tensor images in section IV using the exact FS differential. We also propose a simpler and

faster algorithm that ignores the reorientation during thegradient computation. In section V, we compare
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the two algorithms with a set of 10 DT brain images.

To summarize, our contributions are:

1) Derivation of the exact Finite Strain (FS) differential.

2) Incorporation of the FS differential into a fast diffeomorphic DT image registration algorithm. We

emphasize that the FS differential is useful, even if one were to use a different model of deformation

or a different similarity metric.

3) Demonstration that the use of the exact gradient leads to better registration, in the sense that for

any deformation energy, we obtain lower LOG-SSD and EUC-SSD, regardless of whether we use

LOG-SSD or EUC-SSD in the objective function. We also show that the exact gradient is able to

recover randomly generated deformation fields significantly better than when using an approximated

gradient that ignores reorientation.

4) Our implementation allows for Euclidean interpolation and EUC-SSD metric, as well as, Log-

Euclidean interpolation and LOG-SSD metric.

II. F INITE STRAIN DIFFERENTIAL

Deforming a tensor image by a transformations involves tensor interpolation followed by tensor

reorientation [2]. To compute a deformed tensor at a voxeln, one first interpolate the tensor to get the

interpolated tensorT (n). Interpolation can for example be done using Euclidean interpolation [2], Log-

Euclidean interpolation [3], affine-invariant framework [22] or Geodesic-Loxodromes [19]. In this work,

we will focus on Euclidean and Log-Euclidean interpolationsince they are currently the most commonly

used interpolation scheme for tensors and because they are computationally simple. The Finite Strain (FS)

differential we compute in this section is related to tensorreorientation, and the discussion is therefore

independent of the interpolation strategy.

More formally, the transformations sends a pointp to the points(p). Let u , s−I be the displacement

field associated with the transformations. Then

s(p) = p + u (1)

The ‘−’ in u , s − I is used in a loose sense and is meant to convey thatu is the transformations

without the identity part of the transformI. Similarly, we denotes = I +u. Note that even for parametric

representation of transformations, such as splines, one can always derive the equivalent displacement field

representation.
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According to the FS tensor reorientation strategy [2] for nonlinear deformation, one first computes the

rotation component of the deformation at then-th pixel:

R(n) = (J(n)J(n)T )−
1

2 J(n) (2)

whereJ(n) is the Jacobian of the spatial transforms at then-th pixel:

J(n) =











∂sx(n)
∂x

∂sx(n)
∂y

∂sx(n)
∂y

∂sy(n)
∂x

∂sy(n)
∂y

∂sy(n)
∂y

∂sz(n)
∂x

∂sz(n)
∂y

∂sz(n)
∂y











= I +











∂ux(n)
∂x

∂ux(n)
∂y

∂ux(n)
∂y

∂uy(n)
∂x

∂uy(n)
∂y

∂uy(n)
∂y

∂uz(n)
∂x

∂uz(n)
∂y

∂uz(n)
∂y











(3)

ux, uy, uz are the displacement field in thex, y andz directions.R(n) is known as the polar decomposition

of the matrixJ(n) and is therefore the function of the displacement fieldu in the neighborhood ofn.

Notice that under identity transformation, i.e., zero displacements,J(n) = I andR(n) = I.

The interpolated tensorT (n) is then reoriented, resulting in the final tensorT ′(n):

T ′(n) = RT (n)T (n)R(n) (4)

For registration using the FS strategy, it is therefore necessary to compute the differential of rotation

R with respect to the transformations, and thus by chain rule, with respect to JacobianJ . Denoting

S = (JJT )
1

2 and using the results of pose estimation literature [13], weget the3x3 matrix (see Appendix

A):

dR = −R

[

RT (tr(S)I − S)−1R
∑

i

(RT )i ⊗ (dJT )i

]⊕

(5)

where⊗ denotes the3D cross product,(·)i denotes thei-th column of(·) and⊕ is the operator defined

as

m⊕ =
(

[m1,m2,m3]
T
)⊕

,











0 −m3 m2

m3 0 −m1

−m2 m1 0











(6)

Let Jij be theij-th component ofJ . Eq. (5) tells us the variation of rotationR in terms of the components

of JacobianJ . In other words, ∂R
∂Jij

is simply dR from Eq. (5) by setting the matrix dJ to 0, except for

(dJ)ij which is set to1.

III. B ACKGROUND ON DIFFEOMORPHISM

In this section, we discuss the diffeomorphic extension [27] of Thirion’s demons algorithm [25]. We will

also discuss numerical issues related to representing diffeomorphism by velocity fields and optimization

methods we will be using in this paper.
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A. Diffeomorphic Demons

We consider the modified demons objective function [10] for registering a moving scalar imageM to

a fixed scalar imageF :

E(c, s) = ‖Σ−1(F −M ◦ c)‖2 +
1

σ2
x

dist(s, c) +
1

σT
Reg(s) (7)

wheres is the non-parametric dense spatial transformation to be optimized,c is an auxiliary vector field

and‖ · ‖ denotes theL2-norm of a vector (or vector field depending on the context). We can think of the

fixed imageF and warped moving imageM ◦ c as a one dimensional vector of lengthN voxels.Σ is a

NxN diagonal matrix that defines how much variability one observes at a particular voxel. This allows

a fast and simple optimization procedure by alternately optimizing the first two terms and the last two

terms of Eq. (7). Typically, dist(c, s) = ‖c − s‖2 and Reg(s) = ‖∇s‖2. However the regularization can

be modified to handle fluid-like constraints.

For the demons algorithm and its variants, the objective function is optimized over the complete space of

non-parametric spatial transformations [10], [23], [25],[28]. This non-parametric spatial transformation

is usually represented by a displacement field. Unfortunately, the resulting deformation might not be

diffeomorphic. Instead, Vercauterenet al. [27] optimize over a composition of deformations, each of

which is parametrized by a stationary velocity field. At eachiteration, the diffeomorphic demons algorithm

seeks the best diffeomorphism (represented by the stationary velocity v) to be composed with the current

transformation.

In this case,v is an element of the Lie algebrag andexp(v) is the diffeomorphism associated with the

velocity field v. The operatorexp(·) is the group exponential relating the Lie GroupG to its associated

Lie algebrag. More formally, letΦtv(x0) be the solution at timet to the following Ordinary Differential

Equation (ODE) with stationary velocity field:

dx

dt
= v(x) with initial condition x(0) = x0 (8)

We define

exp(v)(x) , Φv(x) , w(x) (9)

An imageM ◦exp(v) is therefore a deformed version of imageM by transforming the coordinate system

of M by exp(v): the pointx in the deformed coordinate system corresponds to the pointΦv(x) in the

old coordinate system.

