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A B S T R A C T

Neuroscience is undergoing faster changes than ever before. Over 100 years our field qualitatively described and
invasively manipulated single or few organisms to gain anatomical, physiological, and pharmacological insights.
In the last 10 years neuroscience spawned quantitative datasets of unprecedented breadth (e.g., microanatomy,
synaptic connections, and optogenetic brain-behavior assays) and size (e.g., cognition, brain imaging, and
genetics). While growing data availability and information granularity have been amply discussed, we direct
attention to a less explored question: How will the unprecedented data richness shape data analysis practices?
Statistical reasoning is becoming more important to distill neurobiological knowledge from healthy and
pathological brain measurements. We argue that large-scale data analysis will use more statistical models that
are non-parametric, generative, and mixing frequentist and Bayesian aspects, while supplementing classical
hypothesis testing with out-of-sample predictions.

Introduction

During most of neuroscience history, before the emergence of
genomics and brain imaging, new insights were "inferred" with little
or no reliance on statistics. Qualitative, sometimes anecdotal reports
have documented impairments after brain lesion (Harlow, 1848),
microscopical inspection of stained tissue (Brodmann, 1909), electrical
stimulation during neurosurgery (Penfield and Perot, 1963), targeted
pharmacological intervention (Clark et al., 1970), and brain connec-
tions using neuron-transportable dyes (Mesulam, 1978). Connectivity
analysis by axonal tracing studies in monkeys exemplifies biologically
justified "inference" with many discoveries since the 60 s (Köbbert
et al., 2000). A colored tracer substance is injected in vivo into source
region A, uptaken by local neuronal receptors, and automatically
transported in axons to target region B. This observation in a single
monkey allows extrapolating a monosynaptical connection between
region A and B to the entire monkey species (Mesulam, 2012). Instead,
later brain-imaging technology propelled the data-intensive character-
ization of the mammalian brain and today readily quantifies axonal
connections, cytoarchitectonic borders, myeloarchitectonic distribu-

tions, neurotransmitter receptors, and oscillatory coupling (Amunts
et al., 2013; Frackowiak and Markram, 2015; Kandel et al., 2013; Van
Essen et al., 2012). Following many new technologies to generate
digitized yet noisy brain data, drawing insight from observations in the
brain henceforth required assessment in the statistical arena.

In the quantitative sciences, the invention and application of
statistical tools has always been dictated by changing contexts and
domain questions (Efron and Hastie, 2016). The present paper will
therefore examine how statistical choices are likely to change due to the
progressively increasing granularity of digitized brain data. Massive
data collection is a game changer in neuroscience (Kandel et al., 2013;
Poldrack and Gorgolewski, 2014), and in many other public and private
areas (House of Commons, 2016; Jordan et al., 2013; Manyika et al.,
2011). There is a growing interest in and pressure for data sharing,
open access, and building "big data" repositories (Frackowiak and
Markram, 2015; Lichtman et al., 2014; Randlett et al., 2015). For
instance, UK Biobank is a longitudinal population study dedicated to
the genetic and environmental influence on mental disorders and other
medical conditions (Allen et al., 2012; Miller et al., 2016). 500,000
enrolled volunteers undergo an extensive battery of clinical diagnostics
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from brain scans to bone density with a > 25 year follow-up. In the US,
the Precision Medicine Initiative announced in 2015 to profile
1,000,000 individuals (Collins and Varmus, 2015). Targeted analysis
of such national and international data collections may soon become
the new normal in basic and clinical neuroscience. In this opinion
paper, we will inspect the statistical scalability to the data-rich scenario
from four different formal perspectives: i) parametric versus non-
parametric models, ii) discriminative versus generative models, and iii)
frequentist versus Bayesian models, as well as iv) classical hypothesis
testing and out-of-sample generalization.

Towards adaptive models

Parametric models seek to capture underlying structure in data,
which is representable with a fixed number of model parameters. For
instance, many parametric models with Gaussianity assumptions will
attempt to fit Gaussian densities regardless of the underlying data
distribution. On the other hand, we think of non-parametric models as
typically making weaker assumptions about the underlying data
structure, such that the model complexity is data-driven, the expressive
capacity does not saturate, the model structure can adapt flexibly, and
the prediction can grow more sophisticated (see Box 1 for elaboration).
Certain non-parametric models (e.g., Parzen window density estima-
tion) will converge to the true underlying data distribution with
sufficient data (although the amount of needed data might be astro-
nomical). With increasing data samples, non-parametric models thus
tend to make always-smaller error in capturing underlying structure in
data (Devroye et al., 1996; Bickel et al., 2007). Relating these
considerations back to the deluge of data from burgeoning neu-
roscience consortia, "the main concern is underfitting from the choice
of an overly simplistic parametric model, rather than overfitting."
(Ghahramani, 2015, p. 454). We therefore believe that non-parametric
models have the potential to extract arbitrarily complex perceptual
units, motor programs, and neural computations directly from healthy
and diseased brain measurements.

In our opinion, the expressive capacity of many parametric models
to capture cognitive and neurobiological processes is limited and

cannot adaptively increase if more input data are provided. For
instance, independent component analysis (ICA) is an often-used
parametric model that extracts a set of macroscopic networks with
coherent neural activity from brain recordings (Calhoun et al., 2001;
Beckmann et al., 2009). Applied to human functional magnetic
resonance imaging (fMRI) data, ICA reliably yields the default mode
network, saliency network, dorsal attention network, and other cano-
nical brain networks (Damoiseaux et al., 2006; Seeley et al., 2007;
Smith et al., 2009). Standard ICA is parametric in the sense that the
algorithm extracts a user-specified number of spatiotemporal network
components, although the "true" number of macroscopic brain net-
works is unknown or might be ambiguous (Eickhoff et al., 2015). By
coupling standard ICA with approximate Bayesian model selection
(BMS), Beckmann and Smith (2004) allowed the number of compo-
nents to flexibly adapt to brain data. The combination of parametric
ICA and BMS yields an integrative modeling approach that exhibits the
scaling property of non-parametric statistics (Goodfellow et al., 2016,
p. 112; Ghahramani, 2015, p. 454): With increasing amount of input
data, ICA with BMS adaptively calibrates the model complexity by
potentially extracting more brain network components, thus enhancing
the expressive power of classical ICA.

These advantages are inherent to non-parametric models that can
potentially extract an always higher number of neural patterns that are
adaptively described by an always higher, theoretically infinite
number of model parameters as the amount of input data increase
(Orbanz and Teh, 2011; Ghahramani, 2013). In doing so, we believe
non-parametric models can potentially isolate representations of
neurobiological phenomena that do not only improve quantitatively
(e.g., increased statistical certainty) but also qualitatively (e.g., a much
different, more detailed representation). We propose that non-para-
metric models are hence more likely to extract neurobiological
relationships that exclusively emerge in large brain datasets. In
contrast, parametric models are often more easily interpretable by
the investigator, are more stable, and require less data to achieve a
satisfactory model fit. Furthermore, parametric statistical tests are
often more powerful, assuming the parametric assumptions are correct
(cf. Friston, 2012; Eklund et al., 2016). These practical advantages are

Box 1: Parametric and non-parametric models

Contrary to common misunderstanding, both parametric and non-parametric statistical models involve parameters. 'Non-parametric' is
typically defined in one of three different flavors (Bishop, 2006; Murphy, 2012; James et al., 2013): The first, perhaps most widespread meaning
implies those statistical models that do not make explicit assumptions about a particular probability distribution (e.g., Gaussian distribution)
from which the data have arisen. As a second and more general definition, non-parametric models do not assume that the structure of the
statistical model is fixed. The third definition emphasizes that in non-parametric models, the number of model parameters increases explicitly
or implicitly with the number of available data points (e.g., number of participants in the dataset). In contrast, the number of model parameters
is fixed in parametric models and does not vary with sample size (Fig. 1). In its most extreme manifestation, non-parametric models might
utilize larger memory than the actual input data themselves. Please note that the non-parametric scaling property of increasing model
complexity with accumulating data can be obtained in different ways: i) a statistical model with infinitely many parameters or ii) a nested series
of parametric models that can increase the number of parameters as needed (Ghahramani, 2015, page 454; Goodfellow et al., 2016, page 112).

