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ARTICLE INFO ABSTRACT

Keywords: Neuroscience is undergoing faster changes than ever before. Over 100 years our field qualitatively described and
Systems biology invasively manipulated single or few organisms to gain anatomical, physiological, and pharmacological insights.
Epistemology In the last 10 years neuroscience spawned quantitative datasets of unprecedented breadth (e.g., microanatomy,

Hypothesis testing
High-dimensional statistics
Machine learning

Sample complexity

synaptic connections, and optogenetic brain-behavior assays) and size (e.g., cognition, brain imaging, and
genetics). While growing data availability and information granularity have been amply discussed, we direct
attention to a less explored question: How will the unprecedented data richness shape data analysis practices?
Statistical reasoning is becoming more important to distill neurobiological knowledge from healthy and
pathological brain measurements. We argue that large-scale data analysis will use more statistical models that
are non-parametric, generative, and mixing frequentist and Bayesian aspects, while supplementing classical

hypothesis testing with out-of-sample predictions.

Introduction

During most of neuroscience history, before the emergence of
genomics and brain imaging, new insights were "inferred" with little
or no reliance on statistics. Qualitative, sometimes anecdotal reports
have documented impairments after brain lesion (Harlow, 1848),
microscopical inspection of stained tissue (Brodmann, 1909), electrical
stimulation during neurosurgery (Penfield and Perot, 1963), targeted
pharmacological intervention (Clark et al., 1970), and brain connec-
tions using neuron-transportable dyes (Mesulam, 1978). Connectivity
analysis by axonal tracing studies in monkeys exemplifies biologically
justified "inference" with many discoveries since the 60 s (Kobbert
et al., 2000). A colored tracer substance is injected in vivo into source
region A, uptaken by local neuronal receptors, and automatically
transported in axons to target region B. This observation in a single
monkey allows extrapolating a monosynaptical connection between
region A and B to the entire monkey species (Mesulam, 2012). Instead,
later brain-imaging technology propelled the data-intensive character-
ization of the mammalian brain and today readily quantifies axonal
connections, cytoarchitectonic borders, myeloarchitectonic distribu-

tions, neurotransmitter receptors, and oscillatory coupling (Amunts
et al., 2013; Frackowiak and Markram, 2015; Kandel et al., 2013; Van
Essen et al.,, 2012). Following many new technologies to generate
digitized yet noisy brain data, drawing insight from observations in the
brain henceforth required assessment in the statistical arena.

In the quantitative sciences, the invention and application of
statistical tools has always been dictated by changing contexts and
domain questions (Efron and Hastie, 2016). The present paper will
therefore examine how statistical choices are likely to change due to the
progressively increasing granularity of digitized brain data. Massive
data collection is a game changer in neuroscience (Kandel et al., 2013;
Poldrack and Gorgolewski, 2014), and in many other public and private
areas (House of Commons, 2016; Jordan et al., 2013; Manyika et al.,
2011). There is a growing interest in and pressure for data sharing,
open access, and building "big data" repositories (Frackowiak and
Markram, 2015; Lichtman et al., 2014; Randlett et al., 2015). For
instance, UK Biobank is a longitudinal population study dedicated to
the genetic and environmental influence on mental disorders and other
medical conditions (Allen et al., 2012; Miller et al., 2016). 500,000
enrolled volunteers undergo an extensive battery of clinical diagnostics
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from brain scans to bone density with a > 25 year follow-up. In the US,
the Precision Medicine Initiative announced in 2015 to profile
1,000,000 individuals (Collins and Varmus, 2015). Targeted analysis
of such national and international data collections may soon become
the new normal in basic and clinical neuroscience. In this opinion
paper, we will inspect the statistical scalability to the data-rich scenario
from four different formal perspectives: i) parametric versus non-
parametric models, ii) discriminative versus generative models, and iii)
frequentist versus Bayesian models, as well as iv) classical hypothesis
testing and out-of-sample generalization.

Towards adaptive models

Parametric models seek to capture underlying structure in data,
which is representable with a fixed number of model parameters. For
instance, many parametric models with Gaussianity assumptions will
attempt to fit Gaussian densities regardless of the underlying data
distribution. On the other hand, we think of non-parametric models as
typically making weaker assumptions about the underlying data
structure, such that the model complexity is data-driven, the expressive
capacity does not saturate, the model structure can adapt flexibly, and
the prediction can grow more sophisticated (see Box 1 for elaboration).
Certain non-parametric models (e.g., Parzen window density estima-
tion) will converge to the true underlying data distribution with
sufficient data (although the amount of needed data might be astro-
nomical). With increasing data samples, non-parametric models thus
tend to make always-smaller error in capturing underlying structure in
data (Devroye et al, 1996; Bickel et al., 2007). Relating these
considerations back to the deluge of data from burgeoning neu-
roscience consortia, "the main concern is underfitting from the choice
of an overly simplistic parametric model, rather than overfitting."
(Ghahramani, 2015, p. 454). We therefore believe that non-parametric
models have the potential to extract arbitrarily complex perceptual
units, motor programs, and neural computations directly from healthy
and diseased brain measurements.

In our opinion, the expressive capacity of many parametric models
to capture cognitive and neurobiological processes is limited and

Box 1: Parametric and non-parametric models
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cannot adaptively increase if more input data are provided. For
instance, independent component analysis (ICA) is an often-used
parametric model that extracts a set of macroscopic networks with
coherent neural activity from brain recordings (Calhoun et al., 2001;
Beckmann et al, 2009). Applied to human functional magnetic
resonance imaging (fMRI) data, ICA reliably yields the default mode
network, saliency network, dorsal attention network, and other cano-
nical brain networks (Damoiseaux et al., 2006; Seeley et al., 2007;
Smith et al., 2009). Standard ICA is parametric in the sense that the
algorithm extracts a user-specified number of spatiotemporal network
components, although the "true" number of macroscopic brain net-
works is unknown or might be ambiguous (Eickhoff et al., 2015). By
coupling standard ICA with approximate Bayesian model selection
(BMS), Beckmann and Smith (2004) allowed the number of compo-
nents to flexibly adapt to brain data. The combination of parametric
ICA and BMS yields an integrative modeling approach that exhibits the
scaling property of non-parametric statistics (Goodfellow et al., 2016,
p. 112; Ghahramani, 2015, p. 454): With increasing amount of input
data, ICA with BMS adaptively calibrates the model complexity by
potentially extracting more brain network components, thus enhancing
the expressive power of classical ICA.