We can summarize the diffeomorphic demons algorithm [26], [27] as follows:
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1) Choose a starting spatial transformations(0) (represented by a displacement field)

2) Iterate until convergence:

(i) Given s(i), compute a stationary velocity field updatev(i+1) by minimizing the first two terms

of Eq. (7):

v(i+1) = argmin
v
‖Σ−1(F −M ◦ s(i) ◦ exp(v))‖2+

1

σ2
x

dist(s(i), s(i) ◦ exp(v)) (10)

wherev is an element of the Lie algebrag associated with the Lie group.

(ii) If a fluid like regularization is used, letv(i+1) ← Kfluid ⋆ v(i+1). The convolution kernel will

typically be Gaussian.

(iii) Let c(i+1) ← s(i) ◦ exp(v(i+1))

(iv) If a diffusion-like regularization is used, lets(i+1) ← I +Kdiff ⋆(c(i+1)−I) (else lets(i+1) ←
c(i+1)). The convolution kernel will also typically be Gaussian. Once again, the ‘-’ and ‘+’

are used in a loose sense.

Steps 2(ii) to 2(iv) essentially optimize the last two termsof Eq. (7). For detailed discussion of using

convolution kernels to achieve elastic and fluid regularization, see [9], [10].

B. Numerical Issues in Velocity Field Representations

While v and Φv(x) = exp(v)(x) are technically defined on the entire continuous image domain, in

practice,v and u are represented by vector fields defined on discrete points ofthe image, such as at

each pixel [25], [26], [27] or control points [5], [7]. From the theories of ODEs [8], we know that the

integral curvesu = exp(v) (or trajectories) of a velocity fieldv(x, t) exist and are unique ifv(x, t)

is Lipschitz continuous inx and continuous int. Uniqueness means that the trajectories do not cross,

implying that the deformation is invertible. Furthermore,we know from the theories of ODEs that aCr

continuous velocity fieldv produces aCr continuous deformation fieldΦtv(x). Therefore, a sufficiently

smooth velocity field results in a diffeomorphic transformation.

Since the velocity fieldv is stationary in the case of the one parameter subgroup of diffeomorphism,

v is clearly continuous (and in factC∞) in t. A smooth interpolation ofv is continuous in the spatial

domain and is Lipschitz continuous if we consider a compact domain (which holds since we only consider

images that are closed and bounded).

To compute the final deformation of an image, we have to estimate exp(v) at least at the set of image

grid points. For example, we can computeexp(v) by numerically integrating the smoothly interpolated

velocity field v with Euler integration, such as that in [7]. In this case, theestimate becomes arbitrarily
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close to the trueexp(v) as the number of integration time steps increases. With a sufficiently large

number of integration steps, we expect the estimate to be invertible and the resulting transformation to

be diffeomorphic.

The parameterization of diffeomorphism by stationary velocity field is made popular by the use of the

fast “scaling and squaring” approach [4] in computingexp(v). Instead of Euler integration, the “scaling

and squaring” approach works by multiple composition of displacement fields:

Φ 1

2N v(x) = x +
1

2N
v(x)

Φ 1

2N−1 v(x) = Φ 1

2N v(x) ◦Φ 1

2N v(x)

...

Φv(x) = Φ 1

2
v(x) ◦ Φ 1

2
v(x) (11)

While this method is correct in the continuous case, in the discrete case, composition of the displace-

ment field requires interpolation of displacement fields, introducing errors in the process. In particular,

supposeΦt0v(x) andΦ2t0v(x) are the true trajectories found by performing an accurate Euler integration

up to time t0 and 2t0 respectively. Then, there does not exist a trivial interpolation scheme, so that

Φ2t0v(x) = Φt0v(x)◦Φt0v(x). In practice however, it is widely reported that “scaling and squaring” tends

to preserve invertibility even with rather large deformation [5], [27]. In this work, we will use trilinear

interpolation because it is fast. We find that in practice, the transformation is indeed diffeomorphic.

Technically speaking, since we use linear interpolation for the displacement field, the transformation is

only homeomorphic rather than diffeomorphic. However, we will follow the convention of [4], [5], [27]

who call their transformation diffeomorphic even though they are technically homeomorphic.

C. Gauss-Newton Nonlinear Least-Squares Optimization

We now focus on the optimization of step 2(i) of the diffeomorphic demons algorithm. We first note

that the objective function in step 2(i) can be written in a non-linear least-squares form:

Es(v) =

∥

∥

∥

∥

∥

∥





Σ−1(F −M ◦ s ◦ exp(v))

1
σx

exp(v)





∥

∥

∥

∥

∥

∥

2

(12)

=

∥

∥

∥

∥

∥

∥





ϕ1(s ◦ exp(v))

ϕ2(s ◦ exp(v))





∥

∥

∥

∥

∥

∥

2

(13)

= ‖ϕ(s ◦ exp(v))‖2 (14)
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where we have made the choice that dist(s, s◦exp(v)) = ‖s−1◦s◦exp(v)‖2 = ‖ exp(v)‖2 = ‖u‖2, where

u = exp(v)−I. Here, we are “subtracting” out the identity transformation so that identity transformation

corresponds to no penalty. One can rewrite the above as follows:

Es(v) =

∥

∥

∥

∥

∥

∥

ϕ(s) +





D
ϕ1

s (0)

D
ϕ2

s (0)



 v + O(‖v‖2)

∥

∥

∥

∥

∥

∥

2

(15)

To interpret the above equation, for3-dim images withN voxels, letv be a3Nx1 vector:{vx(1), vy(1), vz(1), · · · ,
vx(N), vy(N), vz(N)}. Then,Dϕ1

s (0) is aNx3N block diagonal matrix, where then-th block corresponds

to a 1x3 matrix [Dϕ1

s (0)]n = ∂ϕ1
n(s◦exp(v))

∂v(n)

∣

∣

∣

v(n)=0
where ϕ1

n(s ◦ exp(v)) = Σ−1(n)(F (n) − M ◦ s ◦
exp(v)(n)) is then-th component ofϕ1. Using the chain rule, we get:

[Dϕ1

s (0)]n =
∂ϕ1

n(s ◦ exp(v))

∂ exp(v)(n)
· ∂ exp(v)(n)

∂v(n)

∣

∣

∣

∣

v(n)=0

(16)

=
∂ϕ1

n(s ◦ exp(v))

∂ exp(v)(n)

∣

∣

∣

∣

v(n)=0

(17)

=
∂ϕ1

n(s ◦ w)

∂w(n)

∣

∣

∣

∣

w(n)=n

(18)

= −Σ−1(n)∇(M ◦ s)(n) (19)

wherew(n) = exp(v)(n) = Φv(n) is the transformation of voxeln. In Eq. 17, we made use of the fact

that the differential of the exponential map is the identity. ∇(M ◦ s)(n) is the spatial derivative of the

image intensity at voxeln of the warped moving imageM ◦ s: {∂Mn

∂x
, ∂Mn

∂y
, ∂Mn

∂z
}. Therefore, we denote

−Σ−1(∇(M ◦ s)) to beD
ϕ1

s (0).