The flexible non-parametric models include random forests (a special kind of decision-tree algorithm), boosting, nearest-neighbor
algorithms (where complexity increases with the amount of input data), Gaussian Process methods, kernel support vector machines, kernel
principal component analysis (kernel PCA), kernel ICA, kernel canonical correlation analysis, generalized additive models, and hierarchical
clustering, as well as many forms of bootstrapping and other resampling procedures. Statistical models based on decision trees often constrain
their size, which turns them into parametric models in practice. The more rigid parametric models include Gaussian mixture models, linear
support vector machines, PCA, ICA, factor analysis, classical canonical correlation analysis, and k-means clustering, but also modern regression
variants using sparsity or shrinkage regularization like Lasso, elastic net, and ridge regression.
Classical statistics has always had a strong preference for low-dimensional parametric models (Efron and Hastie, 2016). It is an advantage of
parametric models to express the data compactly in often few model parameters. This increases interpretability, requires fewer data samples,
has higher statistical power, and incurs lower computational load. Although the number of parameters in parametric models can be manually
increased by the user, only non-parametric models have the inherent ability to automatically scale their expressive capacity with increasing data
resources. Therefore, as the amount of neuroscience data continues to increase by leaps and bounds, parametric models might underfit the
available data, while non-parametric models might discover increasingly complex representations that potentially yield novel neuroscientific
insights.
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paid for by the cost of more rigid models. We therefore believe that the
strength of flexible non-parametric models to automatically adjust the
number of model parameters will probably turn out to be a crucial
property of statistical models used in data-rich neuroscience.

Although non-parametric models have been used in neuroimaging
(e.g., Lashkari et al., 2012; Andersen et al., 2014), parametric models
are today the predominant approach in neuroscience. Many big-sample
studies (i.e., data from hundreds of animals or humans) currently apply
the same parametric models as previous small-sample studies (i.e., a
few dozen animals or humans). With increasing sample size, para-
metric analyses such as Student's t-test, F-test, ANOVA, linear regres-
sion, and Pearson's linear correlation on brain data from many
hundred animals or humans yield a quantitatively increased certainty
of statistical estimates (Button et al., 2013; Miller et al., 2016).
However, we think that they might not necessarily improve the quality
of neuroscientific insight gleaned from a sample with less observa-
tions.1 In our opinion, an important caveat of parametric models
manifests itself in their systematic inability to adaptively grow in
complexity no matter how much brain data are collected and analyzed
(Ghahramani, 2015).

In any classification setting where a statistical model distinguishes
between two possible outcomes (e.g., healthy versus schizophrenic), a
linear parametric model will always make predictions based on a
separation between two classes by straight lines (or hyperplanes). Non-
linear parametric models can be used to identify more complex
structure in large datasets while keeping the model complexity (i.e.,
number of parameters) constant. By contrast, a non-parametric model
can learn a non-linear decision boundary whose shape grows more
complex with more data. In analogous fashion, classical hidden
Markov models for time-series analysis and structure discovery (cf.
example in next section) may get upgraded to infinite hidden Markov
models with a theoretically unlimited number of hidden spatiotempor-
al components that can be estimated with increasing data samples. In
non-parametric clustering (e.g., Pitman, 2006), the question of best
cluster number can be reframed as optimal cluster granularity depend-
ing on data availability to allow the number of extracted clusters to
grow organically with increasing sample size. Such non-parametric
alternatives can automatically balance between model complexity (i.e.,

number of model parameters to be estimated) and parsimony (i.e.,
efficiency of expressing the brain phenomenon). Finally, we believe
that linear support vector machines as a current go-to choice for
classification and regression (e.g., Knops et al., 2009; Jimura and
Poldrack, 2012) may be more often supplemented by non-parametric
approaches, such as random-forest and nearest-neighbor-type algo-
rithms (e.g., Ball et al., 2014; Haxby et al., 2011; Misaki et al., 2010;
Pereira et al., 2011), in future neuroscience studies.

More broadly, many interesting phenomena in the brain are likely
to be very complex. Fortunately, stochastic processes have been
proposed that realize random variables over unlimited function spaces
mapping from brain data to a certain target variable. As an important
member, Gaussian Processes (GP) can be seen as infinite dimensional
generalizations of the multivariate Gaussian distribution (Ghahramani,
2013; Orbanz et al., 2011). GPs (with exponential-type kernels) consist
in specifying probability distributions on unknown functions with the
aim to impose minimal a-priori assumptions on the learnable relation-
ships and minimal constraints on the possible non-linear interactions
(Rasmussen, 2006). Instead of fitting one parameter to each variable to
predict a behavior or clinical outcome, such as in linear regression, GPs
(with exponential-type kernels) can fit a collection of non-linear
functions with theoretically unlimited expressive capacity to explain
particularly complex brain-behavior associations. In our opinion, this
can probably enhance predictive regression and classification in large-
sample studies in neuroscience whenever the ground-truth model in
nature is not linear and additive (cf. Ripke et al., 2013).

For instance, effective scaling to the high-dimensional scenario (i.e.,
p variables > n samples) was demonstrated by a GP regression model
that could explain 70% of known missing heritable variability in yeast
phenotypes (Sharp et al., 2016). This kind of statistical analysis is today
usually performed by genome-wide association studies (GWAS) that
are based on the parametric generalized linear model (GLM) (cf. Zhang
et al., 2010; Hastie et al., 2015, pp. 31–32). GLM-based approaches
have however often explained only small fractions of the total heritable
genomic variation. GPs have demonstrated that emergent biological
insight can be gained from complex non-additive interactions between
gene locations (and thus potentially brain locations). These higher-
order non-linear interactions frequently involved groups of ~20
locations (Sharp et al., 2016), while even trying to capture all possible
pairwise gene-gene interactions is difficult for the much less flexible
GLMs in usual GWAS investigations. In fact, the computational costs of
GLM approaches typically scale exponentially as a function of the

Fig. 1. Prediction based on parametric versus non-parametric regression. Fitted models that predict the continuous outcome Y based on the observed variables X1 and X2.
Left: Ordinary linear regression finds the best plane to explain the outcome Y. Middle/Right: K-nearest neighbor regression predicts the same outcome Y based on K=1 (middle) or K=9
(right) closest data points in the available sample. Parametric linear regression cannot grow more complex than a plane (or hyperplane when there are more than two observed
variables), resulting in big regions with identical predictions Y. Non-parametric nearest-neighbor regression can grow from a rough step-function regression surface (k=1) to a smoother
and more complex regression surface (k=9) by incorporating more data. Non-parametric models can therefore outperform parametric alternatives in many data-rich scenarios
(Ghahramani, 2015). Reused with permission from James et al. (2013).

1 However, results gleaned from large data sample are less likely to suffer from power
issues and are therefore more likely to be replicable.
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interaction order (i.e., variable-variable interactions, variable-variable-
variable interactions, etc.). Further, adding all combinations of non-
linear interaction terms to a GLM can quickly lead to a scenario where
the model parameters largely exceed the number of available samples,
which makes it challenging to estimate a meaningful solution (Hastie
et al., 2015, chapter 3). Current genetic studies therefore constrain
statistical analysis, for instance, by considering only pairwise gene-gene
interactions or by considering only a pre-selected subset of genetic
locations (Ritchie et al., 2001). Compared to many parametric GLM
approaches used in genome-wide studies, we think that non-para-
metric GPs could more exhaustively search the space of higher-order
non-linear interactions (Rasmussen, 2006). In neuroscience, brain-
imaging studies for instance have already profited from GP applica-
tions, such as in EEG (e.g., Zhong et al., 2008) and in fMRI (e.g.,
Marquand et al., 2010; Lorenz et al., 2016).