These advantages are inherent to non-parametric models that can
potentially extract an always higher number of neural patterns that are
adaptively described by an always higher, theoretically infinite
number of model parameters as the amount of input data increase
(Orbanz and Teh, 2011; Ghahramani, 2013). In doing so, we believe
non-parametric models can potentially isolate representations of
neurobiological phenomena that do not only improve quantitatively
(e.g., increased statistical certainty) but also qualitatively (e.g., a much
different, more detailed representation). We propose that non-para-
metric models are hence more likely to extract neurobiological
relationships that exclusively emerge in large brain datasets. In
contrast, parametric models are often more easily interpretable by
the investigator, are more stable, and require less data to achieve a
satisfactory model fit. Furthermore, parametric statistical tests are
often more powerful, assuming the parametric assumptions are correct
(cf. Friston, 2012; Eklund et al., 2016). These practical advantages are

Contrary to common misunderstanding, both parametric and non-parametric statistical models involve parameters. 'Non-parametric' is
typically defined in one of three different flavors (Bishop, 2006; Murphy, 2012; James et al., 2013): The first, perhaps most widespread meaning
implies those statistical models that do not make explicit assumptions about a particular probability distribution (e.g., Gaussian distribution)
from which the data have arisen. As a second and more general definition, non-parametric models do not assume that the structure of the
statistical model is fixed. The third definition emphasizes that in non-parametric models, the number of model parameters increases explicitly
or implicitly with the number of available data points (e.g., number of participants in the dataset). In contrast, the number of model parameters
is fixed in parametric models and does not vary with sample size (Fig. 1). In its most extreme manifestation, non-parametric models might
utilize larger memory than the actual input data themselves. Please note that the non-parametric scaling property of increasing model
complexity with accumulating data can be obtained in different ways: i) a statistical model with infinitely many parameters or ii) a nested series
of parametric models that can increase the number of parameters as needed (Ghahramani, 2015, page 454; Goodfellow et al., 2016, page 112).
The flexible non-parametric models include random forests (a special kind of decision-tree algorithm), boosting, nearest-neighbor
algorithms (where complexity increases with the amount of input data), Gaussian Process methods, kernel support vector machines, kernel
principal component analysis (kernel PCA), kernel ICA, kernel canonical correlation analysis, generalized additive models, and hierarchical
clustering, as well as many forms of bootstrapping and other resampling procedures. Statistical models based on decision trees often constrain
their size, which turns them into parametric models in practice. The more rigid parametric models include Gaussian mixture models, linear
support vector machines, PCA, ICA, factor analysis, classical canonical correlation analysis, and k-means clustering, but also modern regression
variants using sparsity or shrinkage regularization like Lasso, elastic net, and ridge regression.
Classical statistics has always had a strong preference for low-dimensional parametric models (Efron and Hastie, 2016). It is an advantage of
parametric models to express the data compactly in often few model parameters. This increases interpretability, requires fewer data samples,
has higher statistical power, and incurs lower computational load. Although the number of parameters in parametric models can be manually
increased by the user, only non-parametric models have the inherent ability to automatically scale their expressive capacity with increasing data
resources. Therefore, as the amount of neuroscience data continues to increase by leaps and bounds, parametric models might underfit the
available data, while non-parametric models might discover increasingly complex representations that potentially yield novel neuroscientific
insights.

550



D. Bzdok, B.T.T. Yeo

Y

==
4

e

e

2 ———

e

=

=

Z—=
==

X1

Neurolmage 155 (2017) 549-564

Fig. 1. Prediction based on parametric versus non-parametric regression. Fitted models that predict the continuous outcome Y based on the observed variables X; and X».
Left: Ordinary linear regression finds the best plane to explain the outcome Y. Middle/Right: K-nearest neighbor regression predicts the same outcome Y based on K=1 (middle) or K=9
(right) closest data points in the available sample. Parametric linear regression cannot grow more complex than a plane (or hyperplane when there are more than two observed
variables), resulting in big regions with identical predictions Y. Non-parametric nearest-neighbor regression can grow from a rough step-function regression surface (k=1) to a smoother
and more complex regression surface (k=9) by incorporating more data. Non-parametric models can therefore outperform parametric alternatives in many data-rich scenarios

(Ghahramani, 2015). Reused with permission from James et al. (2013).

paid for by the cost of more rigid models. We therefore believe that the
strength of flexible non-parametric models to automatically adjust the
number of model parameters will probably turn out to be a crucial
property of statistical models used in data-rich neuroscience.

Although non-parametric models have been used in neuroimaging
(e.g., Lashkari et al., 2012; Andersen et al., 2014), parametric models
are today the predominant approach in neuroscience. Many big-sample
studies (i.e., data from hundreds of animals or humans) currently apply
the same parametric models as previous small-sample studies (i.e., a
few dozen animals or humans). With increasing sample size, para-
metric analyses such as Student's t-test, F-test, ANOVA, linear regres-
sion, and Pearson's linear correlation on brain data from many
hundred animals or humans yield a quantitatively increased certainty
of statistical estimates (Button et al.,, 2013; Miller et al., 2016).
However, we think that they might not necessarily improve the quality
of neuroscientific insight gleaned from a sample with less observa-
tions.! In our opinion, an important caveat of parametric models
manifests itself in their systematic inability to adaptively grow in
complexity no matter how much brain data are collected and analyzed
(Ghahramani, 2015).

In any classification setting where a statistical model distinguishes
between two possible outcomes (e.g., healthy versus schizophrenic), a
linear parametric model will always make predictions based on a
separation between two classes by straight lines (or hyperplanes). Non-
linear parametric models can be used to identify more complex
structure in large datasets while keeping the model complexity (i.e.,
number of parameters) constant. By contrast, a non-parametric model
can learn a non-linear decision boundary whose shape grows more
complex with more data. In analogous fashion, classical hidden
Markov models for time-series analysis and structure discovery (cf.
example in next section) may get upgraded to infinite hidden Markov
models with a theoretically unlimited number of hidden spatiotempor-
al components that can be estimated with increasing data samples. In
non-parametric clustering (e.g., Pitman, 2006), the question of best
cluster number can be reframed as optimal cluster granularity depend-
ing on data availability to allow the number of extracted clusters to
grow organically with increasing sample size. Such non-parametric
alternatives can automatically balance between model complexity (i.e.,

1 However, results gleaned from large data sample are less likely to suffer from power
issues and are therefore more likely to be replicable.
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number of model parameters to be estimated) and parsimony (i.e.,
efficiency of expressing the brain phenomenon). Finally, we believe
that linear support vector machines as a current go-to choice for
classtfication and regression (e.g., Knops et al.,, 2009; Jimura and
Poldrack, 2012) may be more often supplemented by non-parametric
approaches, such as random-forest and nearest-neighbor-type algo-
rithms (e.g., Ball et al., 2014; Haxby et al., 2011; Misaki et al., 2010;
Pereira et al., 2011), in future neuroscience studies.