Similarly, D
ϕ2

s (0) is equal to 1
σx

I whereI is a3Nx3N identity matrix. By ignoring theO(‖v‖2) term

within the norm in Eq. (15), we end up with the classic linear least squares problem, which can be solved

via the normal equations. This is the Gauss-Newton optimization method. In particular, Eq. (12) can then

be re-written as:

Es(v) ≈

∥

∥

∥

∥

∥

∥





Σ−1(F −M ◦ s)

0



+





−Σ−1(∇(M ◦ s))

1
σx

I



 v

∥

∥

∥

∥

∥

∥

2

(20)

= ‖b−Av‖2 (21)

which is a linear least squares problem. Despite the size of the matrices, it is easy to solve the resulting

linear systemAv = b since we can consider each pixel separately. In fact, with the help of the Sherman-

Morrison matrix inversion lemma, no matrix inversion is even needed to invert the resulting block diagonal

3Nx3N matrix AT A [26].
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We note that in the original demons algorithm [25],∇(M ◦s) is replaced by∇F . This can be justified

by the fact that at the optimum, the gradient of the warped moving image is the same as the fixed image.

IV. T ENSOR IMAGE REGISTRATION

A. Diffeomorphic Demons for Vector Images

We define a vector image to be an image with a vector of intensities at each voxel. We can treat a

vector image like a scalar image in the sense that each vectorcomponent is independent of the other

components. Deformation of a vector image works just like a scalar image, by treating each component

of the vector separately. We extend the diffeomorphic demons registration of scalar images to vector

images. The discussion here will be used for computing update steps when ignoring tensor reorientation

in section IV-D.

It is fairly straightforward to re-derive the results from the previous section for vector images. LetK be

the dimension of the intensity vector at each voxel. For convenience, we defineFn to be theKx1 intensity

vector{Fn(1), · · · , Fn(K)} of the n-th voxel andF to be theNKx1 vectorF = {F1, · · · , FN}. Then

the diffeomorphic demons algorithm from the previous section applies exactly to vector images except

∇(M ◦ s) is now a sparseNKx3N block diagonal matrix, where each block isKx3. In particular, the

n-th block corresponds to:










∂(M◦s)n(1)
∂x

∂(M◦s)n(1)
∂y

∂(M◦s)n(1)
∂z

...
...

...
∂(M◦s)n(K)

∂x
∂(M◦s)n(K)

∂y
∂(M◦s)n(K)

∂z











(22)

The resulting least squares linear systemAv = b is slightly harder to solve than before. For each pixel

n, we have to solve a3x3 linear system for speed vector updatev(n).

B. Diffeomorphic Demons for Tensor Images

A DT image is different from a vector image because of the additional structure present in a tensor.

In particular, the space of symmetric positive definite matrices (tensor) is not a vector space. When

deforming a DT image, reorientation is also necessary. We extend the diffeomorphic demons registration

of scalar images to tensor images.

In this work, we use the modified demons objective function (Eq. (7)) and the Finite Strain (FS)
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reorientation strategy in our registration. Then Eq. (12) becomes

Es(v) =

∥

∥

∥

∥

∥

∥





Σ−1
[

F −RT (M ◦ s ◦ exp(v)) R
]

1
σx

exp(v)





∥

∥

∥

∥

∥

∥

2

(23)

=

∥

∥

∥

∥

∥

∥





ϕ1(s ◦ exp(v))

ϕ2(s ◦ exp(v))





∥

∥

∥

∥

∥

∥

2

(24)

= ‖ϕ(s ◦ exp(v))‖2 (25)

Here,
[

F −RT (M ◦ s ◦ exp(v)) R
]

is the Euclidean Sum of Squares Difference (EUC-SSD) between

the tensor images. In particular,F can be seen as a9Nx1 vector by “rasterizing” the3x3 rank 2 tensor

at each voxel into a column vector.M ◦s◦exp(v) should be interpreted as the interpolated tensor image.

In practice, since the tensor is symmetric, we can get away with using a6N × 1 vector and by adjusting

the weights of some of the entries ofΣ−1 by
√

2. Each interpolated tensor is then reoriented using the

rotation matrixR of each pixel and “rasterized” into a column vector. Note that R is implicitly dependent

on the transformations ◦ exp(v).
[

F −RT (M ◦ s ◦ exp(v)) R
]

then computes the SSD between each

tensor of the fixed image and the corresponding reoriented and interpolated tensor in the warped moving

image (by treating each tensor as a vector) and summing the SSD for all voxels.

Eq. (23) can also be interpreted as the LOG-SSD between tensors if F andM are the Log-Euclidean

transforms of the original tensor images. This is done by converting each tensorT in the original image

to a log-tensorlog(T ). Note thatlog(T ) is simply a symmetric matrix [3].M ◦ s ◦ exp(v) is then the

interpolated log-tensor image andRT (M ◦ s ◦ exp(v)) R is the interpolated and reoriented log-tensor

image. This works becauselog(RT TR) = RT log(T )R for any rotation matrixR. Therefore, reorien-

tating a tensor followed by Log-Euclidean transformation is the same as Log-Euclidean transforming a

tensor followed by reorientation. This is convenient sincewe can perform a one time Log-Euclidean

transformation of the tensor images into log-tensor imagesbefore registration and then treat the resulting

log-tensors as tensors.

The differential ofϕ2 denoted asDϕ2

s (0) is the 3Nx3N matrix 1
σx

I. On the other hand,Dϕ1

s (0) is

a sparse9Nx3N matrix. One can interpretDϕ1

s (0) as NxN blocks of 9 x 3 matrices. In particular,

the (n, j)-th block [Dϕ1

s (0)]nj is equal to∂ϕ1
n(s◦w)
∂v(j) (v(j) = 0), where we remind the readers thatw =

exp(v) = Φv.