GP belongs to the broader family of kernel-based methods, which
can provide statistical advantages by mapping brain variables to a
richer variable space (Hofmann et al., 2008). Non-parametric classifi-
cation or regression with kernels performs a preprocessing of the
pairwise similarity between all observations in the form of a so-called
kernel matrix (i.e., n samples x n samples). The advantage is that this
does not require an explicit mapping from individual brain variables to
the richer variable space (i.e., "kernel trick"). The statistical model
plugs in the virtual variable space instead of the original input
variables. This can lead to linear separability of complex neurobiolo-
gical effects that are not linearly separable in the original variables.
Statistical models endowed with a kernel inherit enriched transforma-
tion of the brain data with relevance to modern neuroscience (e.g.,
Marinazzo et al., 2011) because they can decrease the computational
burden in the high-dimensional scenario. Such purposeful increase of
input dimensionality and model complexity is useful for small to
intermediate datasets (roughly n < 100,000 samples), but incurs high
computation and memory costs in very large datasets (Goodfellow
et al., 2016, chapter 5.9), where the kernel matrix can grow to terabytes
sizes due to quadratic scaling with respect to the number of samples.
Disadvantages of kernels include the inability to interpret contributions
of individual variables and to distinguish informative variables from
noise. Moreover, the goal of understanding brain function will probably
involve several levels of neuroscientific analysis and kernels promise
effective modality fusion to incorporate several different types of data
(Eshaghi et al., 2015; Schrouff et al., 2016; Young et al., 2013; Zhang
et al., 2011). This is because, mathematically, kernel addition equates
with combining different data sources into a common data space. We
believe that such genuine multi-modal integration can enable conjoint
inference on behavioral outcomes, brain connectivity, function pheno-
types, and genetic variability.

In sum, brain structure, function, connectivity, and genetics are
high-dimensional in nature and thus difficult to understand for human
intuition. By expressing brain phenomena in statistical models with a
fixed number of parameters, parametric models are typically more
interpretable, easier to implement, and faster to estimate. They are
often the best choice in data-scarce scenarios, but can underfit in the
"big data" scenario. In our opinion, exclusive reliance on parametric
analysis may keep neuroscientists from discovering novel neurobiolo-
gical insights that only come to the surface by allowing for more
complex data representations in data-rich scenarios (Halevy et al.,
2009; Jordan et al., 2013, p. 63). It was recently emphasized that "the
best predictive performance is often obtained from highly flexible
learning systems, especially when learning from large data sets.
Flexible models can make better predictions because to a greater
extent they allow data to ‘speak for themselves’." (Ghahramani, 2015).
Even if more complex statistical models do not always result in greater
insight (Eliasmith et al., 2012), statistical approaches with non-
parametric scaling behavior are naturally prepared to capture more

sophisticated brain phenomena. This is because the complexity of
statistical structure and thus potentially extracted neurobiological
knowledge can grow without limit with the amount of available data
samples.

Towards more interpretable models that extract biological
structure

How statistical analysis scales to large datasets is also impacted by
the distinction between generative and discriminative models. We
emphasize that generative models are more ambitious than discrimi-
native models because generative models seek the ability to produce
new data samples consistent with the original observations (for
technical details see Box 2). In contrast, discriminative models are
only concerned with predicting a target variable. For instance, a
discriminative model would focus on predicting the disease status of
an individual based on his or her neuroimaging profile (e.g., Fan et al.,
2008; Zhang et al., 2011), while a generative model would seek to
generate the neuroimaging profile of an individual given his or her
disease status (e.g., Zhang et al., 2016).

Generative models range from biophysically realistic models that
attempt to mimic actual biological processes (Freyer et al., 2011; Deco
et al., 2013) to more abstract statistical models that seek to extract
meaningful biological structure (e.g., probabilistic ICA). While the
more abstract generative models might not correspond to genuine
biological mechanisms, the extracted structure can still be physiologi-
cally or biologically meaningful (e.g., fMRI brain networks extracted
with probabilistic ICA). A major advantage of generative models is that
their results are usually more interpretable than those of discriminative
models (see excellent examples from Haufe et al., 2014). However, in
order to produce realistic high-dimensional data examples (e.g.,
neuroimaging profiles), generative models might have to be consider-
ably more complex than discriminative models that only seek to predict
a single target variable (e.g., disease status). In these scenarios (e.g.,
Fig. 2), more data samples might be necessary for high-quality
generative modeling. Therefore with the increasing abundance of
brain data in the neurosciences, a wider deployment of generative
models will become more feasible and in our opinion, important for
understanding the brain.

Generative models can be used to jointly estimate a brain-behavior
relationship and a hidden representation in the brain that is useful for
explaining the target behavior. As an example from connectivity
analysis, dynamic causal modeling (DCM; Friston et al., 2003) is a
common approach to study 'effective connectivity' in brain imaging,
which quantifies the functional influence that one brain region exerts
on other brain regions. DCM is a generative model with neurobiological
plausibility because it captures linear and non-linear interactions
between neuronal populations together with a biophysical model of
the hemodynamic response function. DCM affords an internal repre-
sentation of how the investigator-designed external inputs (i.e., known
changes in experimental manipulation) lead to unobserved states of
neuronal populations (i.e., hidden neural activity in several brain
regions), resulting in the generation of observed evoked brain-imaging
signals. Hidden neuronal states can thus be derived from hemody-
namic responses. In contrast, using support vector regression (SVR) to
predict brain maturity from resting-state functional connectivity
(Dosenbach et al., 2010) is a discriminative approach because it does
not facilitate the generation of functional connectivity data from a
participant's age. While SVR can predict age very well from brain
measurements (Dosenbach et al., 2010), interpreting weights from
discriminative models can be misleading (Haufe et al., 2014).

Generative models can help discover how environmental percep-
tion and motor execution are reflected in measured neural signals. It is
a classic idea that sensory perception in humans and animals draws on
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the compositionality of environmental scenes into sensory primitives
(Hubel and Wiesel, 1962). As a recent example of generative modeling
in human auditory perception, the neural responses to diverse natur-
alistic sounds were stratified into distinct but spatially overlapping
activity patterns (Norman-Haignere et al., 2015). The generative model
discovered components of variation that captured selective tuning to
frequency, pitch, and spectrotemporal modulation. Complex speech

and music recruited anatomically distinct components suggesting the
existence of distinct processing pathways for speech and music
(Norman-Haignere et al., 2015).

Similarly, motor action on the ambient environment is probably
assembled from a sequence of movement primitives (Wolpert et al.,
2011) and sensorimotor learning is probably reliant on abstract
internal representations. Both of these could be explicitly captured in

Box 2: Discriminative and generative models.

Formally, discriminative models try to find a direct mapping function f from features x to a target variable y (i.e., y = f(x)). In the probabilistic
setting, this involves modeling the posterior probability P(y|x) directly. Generative models traditionally solve the prediction problem by
estimating the joint distribution P(x,y) (Jebara, 2004; Bishop and Lasserre, 2007). The prediction P(y|x) can then be indirectly obtained by
applying Bayes’ rule. Consequently, generative models can in principle produce synthetic, never observed examples x y( , )∼ ∼ by sampling from the
estimated joint distribution P(x,y). If the synthetic data x y( , )∼ ∼ is indistinguishable from real data, this suggests that the generative model is of
good quality. It is worth noting that certain new approaches, such as generative adversarial networks, do not explicitly estimate the data-
generating distribution, but can still generate extremely realistic new observations (Goodfellow et al., 2014; Goodfellow et al., 2016, p. 645).