More broadly, many interesting phenomena in the brain are likely
to be very complex. Fortunately, stochastic processes have been
proposed that realize random variables over unlimited function spaces
mapping from brain data to a certain target variable. As an important
member, Gaussian Processes (GP) can be seen as infinite dimensional
generalizations of the multivariate Gaussian distribution (Ghahramani,
2013; Orbanz et al., 2011). GPs (with exponential-type kernels) consist
in specifying probability distributions on unknown functions with the
aim to impose minimal a-priori assumptions on the learnable relation-
ships and minimal constraints on the possible non-linear interactions
(Rasmussen, 2006). Instead of fitting one parameter to each variable to
predict a behavior or clinical outcome, such as in linear regression, GPs
(with exponential-type kernels) can fit a collection of non-linear
functions with theoretically unlimited expressive capacity to explain
particularly complex brain-behavior associations. In our opinion, this
can probably enhance predictive regression and classification in large-
sample studies in neuroscience whenever the ground-truth model in
nature is not linear and additive (cf. Ripke et al., 2013).

For instance, effective scaling to the high-dimensional scenario (i.e.,
p variables > n samples) was demonstrated by a GP regression model
that could explain 70% of known missing heritable variability in yeast
phenotypes (Sharp et al., 2016). This kind of statistical analysis is today
usually performed by genome-wide association studies (GWAS) that
are based on the parametric generalized linear model (GLM) (cf. Zhang
et al., 2010; Hastie et al., 2015, pp. 31-32). GLM-based approaches
have however often explained only small fractions of the total heritable
genomic variation. GPs have demonstrated that emergent biological
insight can be gained from complex non-additive interactions between
gene locations (and thus potentially brain locations). These higher-
order non-linear interactions frequently involved groups of ~20
locations (Sharp et al., 2016), while even trying to capture all possible
pairwise gene-gene interactions is difficult for the much less flexible
GLMs in usual GWAS investigations. In fact, the computational costs of
GLM approaches typically scale exponentially as a function of the
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interaction order (i.e., variable-variable interactions, variable-variable-
variable interactions, etc.). Further, adding all combinations of non-
linear interaction terms to a GLM can quickly lead to a scenario where
the model parameters largely exceed the number of available samples,
which makes it challenging to estimate a meaningful solution (Hastie
et al., 2015, chapter 3). Current genetic studies therefore constrain
statistical analysis, for instance, by considering only pairwise gene-gene
interactions or by considering only a pre-selected subset of genetic
locations (Ritchie et al., 2001). Compared to many parametric GLM
approaches used in genome-wide studies, we think that non-para-
metric GPs could more exhaustively search the space of higher-order
non-linear interactions (Rasmussen, 2006). In neuroscience, brain-
imaging studies for instance have already profited from GP applica-
tions, such as in EEG (e.g., Zhong et al., 2008) and in fMRI (e.g.,
Marquand et al., 2010; Lorenz et al., 2016).

GP belongs to the broader family of kernel-based methods, which
can provide statistical advantages by mapping brain variables to a
richer variable space (Hofmann et al., 2008). Non-parametric classifi-
cation or regression with kernels performs a preprocessing of the
pairwise similarity between all observations in the form of a so-called
kernel matrix (i.e., n samples x n samples). The advantage is that this
does not require an explicit mapping from individual brain variables to
the richer variable space (i.e., "kernel trick"). The statistical model
plugs in the virtual variable space instead of the original input
variables. This can lead to linear separability of complex neurobiolo-
gical effects that are not linearly separable in the original variables.
Statistical models endowed with a kernel inherit enriched transforma-
tion of the brain data with relevance to modern neuroscience (e.g.,
Marinazzo et al., 2011) because they can decrease the computational
burden in the high-dimensional scenario. Such purposeful increase of
input dimensionality and model complexity is useful for small to
intermediate datasets (roughly n < 100,000 samples), but incurs high
computation and memory costs in very large datasets (Goodfellow
et al.,, 2016, chapter 5.9), where the kernel matrix can grow to terabytes
sizes due to quadratic scaling with respect to the number of samples.
Disadvantages of kernels include the inability to interpret contributions
of individual variables and to distinguish informative variables from
noise. Moreover, the goal of understanding brain function will probably
involve several levels of neuroscientific analysis and kernels promise
effective modality fusion to incorporate several different types of data
(Eshaghi et al., 2015; Schrouff et al., 2016; Young et al., 2013; Zhang
et al., 2011). This is because, mathematically, kernel addition equates
with combining different data sources into a common data space. We
believe that such genuine multi-modal integration can enable conjoint
inference on behavioral outcomes, brain connectivity, function pheno-
types, and genetic variability.

In sum, brain structure, function, connectivity, and genetics are
high-dimensional in nature and thus difficult to understand for human
intuition. By expressing brain phenomena in statistical models with a
fixed number of parameters, parametric models are typically more
interpretable, easier to implement, and faster to estimate. They are
often the best choice in data-scarce scenarios, but can underfit in the
"big data" scenario. In our opinion, exclusive reliance on parametric
analysis may keep neuroscientists from discovering novel neurobiolo-
gical insights that only come to the surface by allowing for more
complex data representations in data-rich scenarios (Halevy et al.,
2009; Jordan et al., 2013, p. 63). It was recently emphasized that "the
best predictive performance is often obtained from highly flexible
learning systems, especially when learning from large data sets.
Flexible models can make better predictions because to a greater
extent they allow data to ‘speak for themselves’." (Ghahramani, 2015).
Even if more complex statistical models do not always result in greater
insight (Eliasmith et al., 2012), statistical approaches with non-
parametric scaling behavior are naturally prepared to capture more
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sophisticated brain phenomena. This is because the complexity of
statistical structure and thus potentially extracted neurobiological
knowledge can grow without limit with the amount of available data
samples.

Towards more interpretable models that extract biological
structure

How statistical analysis scales to large datasets is also impacted by
the distinction between generative and discriminative models. We
emphasize that generative models are more ambitious than discrimi-
native models because generative models seek the ability to produce
new data samples consistent with the original observations (for
technical details see Box 2). In contrast, discriminative models are
only concerned with predicting a target variable. For instance, a
discriminative model would focus on predicting the disease status of
an individual based on his or her neuroimaging profile (e.g., Fan et al.,
2008; Zhang et al., 2011), while a generative model would seek to
generate the neuroimaging profile of an individual given his or her
disease status (e.g., Zhang et al., 2016).