Using the chain rule, the fact that the differential of the exponential map is the identity and the product

March 13, 2008 DRAFT



DRAFT FOR IEEE TRANSACTIONS ON MEDICAL IMAGING 13

rule, we get

[Dϕ1

s (0)]nj =
∂ϕ1

n(s ◦ w)

∂v(j)

∣

∣

∣

∣

v(j)=0

(26)

=
N
∑

k=1

∂ϕ1
n(s ◦ w)

∂w(k)

∂w(k)

∂v(j)

∣

∣

∣

∣

v(j)=0

(27)

=
∂ϕ1

n(s ◦ w)

∂w(j)

∣

∣

∣

∣

w(j)=j

(28)

= −Σ−1(n)

[

∂RT (n)

∂w(j)
(M ◦ s ◦ w(n)) R(n)

+RT (n)
∂ (M ◦ s ◦ w(n))

∂w(j)
R(n)

+RT (n) (M ◦ s ◦ w(n))
∂R(n)

∂w(j)

]∣

∣

∣

∣

w(j)=j

(29)

Recall thatR(n) is a function of the Jacobian of displacement fieldJ(n) at then-th pixel and that

Eq. (3) gives an analytical expression ofJ(n). In practice,J(n) is defined numerically using finite central

difference as

J(n) =











s◦wx(nx+)−s◦wx(nx−
)

2△x
s◦wx(ny+)−s◦wx(ny−

)
2△y

s◦wx(nz+)−s◦wx(nz−
)

2△z

s◦wy(nx+)−s◦wy(nx−
)

2△x
s◦wy(ny+)−s◦wy(ny−

)
2△y

s◦wy(nz+)−s◦wy(nz−
)

2△z

s◦wz(nx+)−s◦wz(nx−
)

2△x
s◦wz(ny+)−s◦wz(ny−

)
2△y

s◦wz(nz+)−s◦wz(nz−
)

2△z











(30)

where{nx−, nx+, ny−, ny+, nz−, nz+} are the neighbors of voxeln in the x, y andz directions respec-

tively. Thereforewy(nx+) denotes they-coordinate ofnx+ after transformationw(nx+) and wy(nx−)

denotes they-coordinate ofnx− after transformationw(nx−). △x, △y and△z are the voxel spacings

in the x, y andz directions respectively.

Therefore,

[Dϕ1

s (0)]nn = −Σ−1(n)RT (n)∇(M ◦ s)(n)R(n) (31)

and for neighborsj of voxel n, we get

[Dϕ1

s (0)]nj = −Σ−1(n)

[

∂RT (n)

∂w(j)
(M ◦ s) (n)R(n) + RT (n) (M ◦ s) (n)

∂R(n)

∂w(j)

]∣

∣

∣

∣

w(j)=j

(32)

Note that the first and second terms in the expression above are transpose of each other. Using the

differential ofR (Eq. (5)) and the expression ofJ (Eq. (30)), we can compute∂R(n)
∂w(j) using the chain rule.

For completeness,∂R(n)
∂w(j) are derived in Appendix B.

In summary, we have computed the full gradient of our objective function:

Dϕ
s (0) =





D
ϕ1

s (0)

1
σ2

x

I



 (33)
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where 1
σ2

x

I is a 3Nx3N identity matrix, whileD
ϕ1

s (0) is a sparse9Nx3N matrix.

C. Optimization: Gauss-Newton Method

From the previous sections, we can now write

Es(v) ≈

∥

∥

∥

∥

∥

∥





Σ−1(F −RT (M ◦ s)R)

0



+





D
ϕ1

s (0)

1
σx

I



 v

∥

∥

∥

∥

∥

∥

2

(34)

= ‖b−Av‖2 (35)

The resulting least-squares problem is harder to solve thanbefore, since the linear systems of equations

cannot be separated into a per voxel basis. In practice, we solve the linear systems of equations using

the free Gmm++, a generic C++ template library for sparse matrices. At the finest resolution, solving the

sparse linear system requires about 60 seconds. This is the bottleneck of the algorithm. However, due

to the fast convergence of Gauss-Newton method, we typically only need to solve the linear systems 10

times per multi-resolution level. The resulting registration takes about 15 minutes.

We note that the efficiency of the Demons algorithm comes fromthe division of the optimization into

2 phases: optimization of the similarity measure and optimization of the regularization term. This avoids

the need to solve a non-separable system of linear equationswhen considering the 2 phases together.

Because of the reorientation in tensor registration, we have to solve a sparse system of linear equations

anyway. In this case, we can incorporate the optimization ofthe regularization term together with the

optimization of the similarity measure without loss of efficiency. In this work, we keep the two phases

separate to allow for fair comparison with the case of ignoring the reorientation of tensors in the gradient

computation (see section IV-D) by using almost the same implementation. Any improvement must then

clearly come from the use of the true gradient and not from using a one-phase optimization scheme

versus a two-phase optimization scheme.

D. Classical Alternative: Ignoring the Reorientation of Tensors

Previous work [1] performs tensor registration by not including the reorientation in the gradient

computation, but reorienting the tensors after each iteration using the current estimated displacement

field. To illustrate the utility of the true gradient, we adapt our algorithm to ignore the reorientation part

of the objective function in the gradient computation. In particular, we can emulate the Gauss-Newton op-

timization from previously by setting[Dϕ1

s (0)]nj = 0 and [Dϕ1

s (0)]nn = −Σ−1∇
(

RT (n)(M ◦ s)R(n)
)

,

effectively ignoring the effects of the displacement field of a voxel on the reorientation of its neighbors.
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Note that[Dϕ1

s (0)]nn is slightly different from before. At each iteration, we therefore treat the tensor like

a vector, except when deforming the moving image. The resulting least-squares problem degenerates to

that of section IV-A. The algorithm is thus much faster sincewe only need to invert a3x3 matrix per

voxel at each iteration. Registration only takes a few minutes.

V. EXPERIMENTS AND DISCUSSIONS

In our experiments, we use 10 DT images (128x128x60, 25 gradient directions). These images are

kindly contributed by Denis Ducreux, M.D., Ph.D., BicêtreHospital, Paris, France. A foreground mask for

each of the 10 DT images is computed. When computing the SSD objective function, only voxels which

are considered foreground in both the fixed image and warped moving image are included. As a result,

the final SSD might depend on the number of overlapped foreground voxels between the fixed image

and warped moving image. To correctly compare the results oftwo different algorithms, we consider the

average SSD, which we call the Mean Square Error (MSE).

In this paper, we perform pairwise registration between pairs of the 10 DT images. via a standard

multiresolution optimization, by smoothing and downsampling the data for initial registration and using

the resulting registration from a coarser resolution to initialize the registration of a finer resolution. We

find that the algorithms are able to recover global deformations.

A. Qualitative Evaluation

We first qualitatively compare the registration results of the exact FS gradient and the approximated

gradient. Figure 1 shows the registration of a pair of subjects. Figure 1(a) and figure 1(b) show the fixed

and moving images respectively. Figure 1(c) and figure 1(d) show the output of the registration algorithm

when using the exact FS gradient and approximated gradient respectively. Log-Euclidean interpolation

and LOG-SSD are used in the objective function. Figure 1(e) shows the LOG-SSD (computed pixelwise)

attained by the exact FS gradient minus LOG-SSD (computed pixelwise) attained by the approximated

gradient. Black region implies exact FS gradient is performing better in the region. White region implies

approximated gradient is performing better in the region.59% of the foreground pixels attain better

LOG-SSD using the exact FS gradient than using the approximate gradient, even though the amount of

deformation as reflected in the harmonic energy is the same.

We note that the percentage of improved voxels is an underestimation because in general the exact FS

gradient results in more foreground overlap between the fixed and moving images. In this particular pair
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of images, the distribution of improved voxels appears to bediffuse across the brain. This is in contrast

to the pair of subjects in figure 2.