Discriminative models are often chosen for best possible prediction of a target variable y (e.g., behavioral phenotypes, age, performance or
clinical scores) from features x (i.e., brain measurements). In contrast, generative models can also be used to predict target variable y from brain
measurements x, although the primary goal is to model how to best synthesize x from y (Fig. 2). Furthermore, generative modeling can be
performed without reference to the target variable, in which case the goal is to discover some hidden structure that can be used to “generate” the
features x (i.e., generative unsupervised learning). Generative models can thus provide detailed insight into the brain by explicitly modeling the
sources of variation from which certain observations in the brain have arisen. These sources of variation can range from being biophysically
plausible (e.g., through neural mass modeling) to abstract statistical constructs that can still be biologically meaningful (e.g., components from
probabilistic ICA). Because features unrelated to the target variable can be assigned high weights in discriminative models (Haufe et al., 2014),
generative models tend to be more interpretable, which is an important advantage when the goal is scientific discovery.
Members of discriminative models include logistic regression, support vector machines, decision-tree algorithms like random forests or gradient
boosted trees, and many neural-network algorithms. Generative models include linear and quadratic discriminant analysis, Naive Bayes, hidden
Markov models, Gaussian mixture models, latent Dirichlet allocation, many dictionary learning methods, linear/latent factor models, ICA, PCA,
probabilistic canonical correlation analysis (Bach and Jordan, 2005), as well as many non-parametric statistical models (Teh and Jordan, 2010)
and certain modern neural-network algorithms, such as autoencoders (Kingma et al., 2014). It is worth noting that linear-regression-type
techniques can be discriminative or generative. For instance, logistic regression is a discriminative model and its generative analog is linear
discriminant analysis (Bouchard et al., 2004).
In practice, the strength of generative models to jointly realize predictive modeling and a form of representation learning is often paid for by
requiring more input data, possibly more computational resources and more model parameters to fit. The reason is that generative models need
to take into account the joint distribution P(x,y), which might be considerably more complex than the class posteriors P(y|x) (Fig. 2). The model
performance can be further influenced by the additional assumptions of generative models compared to discriminative models (Bishop and
Lasserre, 2007). In conclusion, generative models can improve interpretability but are frequently outperformed by discriminative models in
prediction tasks, especially in cases with many samples (Ng and Jordan, 2002; Jebara and Meila, 2006; Xue et al., 2008) or many input variables
(Kelleher, 2015, p. 516).

Fig. 2. Class-conditional densities can be more complex than class posteriors. To predict target class y from features x, generative models (left) estimate class conditional
distributions P(x|y=c) and class priors P(y=c), while discriminative models (right) estimate the posterior probability P(y=c|x) directly. In this example, the class conditional
distributions P(x|y=c) are much more complex than the class posteriors P(y=c|x). As such, an ideal generative model would have to be more complex (with more model parameters) than
the ideal discriminative model in order to perform well in the prediction task. Hence, this more complex generative model would potentially require more training data to fit. However,
the generative model can produce new unseen examples x y( , )∼ ∼ and is typically more interpretable. Figure reused with permission from Murphy (2012).
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generative models but may become less evident using discriminative
models (but see the success of Khaligh-Razavi et al., 2014; Yamins
et al., 2014; Güçlü et al., 2015; Eickenberg et al., 2016 in under-
standing visual processing). There are already many promising appli-
cations of generative models in behavioral motor research (e.g., Acerbi
et al., 2012; Franklin and Wolpert, 2011; Sing et al., 2009), but with
much less frequent application to understanding the neural basis of
motor action (but see Diedrichsen et al., 2005). As a computational
approach to action choice, human social interaction has been described
by a generative model that explicitly incorporated possible actions and
expected subjective costs and rewards (Jara-Ettinger et al., 2016). This
statistical model potentially allows an investigator to parse the
observation of others' behavior and the derived conclusions on their
beliefs, desires, and stable character traits. If agents act according to
the generative model, the costs and rewards can be derived that were
likely to have produced a given observed action. In neuroscience, the
often less data-hungry discriminative models have so far been perva-
sive, while we expect generative models to grow in popularity along
with greater data availability. We thus propose that generative models
have the potential to carve perception, action, and cognition at their
joints by statistically uncovering the relationships between their
constituent neural elements.

Apart from sensory perception and motor execution, the possible
interpretational gains of generative models have already been demon-
strated in neuroscience studies on higher-order brain function. For
instance, hidden Markov models have recently been applied to high-
dimensional time-series data from magnetoencephalography (MEG)
recordings (Baker et al., 2014). The employed generative models
simultaneously inferred the spatial topography of the major brain
networks subserving environmental responses and their cross-talk
dynamics without making any a-priori assumptions about their anat-
omy. The model qualifies as generative because it takes into account
the joint distribution over the neural activity time-series (i.e., “ob-
served” variables2) and the underlying spatiotemporal components of
variation (i.e., hidden variables). These model properties allowed the
authors to argue that states of spatiotemporal coherence occur in 100-
200ms time windows and that these functional coupling dynamics are
faster than previously thought. As another example, neuroscientists
often conceptualize psychological experiments as recruiting multiple
neural processes supported by multiple brain regions (sometimes
called 'multi-to-multi' mapping). This century-old notion (Walton
and Paul, 1901) was recently expressed in the form of a generative
model (Yeo et al., 2015). The author-topic model (Rosen-Zvi et al.,
2010) was a natural choice because of its ability to derive unknown
components of variation (i.e., cognitive primitives) whose constituent
nodes (i.e., brain regions) can be shared to varying degrees among the
discovered components. Applying the model to 10,449 neuroimaging
experiments from the BrainMap database across 83 behavioral tasks
revealed heterogeneity in the extent to which a given brain region
participated in a variety of cognitive components and the extent to
which a given cognitive component recruited a variety of brain regions.
The results suggested that the human association cortex subserves
diverse psychological tasks by flexible recruitment of functionally
specialized networks whose constituent nodes are in part topographi-
cally overlapping.

Generative models are also useful for representation learning
(Bengio et al., 2013), which pertains to extracting hidden “manifolds”
(i.e., components of variation) directly from brain data. For instance,
autoencoders (Hinton and Salakhutdinov, 2006; Goodfellow et al.,
2016, chapter 14) are generative models that have been shown to
generalize commonly employed representation discovery methods,

including matrix decomposition techniques like ICA and PCA as well
as clustering algorithms like k-means (Baldi and Hornik, 1989; Le
et al., 2011). Applying generative autoencoder models to neural activity
data opens the possibility to simultaneously extract local, non-over-
lapping components of variation (related to the notion of brain regions)
and global, distributed components of variation (related to notion of
brain networks) (Bzdok et al., 2015). Extracting an optimized region-
network representation from brain data allows abandoning handpicked
design of new summary variables from brain measurements (i.e.,
'feature engineering'). Neurobiologically relevant representations can
be revealed as sets of predictive patterns combining network compo-
nents and region components that can together detect psychological
tasks and disease processes. This happens without being constrained to
either functional specialization into disjoint regions or functional
integration by intertwined macroscopic networks (Sporns, 2013;
Medaglia et al., 2015; Bzdok et al., 2017). The automatically discovered
functional compartments, in turn, can be potentially utilized as features
for supervised prediction.

In sum, we expect that generative models will be more readily
exploited to discover hidden structure underlying brain measurements
as data become more abundant. By exposing the low-dimensional
structure embedded within high-dimensional brain measurements,
generative models can provide more interpretable and more detailed
insights into behavior and its disturbances (Stephan et al., 2017).
However, "the more detailed and biologically realistic a model, the
greater the challenges of parameter estimation and the danger of
overfitting" (Stephan et al., 2015b). Additionally, generative models
have been argued to be essential for semi-supervised prediction from
partially annotated data (Bishop and Lasserre, 2007), yet another
topic of growing importance (Bzdok et al., 2015). Moreover, a crucial
next step in clinical neuroscience may lie in extracting underlying
pathophysiological structure from brain measurements in mental
disorders. Simply applying discriminative modeling strategies on
psychiatric patients grouped by the diagnostic manuals DSM or ICD
will likely recapitulate disease categories that are neither neurobiolo-
gically valid nor clinically predictive (Hyman, 2007; Insel et al., 2010).
Ultimately, discriminative models may turn out to be less potent for
reconstructing the neural implementation of information processing up
to the level of 'decoding' mental content and thoughts directly from
brain measurements.