Generative models range from biophysically realistic models that
attempt to mimic actual biological processes (Freyer et al., 2011; Deco
et al., 2013) to more abstract statistical models that seek to extract
meaningful biological structure (e.g., probabilistic ICA). While the
more abstract generative models might not correspond to genuine
biological mechanisms, the extracted structure can still be physiologi-
cally or biologically meaningful (e.g., fMRI brain networks extracted
with probabilistic ICA). A major advantage of generative models is that
their results are usually more interpretable than those of discriminative
models (see excellent examples from Haufe et al., 2014). However, in
order to produce realistic high-dimensional data examples (e.g.,
neuroimaging profiles), generative models might have to be consider-
ably more complex than discriminative models that only seek to predict
a single target variable (e.g., disease status). In these scenarios (e.g.,
Fig. 2), more data samples might be necessary for high-quality
generative modeling. Therefore with the increasing abundance of
brain data in the neurosciences, a wider deployment of generative
models will become more feasible and in our opinion, important for
understanding the brain.

Generative models can be used to jointly estimate a brain-behavior
relationship and a hidden representation in the brain that is useful for
explaining the target behavior. As an example from connectivity
analysis, dynamic causal modeling (DCM; Friston et al., 2003) is a
common approach to study 'effective connectivity' in brain imaging,
which quantifies the functional influence that one brain region exerts
on other brain regions. DCM is a generative model with neurobiological
plausibility because it captures linear and non-linear interactions
between neuronal populations together with a biophysical model of
the hemodynamic response function. DCM affords an internal repre-
sentation of how the investigator-designed external inputs (i.e., known
changes in experimental manipulation) lead to unobserved states of
neuronal populations (i.e., hidden neural activity in several brain
regions), resulting in the generation of observed evoked brain-imaging
signals. Hidden neuronal states can thus be derived from hemody-
namic responses. In contrast, using support vector regression (SVR) to
predict brain maturity from resting-state functional connectivity
(Dosenbach et al., 2010) is a discriminative approach because it does
not facilitate the generation of functional connectivity data from a
participant's age. While SVR can predict age very well from brain
measurements (Dosenbach et al., 2010), interpreting weights from
discriminative models can be misleading (Haufe et al., 2014).

Generative models can help discover how environmental percep-
tion and motor execution are reflected in measured neural signals. It is
a classic idea that sensory perception in humans and animals draws on
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Box 2: Discriminative and generative models.

Formally, discriminative models try to find a direct mapping function f from features x to a target variable y (i.e., y = f(x)). In the probabilistic
setting, this involves modeling the posterior probability P(y|x) directly. Generative models traditionally solve the prediction problem by
estimating the joint distribution P(x,y) (Jebara, 2004; Bishop and Lasserre, 2007). The prediction P(y|x) can then be indirectly obtained by
applying Bayes’ rule. Consequently, generative models can in principle produce synthetic, never observed examples (¥, §) by sampling from the
estimated joint distribution P(x,y). If the synthetic data (%, ¥) is indistinguishable from real data, this suggests that the generative model is of
good quality. It is worth noting that certain new approaches, such as generative adversarial networks, do not explicitly estimate the data-
generating distribution, but can still generate extremely realistic new observations (Goodfellow et al., 2014; Goodfellow et al., 2016, p. 645).
Discriminative models are often chosen for best possible prediction of a target variable y (e.g., behavioral phenotypes, age, performance or
clinical scores) from features x (i.e., brain measurements). In contrast, generative models can also be used to predict target variable y from brain
measurements x, although the primary goal is to model how to best synthesize x from y (Fig. 2). Furthermore, generative modeling can be
performed without reference to the target variable, in which case the goal is to discover some hidden structure that can be used to “generate” the
features x (i.e., generative unsupervised learning). Generative models can thus provide detailed insight into the brain by explicitly modeling the
sources of variation from which certain observations in the brain have arisen. These sources of variation can range from being biophysically
plausible (e.g., through neural mass modeling) to abstract statistical constructs that can still be biologically meaningful (e.g., components from
probabilistic ICA). Because features unrelated to the target variable can be assigned high weights in discriminative models (Haufe et al., 2014),
generative models tend to be more interpretable, which is an important advantage when the goal is scientific discovery.
Members of discriminative models include logistic regression, support vector machines, decision-tree algorithms like random forests or gradient
boosted trees, and many neural-network algorithms. Generative models include linear and quadratic discriminant analysis, Naive Bayes, hidden
Markov models, Gaussian mixture models, latent Dirichlet allocation, many dictionary learning methods, linear/latent factor models, ICA, PCA,
probabilistic canonical correlation analysis (Bach and Jordan, 2005), as well as many non-parametric statistical models (Teh and Jordan, 2010)
and certain modern neural-network algorithms, such as autoencoders (Kingma et al., 2014). It is worth noting that linear-regression-type
techniques can be discriminative or generative. For instance, logistic regression is a discriminative model and its generative analog is linear
discriminant analysis (Bouchard et al., 2004).
In practice, the strength of generative models to jointly realize predictive modeling and a form of representation learning is often paid for by
requiring more input data, possibly more computational resources and more model parameters to fit. The reason is that generative models need
to take into account the joint distribution P(x,y), which might be considerably more complex than the class posteriors P(y|x) (Fig. 2). The model
performance can be further influenced by the additional assumptions of generative models compared to discriminative models (Bishop and
Lasserre, 2007). In conclusion, generative models can improve interpretability but are frequently outperformed by discriminative models in
prediction tasks, especially in cases with many samples (Ng and Jordan, 2002; Jebara and Meila, 2006; Xue et al., 2008) or many input variables

(Kelleher, 2015, p. 516).
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Fig. 2. Class-conditional densities can be more complex than class posteriors. To predict target class y from features x, generative models (left) estimate class conditional
distributions P(x|y=c) and class priors P(y=c), while discriminative models (right) estimate the posterior probability P(y=c|x) directly. In this example, the class conditional
distributions P(x|y=c) are much more complex than the class posteriors P(y=c|x). As such, an ideal generative model would have to be more complex (with more model parameters) than
the ideal discriminative model in order to perform well in the prediction task. Hence, this more complex generative model would potentially require more training data to fit. However,
the generative model can produce new unseen examples (¥, §) and is typically more interpretable. Figure reused with permission from Murphy (2012).

and music recruited anatomically distinct components suggesting the
existence of distinct processing pathways for speech and music
(Norman-Haignere et al., 2015).