(a) Fixed image (b) Moving image (c) Exact FS gradient(d) Approximated gra-

dient

(e) Pixelwise LOG-

SSD(a,c) minus pixelwise

LOG-SSD(a,d)

Fig. 1. Qualitative comparison between the use of exact FS gradient and approximated gradient for registering a pair of

subjects. Log-Euclidean interpolation and LOG-SSD are used in the objective function. (a) Fixed Image (b) Moving Image(c)

Registration result from using exact FS gradient. LOG-SSD =0.39. Harmonic Energy =0.16 (d) Registration result from using

approximated gradient. LOG-SSD =0.45. Harmonic Energy =0.16 (e) Pixelwise LOG-SSD between image (a) and (c) minus

pixelwise LOG-SSD between image (a) and (d). Black region implies exact FS gradient is performing better in the region. White

region implies approximated gradient is performing betterin the region.59% of the foreground pixels attain better LOG-SSD

using the exact FS gradient than using the approximate gradient, even though the amount of deformation as reflected in the

harmonic energy is the same. The distribution of improved voxels appears to be diffuse across the brain. This is in contrast to

the pair of subjects in figure 2. .

Figure 2 shows the registration of a second pair of subjects.Once again, Log-Euclidean interpolation

and LOG-SSD are used in the objective function.56% of the foreground pixels attain better LOG-SSD

using the exact FS gradient than using the approximate gradient even though there is more deformation

when using the approximated gradient, as reflected in the harmonic energy. As shown in figure 2(e-i),

the corpus callosum appears to be significantly better aligned when the exact FS gradient is used.

B. Quantitative Evaluation I

To more quantitatively compare the performance of the exactFS gradient, the approximated gradient

and the fixed image gradient, we will consider pairwise registration of the 10 DT images. Since our

registration is not symmetric between the fixed and moving images, there are 90 possible pairwise

registration. We randomly select 40 pairs of images for pairwise registration. From our experiments,
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(a) Fixed image (b) Moving image (c) Exact FS gradient(d) Approximated gra-

dient

(e) Pixelwise LOG-

SSD(a,c) minus

pixelwise LOG-

SSD(a,d)

(f) Fixed image (g) Moving image (h) Exact FS gradient(i) Approximated gra-

dient

(j) Pixelwise LOG-

SSD(a,c) minus

pixelwise LOG-

SSD(a,d)

Fig. 2. Qualitative comparison between the use of exact FS gradient and approximated gradient for registering a second pair

of subjects. Log-Euclidean interpolation and LOG-SSD are used in the objective function. (a) Fixed Image (b) Moving Image

(c) Registration result from using exact FS gradient. LOG-SSD = 0.54. Harmonic Energy =0.15 (d) Registration result from

using approximated gradient. LOG-SSD =0.49. Harmonic Energy =0.12 (e) Pixelwise LOG-SSD between image (a) and (c)

minus pixelwise LOG-SSD between image (a) and (d). Black region implies exact FS gradient is performing better in the

region. White region implies approximated gradient is performing better in the region.56% of the foreground pixels attain better

LOG-SSD using the exact FS gradient than using the approximate gradient, even though there is more deformation when using

the approximated gradient, as reflected in the harmonic energy. In this case, the corpus callosum appears to be significantly

better aligned when the exact FS gradient is used. (f-j) zooms into the red box bounding the corpus callosum in (a-e)..

we find that the statistics we compute appear to converge after about 30 pairwise registrations, hence 40

pairwise registrations appear sufficient for our purpose.

As implied by previous literature [10], it does not make sense to compare two registration algorithms

with a fixed tradeoff between the similarity measure and regularization, especially when the two algorithms

use different similarity measures and/or regularizations. Furthermore, one needs to be careful with the
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tradeoff selection for optimal performance [29] in a given application.

In this paper, even though we are considering algorithms with the same similarity measure and

regularization (and effectively the same implementation)but different optimization schemes, we find

that for a fixed-size smoothing kernel, using the exact FS differential tends to converge to a solution of

lower harmonic energy, i.e., a smoother transformation field. We define the harmonic energy to be the

average over all pixels of the squared Frobenius norm of the Jacobian of the displacement field. Here,

the Jacobian exclude the identity in Eq. (3).

Smaller harmonic energy implies a smoother deformation. This provides some evidence that the

reorientation provides additional constraint on the registration problem. Therefore, to properly compare

the algorithms, we consider smoothing kernels of sizes:{0.5, 0.6, · · · , 1.9, 2.0}. Note that bigger kernel

sizes lead to more smoothing and thus lower harmonic energy.In particular, we perform the following

experiment:

For each pair of subjects

For each kernel size

i) Run the diffeomorphic demons registration algorithm using Euclidean interpolation and

EUC-SSD using

(a) Exact FS gradient.

(b) Approximate gradient by ignoring reorientation.

(c) Fixed image gradient. This is the gradient proposed in Thirion’s original demons

algorithm [25].

ii) Repeat (i) using Log-Euclidean interpolation and LOG-SSD.

For each pair of subjects, we therefore obtain a set of MSE with corresponding harmonic energies. We

note that the harmonic energies and MSE across different pair of subjects are different. To average across

trials, we linearly interpolate the MSE over a fixed set of harmonic energies for each pair of subjects. We

can then compute the mean as well as the standard error of MSE across trials for a particular harmonic

energy.

Exact vs Approximated Gradient. Figure 3(a) and 3(b) show the differences between the EUC-MSE

(and the LOG-MSE) of the exact FS gradient and the approximate gradient when using Euclidean inter-

polation and EUC-SSD in the registration objective function. Figure 3(c) and 3(d) show the differences

between the EUC-MSE (and the LOG-MSE) of the exact FS gradient and approximate gradient when

using Log-Euclidean interpolation and LOG-SSD in the registration objective function. A negative values
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imply a lower MSE for a given harmonic energy. The error bars show the standard error in MSE across

different pairs of subjects, thus conveying the confidence of the results. In particular, we see that using

the exact FS gradient yields a lower EUC-MSE and LOG-MSE overthe entire spectrum of harmonic

energies.

EUC-SSD similarity measure LOG-SSD similarity measure

0 0.1 0.2

−0.04

−0.03

−0.02

−0.01

0 0.1 0.2
−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0 0.1 0.2

−0.04

−0.03

−0.02

−0.01

0 0.1 0.2
−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

(a) Final EUC-MSE (b) Final LOG-MSE (c) Final EUC-MSE (d) Final LOG-MSE

Fig. 3. Comparison of exact FS gradient and approximated gradient over an entire spectrum of harmonic energy (x-axis).

Harmonic energy is increased by decreasing the size of the smoothing kernel. Y-axis corresponds to differences in MSE. The

error bars show the standard error in MSE across different pairs of subjects. Negative values imply the FS gradient is obtaining

lower MSE.