Towards integration of traditional modeling regimes

The distinction between Bayesian and frequentist attitudes towards
quantitative investigation (for technical details see Box 3) is well known
in statistics (Freedman, 1995), and in neuroscience in particular
(Friston et al., 2002; Stephan et al., 2009). Bayesian modeling
emphasizes the importance of injecting a-priori assumptions into the
data analysis, whereas frequentist modeling avoids the explicit intro-
duction of prior beliefs. The Bayesian neuroscientist wants to discover
statistical relationships that are calibrated on already existing knowl-
edge deemed important by the investigator. In contrast, the frequentist
neuroscientist wants to establish statistical relationships that are as
objective and unconditioned by the investigator's expectations as
possible. Note however that Bayesian approaches can employ flat or
agnostic priors, while frequentist approaches can beconditioned on
prior beliefs on the nature of the data distribution.

In the example of connectivity analysis, DCM is a Bayesian
connectivity approach because experimentally induced connectivity
changes are modeled under probabilistic priors on various biophysical
parameters (e.g., resting oxygen extraction fraction, baseline coupling
between regions and self-connection) governing the generative model
of brain dynamics. In contrast, psychophysiological interaction (PPI) is
a frequentist connectivity method because it seeks to model the
changes in brain signals induced by experimental manipulations with-
out placing probabilistic priors on neurophysiological properties of

2 “Observed” is in quotations because the “observed” variables in this case corre-
sponded to estimates of neuronal activity after beamforming and filtering the observed
MEG data, rather than the original MEG data.
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brain dynamics (Friston et al., 1997). The Bayesian-frequentist dis-
tinction provides yet another angle in addition to the parametric/non-
parametric and discriminative/generative perspectives on statistical
models (Freedman, 1995; Roos et al. 2005; Gelman et al., 2014). Given
the dominance of Bayesian statistics in the 19th century and frequen-
tist statistics in the 20th century (Efron, 2005), one may wonder about
their relative contributions in the 21st century. It is today unclear how
well fully Bayesian models can scale to always bigger and more detailed

brain data repositories. We hence speculate that the many merits of
Bayesian statistics in neuroscience research are most likely best
exploited by integration with frequentist models that typically incur
much lower computational burden.

One appeal of Bayesian modeling is its intimate relationship to
certain prominent hypotheses about both the workings of cognitive
processes and their neural realizations. The Bayesian view of cognition
is about placing expectation priors on the concepts that underlie
perception and action in the ambient environment. After observing
new environmental evidence, humans and intelligent animals may
dynamically update the probabilistic priors on the concepts that could
have produced the evidence. The goal of the neuroscience investigator
would be to identify the algorithmic principles that govern how
organisms solve problems of logical induction. Such an agenda is
closely related to what David Marr termed the "computational" and
“algorithmic” levels of brain function (Marr, 1982). Bayesian models
have been argued to be an ideal choice to tackle three core questions in
cognitive research (Tenenbaum et al., 2011): 1) How abstract knowl-
edge drives learning from incomplete, noisy input, 2) How it is
represented, and 3) How it is acquired? The probabilistic properties
of Bayesian models are likely to be valuable for capturing uncertainty in

Box 3: Frequentist and Bayesian models.

In theory, the frequentist attitude aims at universally acceptable, investigator-independent conclusions on neurobiological processes by avoiding
hand-selected priors on model parameters. The Bayesian attitude is more transparent in the unavoidable, necessarily subjective introduction of
existing domain knowledge by specifying explicit model priors (Bishop, 2006; Murphy, 2012). Many frequentist approaches often achieve best-
guess values by treating the model parameters as fixed unknown constants and input data as randomly generated conditioned on the model
parameters (through the likelihood function). In Bayesian approaches, uncertainties in the estimation of model parameters are handled
naturally by the computation of full posterior distributions and by marginalizing (i.e., summing or integrating) over random parameters of no
interest. To this end, frequentist approaches often estimate a single set of model parameters by numerical optimization of the maximum
likelihood. This single (point) estimate of the model parameters can potentially be used to predict new data. Unfortunately, this approach can
lead to overfitting (Murphy, 2012, Chapter 2). In contrast, Bayesian approaches seek to estimate a posterior distribution over the space of model
parameters. The posterior distribution can then be used to predict new data (i.e., by marginalizing over model parameters to compute the
posterior predictive distribution), which provides protections against overfitting (Murphy, 2012, Chapter 2). The downside is that achieving
posterior distributions of model parameters and integration over model parameters is generally much more difficult than achieving point
estimates.

In practice, statistical models span a continuum between the extreme poles of frequentism and Bayesianism with many unexpected relations
connecting the two paradigms (Bishop, 2006; Murphy, 2012). For instance, there are well-known frequentist approaches that perform model
averaging, including bagging (Breiman, 1996) and boosting (Schapire, 1990). As another example, the bootstrap is a frequentist method for
population-level inference of confidence intervals and non-parametric null-hypothesis testing (Efron, 1979). This procedure however readily
lends itself to Bayesian interpretations and often agrees with the posterior distributions from Bayesian analysis under an uninformative prior
(Hastie et al., 2001, chapter 8; Hastie et al., 2015, chapter 6). As another result of their many hidden relations, frequentist and Bayesian problem
solutions can often be translated into each other. Many frequentist problems relying on gradient-based optimization can be recast as Bayesian
integration problems using Langevin and Hamiltonian MCMC methods (Girolami and Calderhead, 2011). Conversely, many Bayesian
integration problems can be recast as frequentist optimization problems using variational Bayesian approximation methods (Jordan et al.,
1999). This makes a clear-cut distinction between frequentist and Bayesian statistics less compelling.
Important for data-intensive brain science, the frequentist-Bayesian tradeoff has a critical impact on the computational budget required for
model estimation (Fig. 3). As a general tendency, the more one adheres to frequentist instead of Bayesian ideology, the less computationally
expensive and the less technically involved are the statistical analyses. It is a widespread opinion that Bayesian models do not scale well to the
data-rich setting, although there is currently insufficient work on the behavior of Bayesian methods in high-dimensional input data (Bishop and
Lasserre, 2007; Jordan, 2011; Yang et al., 2016). While the purely frequentist approach often computes maximum likelihood estimation, the
purely Bayesian approach seeks to sample from the full posterior probability distributions by computing asymptotically exact MCMC. Given
their computational cost, MCMCs have mainly been used for low-dimensional problems with few input variables. Many non-deterministic
MCMC variants suffer from i) difficulty in diagnosing convergence to the posterior distribution, ii) hard-to-control "random-walk" behavior, or
iii) limited scaling to the high-dimensional setting (MacKay, 2003, chapter 29). Fortunately, the practical applicability of Bayesian methods has
been greatly enhanced through the development of deterministic procedures for approximate inference such as variational Bayes and
expectation propagation (Jordan et al., 1999; Minka, 2001; Bishop, 2006, chapter 19). Consequently, the different challenges of solving
Bayesian posterior integrals motivated a rich spectrum of Bayesian-frequentist hybrid models (Efron, 2005) with an increasing trend towards
incorporating appealing Bayesian aspects into computationally cheaper frequentist models (cf., Kingma et al., 2014; Sengupta et al., 2015,
2016; Mandt et al., 2017).
In sum, the scalability of model estimation in the data-rich scenario is calibrated between frequentist numerical optimization and Bayesian
numerical integration. High-dimensional data with many variables have been argued to motivate novel blends between less resource-demanding
frequentist and more holistic Bayesian modeling aspects (Efron, 2005).