Similarly, motor action on the ambient environment is probably
assembled from a sequence of movement primitives (Wolpert et al.,
2011) and sensorimotor learning is probably reliant on abstract
internal representations. Both of these could be explicitly captured in

the compositionality of environmental scenes into sensory primitives
(Hubel and Wiesel, 1962). As a recent example of generative modeling
in human auditory perception, the neural responses to diverse natur-
alistic sounds were stratified into distinct but spatially overlapping
activity patterns (Norman-Haignere et al., 2015). The generative model
discovered components of variation that captured selective tuning to
frequency, pitch, and spectrotemporal modulation. Complex speech
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generative models but may become less evident using discriminative
models (but see the success of Khaligh-Razavi et al., 2014; Yamins
et al., 2014; Giicli et al., 2015; Eickenberg et al., 2016 in under-
standing visual processing). There are already many promising appli-
cations of generative models in behavioral motor research (e.g., Acerbi
et al., 2012; Franklin and Wolpert, 2011; Sing et al., 2009), but with
much less frequent application to understanding the neural basis of
motor action (but see Diedrichsen et al., 2005). As a computational
approach to action choice, human social interaction has been described
by a generative model that explicitly incorporated possible actions and
expected subjective costs and rewards (Jara-Ettinger et al., 2016). This
statistical model potentially allows an investigator to parse the
observation of others' behavior and the derived conclusions on their
beliefs, desires, and stable character traits. If agents act according to
the generative model, the costs and rewards can be derived that were
likely to have produced a given observed action. In neuroscience, the
often less data-hungry discriminative models have so far been perva-
sive, while we expect generative models to grow in popularity along
with greater data availability. We thus propose that generative models
have the potential to carve perception, action, and cognition at their
joints by statistically uncovering the relationships between their
constituent neural elements.

Apart from sensory perception and motor execution, the possible
interpretational gains of generative models have already been demon-
strated in neuroscience studies on higher-order brain function. For
instance, hidden Markov models have recently been applied to high-
dimensional time-series data from magnetoencephalography (MEG)
recordings (Baker et al., 2014). The employed generative models
simultaneously inferred the spatial topography of the major brain
networks subserving environmental responses and their cross-talk
dynamics without making any a-priori assumptions about their anat-
omy. The model qualifies as generative because it takes into account
the joint distribution over the neural activity time-series (i.e., “ob-
served” variables”) and the underlying spatiotemporal components of
variation (i.e., hidden variables). These model properties allowed the
authors to argue that states of spatiotemporal coherence occur in 100-
200ms time windows and that these functional coupling dynamics are
faster than previously thought. As another example, neuroscientists
often conceptualize psychological experiments as recruiting multiple
neural processes supported by multiple brain regions (sometimes
called 'multi-to-multi' mapping). This century-old notion (Walton
and Paul, 1901) was recently expressed in the form of a generative
model (Yeo et al., 2015). The author-topic model (Rosen-Zvi et al.,
2010) was a natural choice because of its ability to derive unknown
components of variation (i.e., cognitive primitives) whose constituent
nodes (i.e., brain regions) can be shared to varying degrees among the
discovered components. Applying the model to 10,449 neuroimaging
experiments from the BrainMap database across 83 behavioral tasks
revealed heterogeneity in the extent to which a given brain region
participated in a variety of cognitive components and the extent to
which a given cognitive component recruited a variety of brain regions.
The results suggested that the human association cortex subserves
diverse psychological tasks by flexible recruitment of functionally
specialized networks whose constituent nodes are in part topographi-
cally overlapping.

Generative models are also useful for representation learning
(Bengio et al., 2013), which pertains to extracting hidden “manifolds”
(i.e., components of variation) directly from brain data. For instance,
autoencoders (Hinton and Salakhutdinov, 2006; Goodfellow et al.,
2016, chapter 14) are generative models that have been shown to
generalize commonly employed representation discovery methods,

2 “Observed” is in quotations because the “observed” variables in this case corre-
sponded to estimates of neuronal activity after beamforming and filtering the observed
MEG data, rather than the original MEG data.
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including matrix decomposition techniques like ICA and PCA as well
as clustering algorithms like k-means (Baldi and Hornik, 1989; Le
etal., 2011). Applying generative autoencoder models to neural activity
data opens the possibility to simultaneously extract local, non-over-
lapping components of variation (related to the notion of brain regions)
and global, distributed components of variation (related to notion of
brain networks) (Bzdok et al., 2015). Extracting an optimized region-
network representation from brain data allows abandoning handpicked
design of new summary variables from brain measurements (i.e.,
'feature engineering'). Neurobiologically relevant representations can
be revealed as sets of predictive patterns combining network compo-
nents and region components that can together detect psychological
tasks and disease processes. This happens without being constrained to
either functional specialization into disjoint regions or functional
integration by intertwined macroscopic networks (Sporns, 2013;
Medaglia et al., 2015; Bzdok et al., 2017). The automatically discovered
functional compartments, in turn, can be potentially utilized as features
for supervised prediction.

In sum, we expect that generative models will be more readily
exploited to discover hidden structure underlying brain measurements
as data become more abundant. By exposing the low-dimensional
structure embedded within high-dimensional brain measurements,
generative models can provide more interpretable and more detailed
insights into behavior and its disturbances (Stephan et al., 2017).
However, "the more detailed and biologically realistic a model, the
greater the challenges of parameter estimation and the danger of
overfitting" (Stephan et al., 2015b). Additionally, generative models
have been argued to be essential for semi-supervised prediction from
partially annotated data (Bishop and Lasserre, 2007), yet another
topic of growing importance (Bzdok et al., 2015). Moreover, a crucial
next step in clinical neuroscience may lie in extracting underlying
pathophysiological structure from brain measurements in mental
disorders. Simply applying discriminative modeling strategies on
psychiatric patients grouped by the diagnostic manuals DSM or ICD
will likely recapitulate disease categories that are neither neurobiolo-
gically valid nor clinically predictive (Hyman, 2007; Insel et al., 2010).
Ultimately, discriminative models may turn out to be less potent for
reconstructing the neural implementation of information processing up
to the level of 'decoding’ mental content and thoughts directly from
brain measurements.

Towards integration of traditional modeling regimes

The distinction between Bayesian and frequentist attitudes towards
quantitative investigation (for technical details see Box 3) is well known
in statistics (Freedman, 1995), and in neuroscience in particular
(Friston et al.,, 2002; Stephan et al., 2009). Bayesian modeling
emphasizes the importance of injecting a-priori assumptions into the
data analysis, whereas frequentist modeling avoids the explicit intro-
duction of prior beliefs. The Bayesian neuroscientist wants to discover
statistical relationships that are calibrated on already existing knowl-
edge deemed important by the investigator. In contrast, the frequentist
neuroscientist wants to establish statistical relationships that are as
objective and unconditioned by the investigator's expectations as
possible. Note however that Bayesian approaches can employ flat or
agnostic priors, while frequentist approaches can beconditioned on
prior beliefs on the nature of the data distribution.

In the example of connectivity analysis, DCM is a Bayesian
connectivity approach because experimentally induced connectivity
changes are modeled under probabilistic priors on various biophysical
parameters (e.g., resting oxygen extraction fraction, baseline coupling
between regions and self-connection) governing the generative model
of brain dynamics. In contrast, psychophysiological interaction (PPI) is
a frequentist connectivity method because it seeks to model the
changes in brain signals induced by experimental manipulations with-
out placing probabilistic priors on neurophysiological properties of
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Box 3: Frequentist and Bayesian models.