Exact vs Fixed Image Gradient. Figure 4 compares the registration results of the exact FS gradient

with the fixed image gradient. Like before, we see that using the exact FS gradient yields a lower

EUC-MSE and LOG-MSE over the entire spectrum of harmonic energies

EUC-SSD similarity measure LOG-SSD similarity measure

0 0.1 0.2

−0.15

−0.1

−0.05

0 0.1 0.2

−0.15

−0.1

−0.05

0 0.1 0.2

−0.15

−0.1

−0.05

0 0.1 0.2

−0.15

−0.1

−0.05

(a) Final EUC-MSE (b) Final LOG-MSE (c) Final EUC-MSE (d) Final LOG-MSE

Fig. 4. Comparison of exact FS gradient and fixed image gradient over an entire spectrum of harmonic energy (x-axis).

Harmonic energy is increased by decreasing the size of the smoothing kernel. Y-axis corresponds to differences in MSE. The

error bars show the standard error in MSE across different pairs of subjects. Negative values imply the FS gradient is obtaining

lower MSE.

Further Discussion. We emphasize that the improvements persist in figures 3(b,c)and 4(b,c) even

though a different similarity measure from the original objective function is used. From figure 3 and
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figure 4, we see that there is improvement over the entire range of harmonic energies and the improvement

is statistically significant (one-sided paired-samples t-test p-value less than10−5 for the entire range of

harmonic energies).

Since Figures 3 and 4 only display the MSE differences, it is unclear whether the improvement is big.

In figure 5, we plot the average MSE (over the 40 pair-wise registrations) with respect to the harmonic

energies. We see that using the exact FS gradient gives the best results followed by the approximate

gradient and the fixed image gradient. The amount of improvement increases as the harmonic energies

increase. In our experiments, a harmonic energy of0.3 corresponds to severe distortion (pushing the

limits of the numerical stability of scaling and squaring),while a harmonic energy of0.03 corresponds to

very smooth warps. Previous literature, such as [29], suggests that extreme distortion causes overfitting,

while extremely smooth warps might result in insufficient fitting. Only a concrete application can inform

us the optimal amount of distortion and is the subject of future studies. For now, we assume a “safe”

range to assess the different gradients to be between harmonic energies 0.1 and 0.2. From the values in

figure 5, we conclude that the exact FS gradient provides an improvement of between5 to 10 percent

over the approximate gradient in this “safe” range of harmonic energies.

EUC-SSD similarity measure LOG-SSD similarity measure

0 0.1 0.2
0.35

0.4

0.45

0.5

0.55

 

 

Exact FS gradient
Approximate Gradient
Fixed Image Gradient

0 0.1 0.2

0.4

0.45

0.5

 

 

Exact FS gradient
Approximate Gradient
Fixed Image Gradient

0 0.1 0.2
0.35

0.4

0.45

0.5

0.55

 

 

Exact FS gradient
Approximate Gradient
Fixed Image Gradient

0 0.1 0.2

0.4

0.45

0.5

 

 

Exact FS gradient
Approximate Gradient
Fixed Image Gradient

(a) Final EUC-MSE (b) Final LOG-MSE (c) Final EUC-MSE (d) Final LOG-MSE

Fig. 5. Comparison of exact FS gradient and fixed image gradient over an entire spectrum of harmonic energy (x-axis).

Harmonic energy is increased by decreasing the size of the smoothing kernel. Y-axis corresponds to differences in MSE. The

error bars show the standard error in MSE across different pairs of subjects. Negative values imply the FS gradient is obtaining

lower MSE.

Since Gauss-Newton optimization allows the use of “big steps” in the optimization, this might cause

the approximated gradient to be more sensitive to the reorientation. Another optimization method such

as conjugate gradient might improve the results of using theapproximated gradient, since it allows the

algorithm to take “smaller steps” and reorientate after each “small step”. However, from optimization

theory and from our experience, Gauss-Newton method requires much fewer iterations to converge than
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conjugate gradient. Furthermore, conjugate gradient requires a line search, resulting in many function

evaluations. Function evaluations are quite expensive in our case, because of the need to reorientate and

perform “scaling and squaring” of the velocity field. On the other hand, we find that in practice, line

search is not necessary with Gauss-Newton optimization.

C. Quantitative Evaluation II

We perform a second set of experiments to recover randomly generated synthetic warps. Given a DT

image, we first generate a set of random warps by sampling a random velocity at each voxel location from

an independent and identically distributed (I.I.D.) gaussian. The foreground mask is then used to remove

the velocity field from the background voxels. The resultingvelocity field is smoothed spatially with a

gaussian filter. We compute the resulting displacement fieldby “scaling and squaring”. This displacement

field is used to warp the given DT image using Log-Euclidean interpolation and FS reorientation. I.I.D.

gaussian noise is added to the warped DT image. We note that these random synthetic warps follow a

stationary velocity field deformation model of [4], [5], [17] and isdifferent from our deformation model.

In this work, we are considering composition of diffeomorphisms parameterized by stationary velocity

field: Φv1
◦ · · · ◦Φvn

. In general, there does not exist a velocity fieldu, such thatΦu = Φv1
◦ · · · ◦Φvn

.

We take a single DT image and generate 40 sets of random warps.We obtain an average displacement

of 9.7mm over the foreground voxels. The average harmonic energy is 0.16, and the average sum of

squares energy of the warps is116mm2. We then perform pairwise registration between the DT imageand

the warped DT image using LOG-SSD. Once again, we consider a wide range of smoothing kernel sizes.

For each registration, we compute the SSD between the groundtruth random warps and the deformation

field we obtain from the registration algorithm averaged over all the foreground voxels. We also compute

the registration error in mm between the random warps and theestimated deformation field averaged over

all the foreground voxels. Note that under the identity transformation, the average SSD will be116mm2

and the average registration error will be9.7mm.

Figure 6(a) shows the differences between the SSD of the exact FS gradient and the approximated

gradient. Figure 6(b) shows the differences between the SSDof the exact FS gradient and the fixed image

gradient. Negative values imply that the exact FS gradient is achieving lower SSD. The error bars show

the standard error in SSD, thus conveying the confidence of the results. In particular, we see that using

the exact FS gradient yields the lowest SSD over the entire spectrum of harmonic energies. Similarly,

Figure 6(c) and 6(d) show that the exact FS gradient achievesthe smallest registration error than both

the approximated and fixed image gradient.