Fig. 3. Different shades of Bayesian inference. There is not one unique Bayesian
formulation to perform statistical estimation. Rather, there are a variety of Bayesian
frameworks. For instance, type-II maximum likelihood or empirical Bayes has genuine
frequentist properties, does not specify a prior distribution before visiting the data, and is
often used in non-Bayesian modeling. Generally, the more integrals that need to be
solved or approximated in a given Bayesian formulation, the higher the computational
budget needed for model estimation. Reused with permission from Murphy (2012).
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perception and decision-making, as well as the unavoidable presence of
randomness that characterizes neuronal circuits (Faisal et al., 2008). As
an example from computational psychology, Bayesian inference al-
lowed for an explicit model of how intelligent organisms may learn new
concepts from only single exposures to visual symbols (Lake et al.,
2015). Each letter of an invented, never seen alphabet was represented
as a combination of line stroke primitives. Bayesian inference allowed
successfully browsing a large combinatorial space of stroke primitives
most likely to have generated a given raw letter. The authors used a
Bayesian non-parametric generative model that could even produce
novel types of visual concepts by recombining parts of existing ones in
creative ways. This model was also shown to outperform the discrimi-
native, frequentist state-of-the-art model for object recognition (Lake
et al., 2015). More generally, many aspects of the mind and brain can
be recast as computational problems of inductive inference. Bayesian
probabilistic models present a particularly attractive opportunity to
decipher the mathematics of how intelligent organisms operate on and
generalize from abstract concepts of world structure (Tervo et al.,
2016).

When confronted with extensive brain data, we believe that the
many desirable properties of Bayesian modeling and the relatively
lower computational costs of frequentist models need to be balanced.
In many imaging neuroscience applications, navigating the speed-
accuracy tradeoff in Bayesian posterior inference has successfully
reduced the computational burden. This tradeoff was achieved by
using variational Bayes approximations, such as for Bayesian time-
series analysis (Penny et al., 2003), model selection for group analysis
(Stephan et al., 2009) and mixed-effects classification for imbalanced
groups (Brodersen et al., 2013), as well as by adding constraints on
macroscopic networks (Seghier and Friston, 2013) or neuronal fluctua-
tions (Friston et al., 2014; Razi et al., 2015). In the case of transdiag-
nostic clinical neuroscience (Buckholtz and Meyer-Lindenberg, 2011;
Goodkind et al., 2015; Insel and Cuthbert, 2015), hierarchical Bayesian
models might gracefully handle the pervasive problem of class imbal-
ance and provide certain levels of protection to selection bias (Murphy,
2012). Hierarchical Bayesian models can provide a parsimonious
framework for introducing statistical dependences among multiple
classes (e.g., disease groups), which might enable classes with small
sample sizes (e.g., rare diseases) to borrow statistical strength from
classes with larger sample sizes (e.g., related diseases). Finally,
Bayesian statistics treat model parameters as random, allowing for
more natural handling of model parameter (and even structure)
uncertainty than in the frequentist regime where model parameters
are assumed to be fixed (Ghahramani et al., 2013).

For instance, recent advances in non-parametric Bayesian methods
(Orbanz and Teh, 2011) combined with extensive datasets promise
forward progress in longstanding problems in cognitive and clinical
neuroscience. As a key problem in cognition, neuroscientists have not
agreed on a description system of mental operations (called 'taxonomy'
or 'ontology') that would canonically motivate and operationalize their
experiments (Barrett, 2009; Tenenbaum et al., 2011; Poldrack and
Yarkoni, 2016). As a key problem in clinical neuroscience, partly
shared neurobiological endo-phenotypes are today believed to con-
tribute to the pathophysiology of various psychiatric and neurological
diagnoses (called 'nosology') despite drastically different clinical exo-
phenotypes (Brodersen et al., 2011; Hyman, 2007; Stephan et al.,
2015a).

As an interesting observation, both these neuroscientific challenges
can be statistically recast as latent factor problems (cf. Poldrack et al.,
2012). In latent factor models (Ghahramani and Griffiths, 2006;
Goodfellow et al., 2016, chapter 13), an underlying set of hidden
components of variation are uncovered by assigning each observation
in the brain to each of the components to different degrees. The same
class of statistical models can potentially identify the unnamed building
blocks underlying human cognition and the unknown neurobiological
structure underlying diverse brain disorders. For instance, hierarchical

Bayesian models were recently borrowed from the domain of text
mining to estimate both a latent cognitive ontology (Yeo et al., 2015;
Bertolero et al., 2015) and morphological atrophy subtypes in
Alzheimer's disease (Zhang et al., 2016). Further, formal inference in
non-parametric Bayesian models can potentially handle complexity in
the brain by estimating the number of latent factors in cognition and
disease using Chinese Restaurant Processes (Kemp et al., 2006;
Pitman, 2006), the relative implications of latent causes in neurobio-
logical observations using Indian Buffet Processes (Ghahramani and
Griffiths, 2006), as well as deriving the hierarchies of cognitive
primitives and disease endo-phenotypes using Hierarchical Dirichlet
Processes (Teh et al., 2005). It is a particularly important (if not
exclusive) possibility of cluster detection in the non-parametric
Bayesian regime to allow each observation to participate in all clusters
(e.g., Yeo et al., 2014; Moyer et al., 2015; Najafi et al., 2016). This
contrasts the neurobiologically implausible 'winner-takes-all' assump-
tion (e.g., each brain location is strictly assigned to only one cluster) of
many widely used traditional clustering algorithms, including k-means,
hierarchical, and ward clustering (e.g., Yeo et al., 2011; Craddock et al.,
2012; Shen et al., 2013).

In sum, we propose that the statistical scalability of obtaining
meaningful and accurate neuroscientific answers from extensive brain
data should be balanced between the Bayesian and frequentist model-
ing agendas. Bayesian models enable explicitly informing model
estimation by prior knowledge and they have many strengths regarding
interpretational appeal, robustness to unequal group data, and in
hierarchical statistical settings. While they can generalize better in
the low-dimensional setting, scaling fully Bayesian models to handle
high-dimensional data is challenging and an active area of research (cf.
Breiman, 1997, Sengupta et al., 2015). Frequentist models, instead, are
typically more modest in the required computation resources, are
easier to use, and work faster out-of-the-box. Luckily, ingredients from
both statistical regimes can be directly integrated by readjusting the
modeling goal (Gopalan and Blei, 2013; Murphy, 2012, chapter 5;
https://jasp-stats.org). The quantitative sciences therefore show a
trend for novel blends of statistical models that are opportunistic in
marrying Bayesian and frequentist advantages (Efron, 2005; Kingma
et al., 2014). We predict that the recent emergence of extensive
datasets in neuroscience will open a window of opportunity for
exploring and exploiting more Bayesian-frequentist hybrid
approaches (cf. Brodersen et al., 2011; Gilbert et al., 2016), which
may for instance rely on empirical Bayes methods (Friston et al., 2016;
Stephan et al., 2016). We expect that such developments will probably
de-emphasize a strict dichotomy between the Bayesian and frequentist
modeling philosophies in the neurosciences.

Towards diversification of statistical inference

Statistical inference is a heterogeneous notion that has recently
been defined as the extraction of new knowledge from parameters in
mathematical models fitted to data3 (Jordan et al., 2013). We
emphasize that classical null-hypothesis testing and modern out-of-
sample generalization serve distinct statistical purposes and can be
used together in practical data analysis. They perform different types of
formal assessment for successful extrapolation of an effect beyond the
data at hand that are embedded in different mathematical theories (for
technical details see Box 4). Null-hypothesis testing evaluates whether
observations are too extreme under the null hypothesis, whereas out-
of-sample generalization evaluates how well fitted algorithms perform

3 It is worth noting that in statistics, 'inference' typically refers to procedures, such as
hypothesis testing and estimating conference intervals (performed within the same
sample). By contrast, in machine learning, 'inference' typically refers to predicting
information (e.g., hidden variables) of new data instances (i.e., out-of-sample). As such,
the broader notion of inference (Jordan et al., 2013) encompasses both hypothesis
testing and out-of-sample generalization.
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on freshly sampled, independent data. In imaging neuroscience, the
generalization performances of learning algorithms obtained from
cross-validation procedures are frequently backed up by testing the
null hypothesis of whether the achieved prediction performance is at
chance level (Pereira et al., 2009) Box 5.