In theory, the frequentist attitude aims at universally acceptable, investigator-independent conclusions on neurobiological processes by avoiding
hand-selected priors on model parameters. The Bayesian attitude is more transparent in the unavoidable, necessarily subjective introduction of
existing domain knowledge by specifying explicit model priors (Bishop, 2006; Murphy, 2012). Many frequentist approaches often achieve best-
guess values by treating the model parameters as fixed unknown constants and input data as randomly generated conditioned on the model
parameters (through the likelihood function). In Bayesian approaches, uncertainties in the estimation of model parameters are handled
naturally by the computation of full posterior distributions and by marginalizing (i.e., summing or integrating) over random parameters of no
interest. To this end, frequentist approaches often estimate a single set of model parameters by numerical optimization of the maximum
likelihood. This single (point) estimate of the model parameters can potentially be used to predict new data. Unfortunately, this approach can
lead to overfitting (Murphy, 2012, Chapter 2). In contrast, Bayesian approaches seek to estimate a posterior distribution over the space of model
parameters. The posterior distribution can then be used to predict new data (i.e., by marginalizing over model parameters to compute the
posterior predictive distribution), which provides protections against overfitting (Murphy, 2012, Chapter 2). The downside is that achieving
posterior distributions of model parameters and integration over model parameters is generally much more difficult than achieving point
estimates.

In practice, statistical models span a continuum between the extreme poles of frequentism and Bayesianism with many unexpected relations
connecting the two paradigms (Bishop, 2006; Murphy, 2012). For instance, there are well-known frequentist approaches that perform model
averaging, including bagging (Breiman, 1996) and boosting (Schapire, 1990). As another example, the bootstrap is a frequentist method for
population-level inference of confidence intervals and non-parametric null-hypothesis testing (Efron, 1979). This procedure however readily
lends itself to Bayesian interpretations and often agrees with the posterior distributions from Bayesian analysis under an uninformative prior
(Hastie et al., 2001, chapter 8; Hastie et al., 2015, chapter 6). As another result of their many hidden relations, frequentist and Bayesian problem
solutions can often be translated into each other. Many frequentist problems relying on gradient-based optimization can be recast as Bayesian
integration problems using Langevin and Hamiltonian MCMC methods (Girolami and Calderhead, 2011). Conversely, many Bayesian
integration problems can be recast as frequentist optimization problems using variational Bayesian approximation methods (Jordan et al.,
1999). This makes a clear-cut distinction between frequentist and Bayesian statistics less compelling.

Important for data-intensive brain science, the frequentist-Bayesian tradeoff has a critical impact on the computational budget required for
model estimation (Fig. 3). As a general tendency, the more one adheres to frequentist instead of Bayesian ideology, the less computationally
expensive and the less technically involved are the statistical analyses. It is a widespread opinion that Bayesian models do not scale well to the
data-rich setting, although there is currently insufficient work on the behavior of Bayesian methods in high-dimensional input data (Bishop and
Lasserre, 2007; Jordan, 2011; Yang et al., 2016). While the purely frequentist approach often computes maximum likelihood estimation, the
purely Bayesian approach seeks to sample from the full posterior probability distributions by computing asymptotically exact MCMC. Given
their computational cost, MCMCs have mainly been used for low-dimensional problems with few input variables. Many non-deterministic
MCMC variants suffer from i) difficulty in diagnosing convergence to the posterior distribution, ii) hard-to-control "random-walk" behavior, or
iii) limited scaling to the high-dimensional setting (MacKay, 2003, chapter 29). Fortunately, the practical applicability of Bayesian methods has
been greatly enhanced through the development of deterministic procedures for approximate inference such as variational Bayes and
expectation propagation (Jordan et al., 1999; Minka, 2001; Bishop, 2006, chapter 19). Consequently, the different challenges of solving
Bayesian posterior integrals motivated a rich spectrum of Bayesian-frequentist hybrid models (Efron, 2005) with an increasing trend towards
incorporating appealing Bayesian aspects into computationally cheaper frequentist models (cf., Kingma et al., 2014; Sengupta et al., 2015,
2016; Mandt et al., 2017).

In sum, the scalability of model estimation in the data-rich scenario is calibrated between frequentist numerical optimization and Bayesian
numerical integration. High-dimensional data with many variables have been argued to motivate novel blends between less resource-demanding
frequentist and more holistic Bayesian modeling aspects (Efron, 2005).

brain data repositories. We hence speculate that the many merits of

Method Definition

Bayesian statistics in neuroscience research are most likely best
exploited by integration with frequentist models that typically incur

Maximum likelihood
MAP estimation
ML-II (Empirical Bayes)

6 = argmax, p(D|0)

0 = argmaxg p(D|0)p(8|n)

7 = argmax, [ p(D|0)p(6|n)d6 = argmax,, p(D|n)
7 = argmax,, [ p(D|60)p(6]|n)p(n)d6 = argmax,, p(D|n)p(n)
p(6,|D) o< p(D|6)p(6|n)p(n)

Fig. 3. Different shades of Bayesian inference. There is not one unique Bayesian
formulation to perform statistical estimation. Rather, there are a variety of Bayesian
frameworks. For instance, type-II maximum likelihood or empirical Bayes has genuine
frequentist properties, does not specify a prior distribution before visiting the data, and is
often used in non-Bayesian modeling. Generally, the more integrals that need to be
solved or approximated in a given Bayesian formulation, the higher the computational
budget needed for model estimation. Reused with permission from Murphy (2012).

MAP-II
Full Bayes

brain dynamics (Friston et al., 1997). The Bayesian-frequentist dis-
tinction provides yet another angle in addition to the parametric/non-
parametric and discriminative/generative perspectives on statistical
models (Freedman, 1995; Roos et al. 2005; Gelman et al., 2014). Given
the dominance of Bayesian statistics in the 19th century and frequen-
tist statistics in the 20th century (Efron, 2005), one may wonder about
their relative contributions in the 21st century. It is today unclear how
well fully Bayesian models can scale to always bigger and more detailed
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much lower computational burden.