March 13, 2008 DRAFT



DRAFT FOR IEEE TRANSACTIONS ON MEDICAL IMAGING 22

0.1 0.15 0.2 0.25 0.3
−18

−16

−14

−12

−10

−8

(a) SSD of exact FS gra-

dient minus approximated

gradient
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(b) SSD of exact FS gra-

dient minus fixed image

gradient
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(c) Registration error of

exact FS gradient minus
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Fig. 6. Comparison of exact FS gradient, approximated gradient and fixed image gradient over an entire spectrum of harmonic

energy (x-axis). Harmonic energy is increased by decreasing the size of the smoothing kernel. Y-axes of (a,b) correspond to

differences in SSD. Y-axes of (c,d) correspond to differences in registration error in mm. The error bars show the standard error

in SSD or registration error across different trials. Negative values in (a,b) imply that the exact FS gradient is obtaining lower

SSD. Negatives values in (c,d) imply that the exact FS gradient is achieving lower registration error..

To get a better idea of the magnitude of improvement, figure 7(a) shows the SSD (averaged over

40 trials) of the three gradients we are considering. Figure7(b) shows the average registration error.

Once again, the exact FS gradient obtains the lowest SSD and registration error. Interestingly, the fixed

image gradient achieves a lower SSD but a higher registration error than the approximated gradient. This

suggests that the approximated gradient suffers relatively big errors in some anatomical regions which

are amplified by the quadratic penalty when using SSD. These errors dominate the average SSD. On the

other hand, the registration error measures the absolute difference between the random warps and the

estimated deformation field, so there is no extra weight on failed registration.
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Fig. 7. (a) Average SSD (y-axis) over an entire spectrum of harmonic energy (x-axis). (b) Average registration error (y-axis)

over an entire spectrum of harmonic energy (x-axis). Harmonic energy is increased by decreasing the size of the smoothing

kernel. .
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From the plots, we see that the exact FS gradient is able to recover the ground truth warps up to

1.78mm or 18.3% error with respect to the average9.7mm random warps. The approximated gradient

achieves2.56mm or 26.4% error. Finally, the fixed image gradient achieves2.86mm or 29.4% error.

Therefore, the exact FS gradient achieves an average of31% and 38% reduction in registration error

compared with the approximate gradient and fixed image gradient respectively.

Another interesting fact is that the best registration occurs when the kernel size is such that the

harmonic energy is about 0.14, which is close to the average harmonic energy of the synthetic warps

reported earlier.

VI. CONCLUSION

In this work, we derive the exact differential of the FS reorientation. We propose a fast diffeomorphic

DT image registration algorithm using the exact FS differential. We show that the use of the exact

differential improve EUC-SSD and LOG-SSD by5 to 10 percent over an entire spectrum of harmonic

energies. The improvements persist even if we use a different similarity measure from the objective

function we optimize. In a second experiment, the exact differential reduces registration error on a set of

randomly generated warps by as much as31% compared with the approximated gradient which ignores

reorientation.

APPENDIX A

FINITE STRAIN DIFFERENTIAL

In [13], the differential of the matrixr = A(AT A)−
1

2 is computed, whereA = Y XT andY andX

are3 x n matrices. In the context of [13],X are the measured coordinates of a set of labeled points and

Y are their measured positions after rigid body motion.X andY can be used to estimate the rotation

component of the rigid motionr using the least-squares estimater = A(AT A)−
1

2 . Finding the differential

dr in termsX and Y therefore allows the error analysis of the estimater when the measurementsX

andY are noisy.

From [13], we know that drrT = −rdrT . Defining δr , drrT , we have

δr , drrT = −rdrT (36)

Note thatδr is a skew symmetric matrix, and therefore takes the form

δr =











0 −m3 m2

m3 0 −m1

−m2 m1 0











, m⊕ (37)
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Denotevec(δr) , (m1,m2,m3)
T andS , (AT A)

1

2 . Then, the major result of [13] is that

vec(δr) = r(tr(S)I − S)−1rT

(

∑

i

(rX)i ⊗ dYi + (rdX)i ⊗ Yi

)

(38)

where(·)i denote thei-th column of(·) respectively and⊗ denotes cross product.

Recall that we are interested in dR, whereR = (JJT )−
1

2 J . By settingJ , AT andS , (AT A)
1

2 =

(JJT )
1

2 , we getR = rT and dR = drT . Therefore,

δr
(36)
= −rdrT = −rdR (39)

Using I = rT r, we get

dR
(39)
= −rT δr = −Rδr (40)

By setting,X = I and soA = Y IT = JT , we finally obtain

dR
(40)
= −Rδr

(38)
= −R

[

RT (tr(S)I − S)−1R
∑

i

(RT )i ⊗ (dJT )i

]⊕

(41)

APPENDIX B

ROTATION DERIVATIVES

For completeness, we will now derive the expressions for∂R(n)
∂w(j) (w(j) = j), wherej are the neighboring

voxels of voxeln. Recall that{nx−, nx+, ny−, ny+, nz−, nz+} are the neighbors of voxeln in the x, y

andz directions respectively.ux, uy, uz are the components of the displacement field in thex, y andz

directions. For convenience, we denote∂R(n)
∂w(j) (w(j) = j) = { ∂R(n)

∂wx(j) ,
∂R(n)
∂wy(j) ,

∂R(n)
∂wz(j)} = { ∂R(n)

∂wk(j)}. Using

chain rule, we have

∂R(n)

∂wk(nx+)
=

∑

m

∑

ij

∂R(n)

∂Jij(n)

∂Jij(n)

∂(s ◦ wm(nx+))

∂(s ◦ wm(nx+))

∂wk(nx+)
(wk(nx+) = nx+) (42)

=
∑

m

∂R(n)

∂Jm1(n)

∂Jm1(n)

∂(s ◦ wm(nx+))

∂(s ◦ wm(nx+))

∂wk(nx+)
(wk(nx+) = nx+) (43)

=
1

2△x

∑

m

∂R(n)

∂Jm1(n)
Jmk(nx+) (44)
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The second and third equalities come from evaluating∂Jij(n)
∂(s◦wm(nx+)) , which are mostly zeros. Notice that

Jm1(n) andJmk(nx+) are evaluated at two different voxels. Similarly, we have

∂R(n)

∂wk(nx−)
= − 1

2△x

∑

m

∂R(n)

∂Jm1(n)
Jmk(nx−)

∂R(n)

∂wk(ny+)
=

1

2△y

∑

m

∂R(n)

∂Jm2(n)
Jmk(ny+)

∂R(n)

∂wk(ny−)
= − 1

2△y

∑

m

∂R(n)

∂Jm2(n)
Jmk(ny−)

∂R(n)

∂wk(nz+)
=

1

2△z

∑

m

∂R(n)

∂Jm3(n)
Jmk(nz+)

∂R(n)

∂wk(nz−)
= − 1

2△z

∑

m

∂R(n)

∂Jm3(n)
Jmk(nz−) (45)

ACKNOWLEDGMENTS

The authors would like to thank

REFERENCES

[1] D. Alexander and J. Gee. Elastic Matching of Diffusion Tensor Images.Computer Vision and Image Understanding,

77:233–250, 2000.

[2] D. Alexander, C. Pierpaoli, and J. Gee. Spatial Transformations of Diffusion Tensor Magnetic Resonance Images.IEEE

Transactions on Medical Imaging, 20(11):1131–1139, 2001.