Drawing statistical inference on regional brain responses during
controlled experiments has historically hinged on (parametric) classical
null-hypothesis testing, but is increasingly flanked by out-of-sample
generalization based on (non-parametric) cross-validation
(Kriegeskorte, 2015a, 2015b; Bzdok, 2016; Yarkoni and Westfall,
2016). Classical inference measures the statistical significance asso-
ciated with a relationship between typically few variables given a pre-
specified model. For instance, t-tests are often used to evaluate whether
the regional brain response, such as in the amygdala, is significantly
different between healthy participants and psychiatric patients. In
contrast, generalization inference empirically measures the robustness

of patterns between typically many variables by testing how well an
already fitted model extrapolates to unseen brain measurements
(Hastie et al., 2001). In practice, cross-validation procedures are
frequently used to quantify out-of-sample performance by an unbiased
estimate of a model's capacity to generalize to data samples acquired in
the future (Dwork et al., 2015; Varoquaux et al., 2016). This model
assessment is done by a cycle of model fitting on a bigger subset of the
available data (i.e., 'training set') and subsequent application of the
trained model on the smaller remaining part of data (i.e., 'test set').

One may think that differences between the two ways of establish-
ing neurobiological knowledge from brain measurements are mostly of
technical relevance. Yet there is an often-overlooked misconception
that statistical models with high explanatory power necessarily also
exhibit high predictive power (Friedman, 2001; Lo et al., 2015;
Shmueli, 2010; Wu et al., 2009). Put differently, a neurobiological
effect assessed to be statistically significant by a p-value may some-

Box 4: Null-hypothesis testing and out-of-sample generalization.

Statistical inference can be broadly defined as the extraction of new knowledge from parameters in mathematical models fitted to data (Jordan
et al., 2013). Classical inference focuses on in-sample estimates by explained-variance metrics of the entire data sample (Fig. 4), while pattern
generalization focuses on out-of-sample estimates by assessing prediction performance metrics on unseen data samples not used during model
fitting (Friston, 2012 appendix). Therefore the mostly retrospective viewpoint of null-hypothesis testing can be contrasted with the mostly
prospective viewpoint of the out-of-sample approach that seeks to learn a general principle from data examples and evaluate the result on
unseen examples (cf. Goodman, 1999).

In classical inference, invented almost 100 years ago (cf. Fisher and Mackenzie, 1923; Neyman and Pearson, 1933), the scientist articulates
two mutually exclusive hypotheses by domain-informed judgment with the agenda to disprove the null hypothesis embraced by the research
community. A p-value is then computed that denotes the conditional probability of obtaining an equal or more extreme test statistic provided
that the null hypothesis is correct. This conditional probability is conventionally set at the arbitrary significance threshold of alpha=0.05
(Wasserstein and Lazar, 2016). State-of-the-art hypotheses are continuously replaced by always more pertinent hypotheses using verification
and falsification in a Darwinian process (Popper, 1935/2005). The classical framework of null-hypothesis falsification to infer new knowledge is
still the go-to choice in many branches of neuroscience. Considering the data-rich scenario, it is an important problem that p-values intrinsically
become better (i.e., lower) as the sample size increases because even very small effects will become significant (Berkson, 1938). Indeed, brain-
behavior correlations of r ≈ 0.1 were found to be statistically significant when considering a sample of n = 5000 participants even after correction
for multiple comparisons (Miller et al., 2016). As reporting statistical significance alone becomes insufficient, it is now mandatory to report
effect sizes in addition to or instead of p-values in certain scientific fields (Wasserstein and Lazar, 2016). Besides null-hypothesis testing,
asymptotic consistency guarantees are a cornerstone of classical statistical theory (Fisher, 1922; Efron and Hastie, 2016). Many traditional
statistics tools have been theoretically justified by demonstrating their convergence to the "truth" as the input data grow to infinity.
In contrast, out-of-sample generalization emerged much more recently as the fundamental statistical process underlying learning in animals,
humans, and machines (Vapnik, 1989; Valiant 1984). It can be defined as testing whether an underlying complex pattern is learnable in a
dataset (Bzdok, et al., 2016b). This inferential regime operates by necessary and sufficient conditions for generalization that have been
formalized as PAC learning (probably approximately correct learning) from computational complexity theory (Valiant, 1984). This theoretical
framework answers the question "Can we extrapolate a statistical relationship discovered in one set of data to another set of data in polynomial
time?" Given a class of candidate functions defined by the statistical model (i.e., the hypothesis space), the PAC framework assesses the
performance bounds of that model in selecting a function that is likely to yield the approximately correct result on the independent test data with
high probability. The typical practical question of necessary minimum sample size is tied to the size of the hypothesis space (i.e., the number of
theoretically learnable statistical relationships). Note that PAC learnability is a stricter statistical notion than consistency guarantees for a
learning algorithm (Shalev-Shwartz et al., 2014, chapter 7).
Furthermore, a pattern generalization that is successful according to the PAC learning framework is, under mild conditions, also feasible
according to the closely related notion of Vapnik-Chervonenkis (VC) dimensions (Vapnik, 1989) from statistical learning theory (Shalev-
Shwartz et al., 2014). Analogously, the VC generalization bounds formally express the circumstances under which a class of functions is able to
learn from a given finite amount of data to successfully predict a neurobiological phenomenon in unseen data (Hastie et al., 2001, chapter 7;
Abu-Mostafa et al., 2012). The quantity of VC dimensions thus provides a probabilistic measure of whether a certain model is able to learn a
distinction given a dataset. Good statistical models have finite VC dimensions as a sufficient (but not necessary) condition for successful
approximation of the theoretically expected performance in unseen data. Note that finite VC dimensions imply PAC learnability according to the
fundamental theorem of statistical learning (Shalev-Shwartz et al., 2014, theorem 6.7). Bad statistical models entertain a too large class of
candidate functions (i.e., hypothesis space), which entails the inability for generalization conclusions on unseen data. As one of the biggest
insights from statistical learning theory, the number of configurations that can result from a certain classification algorithm grows polynomially,
while the error is luckily decreasing exponentially (Wasserman, 2013). In other words, in any intelligent organism or system, the opportunity to
learn abstract patterns in the world eventually overweighs the difficulty of generalization to new observations. In practice, cross-validation
procedures provide an accurate estimate of a model's "true" capacity to generalize to future data samples (Dwork et al., 2015).
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times not yield successful predictability based on cross-validation, and
vice versa (cf. Fig. 4; Kriegeskorte et al., 2006). We also find it
interesting to note that out-of-sample generalization with cross-valida-
tion puts the unavoidable theoretical modeling assumptions to an
empirical test by directly assessing the model performance in unseen
data (Kriegeskorte, 2015a, 2015b). In classical inference, the desired
relevance of a statistical relationship in the general population remains
grounded in formal mathematical proofs, typically without explicit
evaluation on unseen data. Moreover, their many theoretical differ-
ences are more practically manifested in the high-dimensional setting
where classical inference needs to address the multiple comparisons
problem (i.e., accounting for many statistical inferences performed in
parallel), whereas pattern generalization involves tackling the curse of
dimensionality (i.e., difficulties of inferring relevant statistical structure
in observations with thousands of variables) (Domingos, 2012; Friston
et al., 2008; Huys et al., 2016). We therefore caution that care needs to
be taken when combining both inferential regimes in practical data
analysis (Bzdok, 2016; Yarkoni and Westfall, 2016).