One appeal of Bayesian modeling is its intimate relationship to
certain prominent hypotheses about both the workings of cognitive
processes and their neural realizations. The Bayesian view of cognition
is about placing expectation priors on the concepts that underlie
perception and action in the ambient environment. After observing
new environmental evidence, humans and intelligent animals may
dynamically update the probabilistic priors on the concepts that could
have produced the evidence. The goal of the neuroscience investigator
would be to identify the algorithmic principles that govern how
organisms solve problems of logical induction. Such an agenda is
closely related to what David Marr termed the "computational" and
“algorithmic” levels of brain function (Marr, 1982). Bayesian models
have been argued to be an ideal choice to tackle three core questions in
cognitive research (Tenenbaum et al., 2011): 1) How abstract knowl-
edge drives learning from incomplete, noisy input, 2) How it is
represented, and 3) How it is acquired? The probabilistic properties
of Bayesian models are likely to be valuable for capturing uncertainty in



D. Bzdok, B.T.T. Yeo

perception and decision-making, as well as the unavoidable presence of
randomness that characterizes neuronal circuits (Faisal et al., 2008). As
an example from computational psychology, Bayesian inference al-
lowed for an explicit model of how intelligent organisms may learn new
concepts from only single exposures to visual symbols (Lake et al.,
2015). Each letter of an invented, never seen alphabet was represented
as a combination of line stroke primitives. Bayesian inference allowed
successfully browsing a large combinatorial space of stroke primitives
most likely to have generated a given raw letter. The authors used a
Bayesian non-parametric generative model that could even produce
novel types of visual concepts by recombining parts of existing ones in
creative ways. This model was also shown to outperform the discrimi-
native, frequentist state-of-the-art model for object recognition (Lake
et al., 2015). More generally, many aspects of the mind and brain can
be recast as computational problems of inductive inference. Bayesian
probabilistic models present a particularly attractive opportunity to
decipher the mathematics of how intelligent organisms operate on and
generalize from abstract concepts of world structure (Tervo et al.,
2016).

When confronted with extensive brain data, we believe that the
many desirable properties of Bayesian modeling and the relatively
lower computational costs of frequentist models need to be balanced.
In many imaging neuroscience applications, navigating the speed-
accuracy tradeoff in Bayesian posterior inference has successfully
reduced the computational burden. This tradeoff was achieved by
using variational Bayes approximations, such as for Bayesian time-
series analysis (Penny et al., 2003), model selection for group analysis
(Stephan et al., 2009) and mixed-effects classification for imbalanced
groups (Brodersen et al., 2013), as well as by adding constraints on
macroscopic networks (Seghier and Friston, 2013) or neuronal fluctua-
tions (Friston et al., 2014; Razi et al., 2015). In the case of transdiag-
nostic clinical neuroscience (Buckholtz and Meyer-Lindenberg, 2011;
Goodkind et al., 2015; Insel and Cuthbert, 2015), hierarchical Bayesian
models might gracefully handle the pervasive problem of class imbal-
ance and provide certain levels of protection to selection bias (Murphy,
2012). Hierarchical Bayesian models can provide a parsimonious
framework for introducing statistical dependences among multiple
classes (e.g., disease groups), which might enable classes with small
sample sizes (e.g., rare diseases) to borrow statistical strength from
classes with larger sample sizes (e.g., related diseases). Finally,
Bayesian statistics treat model parameters as random, allowing for
more natural handling of model parameter (and even structure)
uncertainty than in the frequentist regime where model parameters
are assumed to be fixed (Ghahramani et al., 2013).

For instance, recent advances in non-parametric Bayesian methods
(Orbanz and Teh, 2011) combined with extensive datasets promise
forward progress in longstanding problems in cognitive and clinical
neuroscience. As a key problem in cognition, neuroscientists have not
agreed on a description system of mental operations (called 'taxonomy'
or 'ontology') that would canonically motivate and operationalize their
experiments (Barrett, 2009; Tenenbaum et al., 2011; Poldrack and
Yarkoni, 2016). As a key problem in clinical neuroscience, partly
shared neurobiological endo-phenotypes are today believed to con-
tribute to the pathophysiology of various psychiatric and neurological
diagnoses (called 'mosology") despite drastically different clinical exo-
phenotypes (Brodersen et al., 2011; Hyman, 2007; Stephan et al.,
2015a).

As an interesting observation, both these neuroscientific challenges
can be statistically recast as latent factor problems (cf. Poldrack et al.,
2012). In latent factor models (Ghahramani and Griffiths, 2006;
Goodfellow et al., 2016, chapter 13), an underlying set of hidden
components of variation are uncovered by assigning each observation
in the brain to each of the components to different degrees. The same
class of statistical models can potentially identify the unnamed building
blocks underlying human cognition and the unknown neurobiological
structure underlying diverse brain disorders. For instance, hierarchical
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Bayesian models were recently borrowed from the domain of text
mining to estimate both a latent cognitive ontology (Yeo et al., 2015;
Bertolero et al,, 2015) and morphological atrophy subtypes in
Alzheimer's disease (Zhang et al., 2016). Further, formal inference in
non-parametric Bayesian models can potentially handle complexity in
the brain by estimating the number of latent factors in cognition and
disease using Chinese Restaurant Processes (Kemp et al., 2006;
Pitman, 2006), the relative implications of latent causes in neurobio-
logical observations using Indian Buffet Processes (Ghahramani and
Griffiths, 2006), as well as deriving the hierarchies of cognitive
primitives and disease endo-phenotypes using Hierarchical Dirichlet
Processes (Teh et al., 2005). It is a particularly important (if not
exclusive) possibility of cluster detection in the non-parametric
Bayesian regime to allow each observation to participate in all clusters
(e.g., Yeo et al., 2014; Moyer et al., 2015; Najafi et al., 2016). This
contrasts the neurobiologically implausible 'winner-takes-all' assump-
tion (e.g., each brain location is strictly assigned to only one cluster) of
many widely used traditional clustering algorithms, including k-means,
hierarchical, and ward clustering (e.g., Yeo et al., 2011; Craddock et al.,
2012; Shen et al., 2013).

In sum, we propose that the statistical scalability of obtaining
meaningful and accurate neuroscientific answers from extensive brain
data should be balanced between the Bayesian and frequentist model-
ing agendas. Bayesian models enable explicitly informing model
estimation by prior knowledge and they have many strengths regarding
interpretational appeal, robustness to unequal group data, and in
hierarchical statistical settings. While they can generalize better in
the low-dimensional setting, scaling fully Bayesian models to handle
high-dimensional data is challenging and an active area of research (cf.
Breiman, 1997, Sengupta et al., 2015). Frequentist models, instead, are
typically more modest in the required computation resources, are
easier to use, and work faster out-of-the-box. Luckily, ingredients from
both statistical regimes can be directly integrated by readjusting the
modeling goal (Gopalan and Blei, 2013; Murphy, 2012, chapter 5;
https://jasp-stats.org). The quantitative sciences therefore show a
trend for novel blends of statistical models that are opportunistic in
marrying Bayesian and frequentist advantages (Efron, 2005; Kingma
et al., 2014). We predict that the recent emergence of extensive
datasets in neuroscience will open a window of opportunity for
exploring and exploiting more Bayesian-frequentist hybrid
approaches (cf. Brodersen et al., 2011; Gilbert et al., 2016), which
may for instance rely on empirical Bayes methods (Friston et al., 2016;
Stephan et al., 2016). We expect that such developments will probably
de-emphasize a strict dichotomy between the Bayesian and frequentist
modeling philosophies in the neurosciences.