[3] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache. Log-Euclidean Metrics for Fast and Simple Calculus on Diffusion

Tensors.Magnetic Resonance in Medicine, 56(2):411–421, 2006.

[4] Vincent Arsigny, Olivier Commowick, Xavier Pennec, andNicholas Ayache. A Log-Euclidean framework for statisticson

diffeomorphisms. volume 4190, pages 924–931, 2006.

[5] J. Ashburner. A Fast Diffeomorphic Image Registration Algorithm. NeuroImage, 38:95–113, 2007.

[6] P. Basser and S. Pajevic. Estimation of the Effective Self-Diffusion Tensor from the NMR Spin Echo.Journal of Magnetic

Resonance, 103(3):247–254, 1994.

[7] M. Beg, M. Miller, A. Trouve, and L. Younes. Computing Large Deformation Metric Mappings via Geodesic Flows of

Diffeomorphisms.International Journal of Computer Vision, 61(2):139–157, 2005.

[8] G. Birkhoff and G. Rota.Ordinary Differential Equations. John Wiley and Sons Inc, 1978.

[9] M. Bro-Nielsen and C. Gramkow. Fast Fluid Registration of Medical Images.Proc. Visualization in Biomedical Computing,

1131:267–276, 1996.

[10] P. Cachier, E. Bardinet, D. Dormont, X. Pennec, and N. Ayache. Iconic Feature Based Non-Rigid Registration: The PASHA

algorithm. Compute Vision and Image Understanding, 89(2-3):272–298, 2003.

[11] Y. Cao, M.I. Miller, S. Mori, R.L. Winslow, and L. Younes. Diffeomorphic Matching of Diffusin Tensor Images.Proceedings

of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Workshop on Mathematical

Methods in Biomedical Image Analysis, 2006.

March 13, 2008 DRAFT



DRAFT FOR IEEE TRANSACTIONS ON MEDICAL IMAGING 26

[12] G. Christensen, R. Rabbit, and M. Miller. Deformable Templates Using Large Deformation Kinematics.IEEE Transactions

on Image Processing, 5(10):1435–1447, 1996.

[13] L. Dorst. First Order Error Propagation of the Procrustes Method for 3D Attitude Estimation.IEEE Transactions on

Pattern Analysis and Machine Intelligence, 27(2):221–229, 2005.

[14] P. Fillard, X. Pennec, V. Arsigny, and N. Ayache. Clinical DT-MRI Estimation, Smoothing, and Fiber Tracking with

Log-Euclidean Metrics.IEEE Transactions on Medical Imaging, 26(11):1472–1482, 2007.

[15] J. Gee and D. Alexander. Diffusion Tensor Image Registration. In Welckert and Hagen: Visualization and Image Processing

of Tensor Fields, 2005.

[16] A. Guimond, C. Guttmann, S. Warfield, and C-F. Westin. Deformable Registration of DT-MRI data Based on Transformation

Invariant Tensor Characteristics.Proceedings of IEEE International Symposium on Biomedical Imaging, 2002.

[17] M. Hernadez, M. Bossa, and S. Olmos. Registration of Anatomical Images Using Geodesic Paths of Diffeomorphisms

Parameterized with Stationary Velocity Fields.MMBIA, 2007.

[18] J. Keller. Closest Unitary, Orthogonal and Hermitian Operators to a Given Operator.Mathematics Magazine, 48(4):192–197,

1975.

[19] G. Kindlmann, R. Estepar, M. Niethammer, S. Haker, and C. Westin. Geodesic-Loxodromes for Diffusion Tensor

Interpolation and Difference Measurement.MICCAI, 2007.

[20] A. Leemans, J. Sijbers, S. Backer, E. Vandervliet, and P. Parizel. Affine Coregistration of Diffusion Tensor Magnetic

Resonance Images Using Mutual Information.ACVIS, 2005.

[21] H-J. Park, M. Kubicki, M. Shenton, A. Guimond, R. McCarley, S. Maier, R. Kikinis, F. Jolesz, and C-F. Westin. Spatial

Normalization of Diffusion Tensor MRI using Multiple Channels. NeuroImage, 20(4):1995–2009, 2003.

[22] X. Pennec, P. Fillar, and N. Ayache. A Riemannian Framework for Tensor Computing.International Journal of Computer

Vision, 66:41–66, 2005.

[23] P. Rogelj and S. Kovacic. Symmetric Image Registration. Medical Image Analysis, 10(3):484–493, 2006.

[24] J. Ruiz-Alzola, C-F. Westin, S. Warfield, C. Alberola, S. Maier, and R. Kikinis. Nonrigid Registration of 3D Tensor

Medical Data.Medical Image Analysis, 6:143–161, 2002.

[25] J. Thirion. Image Matching as a Diffusion Process: an Analogy with Maxwell’s Demons. Medical Image Analysis,

2(3):243–260, 1998.

[26] T. Vercauteren, X. Pennec, E. Malis, A. Perchant, and N.Ayache. Insight into Efficient Image Registration Techniques

and the Demons Algorithm.IPMI, 2007.

[27] T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache. Non-parametric Diffeomorphic Image Registration with the

Demons Registration.MICCAI, 2007.

[28] H. Wang, L. Dong, J. O’Daniel, R. Mohan, A. Garden, K. Ang, D. Kuban, M. Bonnen, J. Chang, and R. Cheung. Validation

of an Accelerated ’Demons’ Algorithm for Deformable Image Registration in Radiation Therapy.Physics in Medicine and

Biology, 50(12), 2005.

[29] B.T.T. Yeo, M. Sabuncu, R. Desikan, B. Fischl, and P. Golland. Effects of Registration Regularization and Atlas Sharpness

on Segmentation Accuracy.MICCAI, pages 683–691, 2007.

[30] H. Zhang, B. Avants, P. Yuschkevich, J. Woo, S. Wang, L. McCluskey, L. Elman, E. Melhem, and J. Gee. High-Dimensional

Spatial Normalization of Diffusion Tensor Images Improvesthe Detection of White matter Differences: An Example Study

Using Amyotrophic Lateral Sclerosis.IEEE Transactions on Medical Imaging, 26(11):1585–1597, 2007.

March 13, 2008 DRAFT



DRAFT FOR IEEE TRANSACTIONS ON MEDICAL IMAGING 27

[31] H. Zhang, P. Yushkevich, D. Alexander, and J. Gee. Deformable Registration of Diffusion Tensor MR Images with Explicit

Orientation Optimization.Medical Image Analysis, 10(5):764–785, 2006.

[32] U. Ziyan, M. Sabuncu, L. Donnell, and C-F. Westin. Nonlinear Registration of Diffusion MR Images Based on Fiber

Bundles.MICCAI, 2007.

March 13, 2008 DRAFT