Towards diversification of statistical inference

Statistical inference is a heterogeneous notion that has recently
been defined as the extraction of new knowledge from parameters in
mathematical models fitted to data® (Jordan et al, 2013). We
emphasize that classical null-hypothesis testing and modern out-of-
sample generalization serve distinct statistical purposes and can be
used together in practical data analysis. They perform different types of
formal assessment for successful extrapolation of an effect beyond the
data at hand that are embedded in different mathematical theories (for
technical details see Box 4). Null-hypothesis testing evaluates whether
observations are too extreme under the null hypothesis, whereas out-
of-sample generalization evaluates how well fitted algorithms perform

3 It is worth noting that in statistics, 'inference' typically refers to procedures, such as
hypothesis testing and estimating conference intervals (performed within the same
sample). By contrast, in machine learning, 'inference' typically refers to predicting
information (e.g., hidden variables) of new data instances (i.e., out-of-sample). As such,
the broader notion of inference (Jordan et al., 2013) encompasses both hypothesis
testing and out-of-sample generalization.


https://jasp-stats.org

D. Bzdok, B.T.T. Yeo

Neurolmage 155 (2017) 549-564

Box 4: Null-hypothesis testing and out-of-sample generalization.

Statistical inference can be broadly defined as the extraction of new knowledge from parameters in mathematical models fitted to data (Jordan
et al., 2013). Classical inference focuses on in-sample estimates by explained-variance metrics of the entire data sample (Fig. 4), while pattern
generalization focuses on out-of-sample estimates by assessing prediction performance metrics on unseen data samples not used during model
fitting (Friston, 2012 appendix). Therefore the mostly retrospective viewpoint of null-hypothesis testing can be contrasted with the mostly
prospective viewpoint of the out-of-sample approach that seeks to learn a general principle from data examples and evaluate the result on
unseen examples (cf. Goodman, 1999).

In classical inference, invented almost 100 years ago (cf. Fisher and Mackenzie, 1923; Neyman and Pearson, 1933), the scientist articulates
two mutually exclusive hypotheses by domain-informed judgment with the agenda to disprove the null hypothesis embraced by the research
community. A p-value is then computed that denotes the conditional probability of obtaining an equal or more extreme test statistic provided
that the null hypothesis is correct. This conditional probability is conventionally set at the arbitrary significance threshold of alpha=0.05
(Wasserstein and Lazar, 2016). State-of-the-art hypotheses are continuously replaced by always more pertinent hypotheses using verification
and falsification in a Darwinian process (Popper, 1935/2005). The classical framework of null-hypothesis falsification to infer new knowledge is
still the go-to choice in many branches of neuroscience. Considering the data-rich scenario, it is an important problem that p-values intrinsically
become better (i.e., lower) as the sample size increases because even very small effects will become significant (Berkson, 1938). Indeed, brain-
behavior correlations of r = 0.1 were found to be statistically significant when considering a sample of n = 5000 participants even after correction
for multiple comparisons (Miller et al., 2016). As reporting statistical significance alone becomes insufficient, it is now mandatory to report
effect sizes in addition to or instead of p-values in certain scientific fields (Wasserstein and Lazar, 2016). Besides null-hypothesis testing,
asymptotic consistency guarantees are a cornerstone of classical statistical theory (Fisher, 1922; Efron and Hastie, 2016). Many traditional
statistics tools have been theoretically justified by demonstrating their convergence to the "truth" as the input data grow to infinity.

In contrast, out-of-sample generalization emerged much more recently as the fundamental statistical process underlying learning in animals,
humans, and machines (Vapnik, 1989; Valiant 1984). It can be defined as testing whether an underlying complex pattern is learnable in a
dataset (Bzdok, et al., 2016b). This inferential regime operates by necessary and sufficient conditions for generalization that have been
formalized as PAC learning (probably approximately correct learning) from computational complexity theory (Valiant, 1984). This theoretical
framework answers the question "Can we extrapolate a statistical relationship discovered in one set of data to another set of data in polynomial
time?" Given a class of candidate functions defined by the statistical model (i.e., the hypothesis space), the PAC framework assesses the
performance bounds of that model in selecting a function that is likely to yield the approximately correct result on the independent test data with
high probability. The typical practical question of necessary minimum sample size is tied to the size of the hypothesis space (i.e., the number of
theoretically learnable statistical relationships). Note that PAC learnability is a stricter statistical notion than consistency guarantees for a
learning algorithm (Shalev-Shwartz et al., 2014, chapter 7).

Furthermore, a pattern generalization that is successful according to the PAC learning framework is, under mild conditions, also feasible
according to the closely related notion of Vapnik-Chervonenkis (VC) dimensions (Vapnik, 1989) from statistical learning theory (Shalev-
Shwartz et al., 2014). Analogously, the VC generalization bounds formally express the circumstances under which a class of functions is able to
learn from a given finite amount of data to successfully predict a neurobiological phenomenon in unseen data (Hastie et al., 2001, chapter 7;
Abu-Mostafa et al., 2012). The quantity of VC dimensions thus provides a probabilistic measure of whether a certain model is able to learn a
distinction given a dataset. Good statistical models have finite VC dimensions as a sufficient (but not necessary) condition for successful
approximation of the theoretically expected performance in unseen data. Note that finite VC dimensions imply PAC learnability according to the
fundamental theorem of statistical learning (Shalev-Shwartz et al., 2014, theorem 6.7). Bad statistical models entertain a too large class of
candidate functions (i.e., hypothesis space), which entails the inability for generalization conclusions on unseen data. As one of the biggest
insights from statistical learning theory, the number of configurations that can result from a certain classification algorithm grows polynomially,
while the error is luckily decreasing exponentially (Wasserman, 2013). In other words, in any intelligent organism or system, the opportunity to
learn abstract patterns in the world eventually overweighs the difficulty of generalization to new observations. In practice, cross-validation
procedures provide an accurate estimate of a model's "true" capacity to generalize to future data samples (Dwork et al., 2015).

on freshly sampled, independent data. In imaging neuroscience, the
generalization performances of learning algorithms obtained from
cross-validation procedures are frequently backed up by testing the
null hypothesis of whether the achieved prediction performance is at
chance level (Pereira et al., 2009) Box 5.

Drawing statistical inference on regional brain responses during
controlled experiments has historically hinged on (parametric) classical
null-hypothesis testing, but is increasingly flanked by out-of-sample
generalization  based on  (non-parametric)  cross-validation
(Kriegeskorte, 2015a, 2015b; Bzdok, 2016; Yarkoni and Westfall,
2016). Classical inference measures the statistical significance asso-
ciated with a relationship between typically few variables given a pre-
specified model. For instance, t-tests are often used to evaluate whether
the regional brain response, such as in the amygdala, is significantly
different between healthy participants and psych