We will now illustrate a case of "culture clash" between extrapola-
tion based on classical inference and out-of-sample generalization. The
issue has very recently gained momentum as post-selection inference in
the statistics community (Taylor et al., 2015; Hastie et al., 2015,
chapter 6.3; Efron and Hastie, 2016 chapter 16.6) and has a precursor
in the neuroscientific literature as 'circular analysis' (Kriegeskorte et al.,
2009; Vul et al., 2008): A neuroscientist wants to predict Alzheimer
diagnosis from volumetric measurements in > 100,000 brain locations
per brain scan by support vector machines with sparsity-inducing
ℓ1-penalization using cross-validation. Importantly, the sparsity as-
sumption of the chosen model automatically chooses the minimal
subset of variables necessary for classifying healthy versus diagnosed
individuals by "silencing" the unimportant voxels with zero coefficients.
In a second step, this investigator wants to test the statistical
significance of the obtained non-zero voxel coefficients using classical
inference to obtain p-values. In this adaptive case of initial variable
selection and subsequent hypothesis testing, it is not appropriate to
conduct an ordinary significance test (i.e., classical inference) on the
automatically obtained sparse model coefficients (obtained from out-
of-sample generalization). This would involve recasting a high-dimen-
sional variable selection in the whole brain by one model into a setting

where each brain voxel is assessed independently by many hypothesis
tests (cf. Friston, 2012 appendix). Put differently, the t-test would
ignore the fact that the sparse support vector machine had already
visited the same data with the aim to reduce the number of variables to
the most important ones (Wu et al., 2009). Applying t-tests on pre-
selected variables also violates the assumption of classical statistical
theory that the model is to be chosen before visiting the data. The issue
in this data analysis scenario can be accounted for by the emerging
tools for post-selection inference (Taylor and Tibshirani, 2015). These
allow replacing the so-called naive p-values by selection-adjusted p-
values for a set of variables that have previously been chosen to be
meaningful predictors by another statistical model. This case study and
similar clashes between inferential regimes will probably soon increase
in the neurosciences and will encourage spurious findings if not
handled appropriately (Gelman and Loken, 2014; Dwork et al., 2015).

Despite the pitfalls when combining classical inference and out-of-
sample generalization, we stress that formal extrapolation determined
by classical inference and pattern generalization have also been
advantageously joined towards a given neuroscientific question. For
instance, out-of-sample generalization estimated the relative functional
contribution of the set of macroscopic brain networks (e.g., default
mode network, saliency network, dorsal attention network) during a
battery of psychological tasks (Bzdok et al., 2016). Classical ANOVA
allowed for complementary information in finding the subsets of most
explanatory networks for each psychological experiment in the task
battery. Each contributed a different statistical insight into brain
network function: Pattern generalization with cross-validation identi-
fied what combination of relative network recruitments best predicts
the presence of a given psychological task in unseen brain scans.
Classical statistical tools instead selected or altogether deselected
which k network implications explain most variance with regard to a
given psychological task.

More generally, the practice of performing formal cross-validation
in unseen data of the same kind needs to be distinguished from
performing informal extrapolation by showing that an effect discovered
in a first kind of data (e.g., brain measurements) is exploited to make a
new discovery in a second kind of data (e.g., behavioral, clinical, or
genetic data). For instance, Latent Dirichlet allocation (Blei et al.,
2003) was used to first find a nested hierarchy of brain volume atrophy

Fig. 4. Classical statistical inference and classification performance can lead to diverging conclusions. Differences between 100 brain measurements (data points) drawn
from each of two groups are evaluated using two-sample t-tests ("P-value") and classification ("Classification"), where data points on either side of the dotted lines are predicted as being
from different groups. In three cases with different data distributions, (A) t-test was statistically significant, while classification accuracy was poor, (B) t-test was not statistically
significant, while classification accuracy was high, (C) t-test was statistically significant and classification accuracy was high. This toy example illustrates that null-hypothesis rejection
and pattern recognition constitute two different statistical analyses that do not necessarily judge data distributions by the same aspects. Hence, group effects as assessed by significant p-
values do not always entail a high classification performance, and vice versa. Figure reused with permission from Arbabshirani et al. (2017).
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Box 5: Misconceptions about "big data" in neuroscience.

1) "Big data is yet another hype."
Massive data collection is transforming science, business, and government. In our opinion, this trend is only starting in neuroscience

(Miller et al., 2016) and medicine (Collins et al., 2015). Given that brain function is barely understood, clinical care for most mental disorders
often resorts to trial and error. Brain disorders have been estimated to cause ~€800 billion annual costs in Europe and to account for 13% of
global burden of disease (Gustavsson et al., 2011; Mathers et al., 2008). Modern statistics applied to medical health records was estimated to
create an annual value of ~US$300 billion in the US (Manyika et al., 2011) and £16 - £66 billion in the UK (House of Commons, 2016).
Further, a workshop on health and analytics by the European Medicines Agency concluded that "by 2020, the amount of health-related data
gathered in total will double every 73 days" (Nature Editorial, 2016). Medical care and biomedical research will probably be more and more
driven by insight and intervention at the single-subject-level, rather than establishing and clinically translating group effects (Ashley, 2016).
Enhanced exploitation of data can enable 'personalized medicine' to customize health care for individuals with the same disease by i) earlier
detection and diagnosis of medical conditions before symptom onset, ii) predicting disease trajectories for effective patient stratification, and
iii) finessing treatment decisions by predicting how well individual patients will respond to different drugs or therapies. We find it difficult to
argue against the sustained benefits of statistically exploiting large data repositories in basic and clinical neuroscience. Yet, it may require
readjusting the tension between data accessibility for the greater good of society and data privacy rights of every single citizen.

2) "It is all about the data."
The unconditional availability of high-quality datasets with rich meta-information is critical for neuroscience and keeps growing (Poldrack

and Gorgolewski, 2014). Besides emphasizing the volume of accessible data, we believe that the central question should be what
neuroscientists can actually do with it (Engert 2014; but see Anderson, 2008 and Halevy, 2009). In what ways do more brain data allow
articulating and finding answers to new kinds of research hypotheses? We think that what is currently changing is the detail of knowledge that
can be extracted about a given neurobiological phenomenon quantified in brain data. In our opinion, this will however require a symbiotic
interplay between neuroscientific reasoning styles and statistical reasoning styles (Abbott, 2016; Goodman, 2016). The choice of statistical
method constrains the spectrum of possible findings and permissible domain interpretations. Without improving statistical certainty of
neuroscientific insight and without extending what can be concluded, we think that data collection initiatives will probably not live up to the
considerable time, money, and human investments. Whether or not the promises of "big data" will be achieved intimately depends on the
formulation of neuroscience questions and statistical model properties, which can fully leverage the unprecedented information granularity.

3) "The more data, the better."
Important neuroscientific insight has been and will be derived from hypothesis-driven, well-controlled interventional studies of small

laboratory samples. Large consortium or population datasets typically recombine observational data (e.g., blood and metabolic samples, EEG,
resting-state brain scans, and genetic sequencing) that were acquired without specific experimental aims. In our opinion, the more brain
measurements are available, the more can potentially be learned about the brain given adequate statistical models. However, the more variables per
observation are to be analyzed, the more difficult statistical modeling usually becomes. High resolution in space or time (corresponding to voxels,
vertices, or time points) poses a serious statistical challenge as the so-called 'curse of dimensionality' (Hastie et al., 2001). The high-dimensional
data scenario is frequently leading astray human intuition that is accustomed to regularities of a 3D world. In fact, with linear increase of variables
captured in each observation, the necessary samples to populate these measurements grow exponentially, which complicates and incapacitates
model estimation (Bishop, 2006). We believe that perhaps no existing statistical model would be able to yield satisfactory performance if the high-
dimensional brain measurements did not have intrinsic structure leading to much lower 'effective dimensions' of interest. The tractability of model
estimation in high dimensions is therefore likely to hinge on modeling approaches that can exploit the naturally existing biological compartments
(e.g., brain regions and networks) in spatially and temporally fine-grained brain measurements.

4) "The big data challenges can be tackled by hiring more staff with quantitative university degrees."
Beside conceptual, statistical, and technical challenges, we believe that "big data" neuroscience also raises societal and educational issues. Making

sense of extensive data collections will probably be hindered by a shortage of neuroscientists with the necessary quantitative talent. While educational
opportunities for classical statistical methods are ubiquitous, systematic curricula for more modern machine learning methods currently exist at few
universities (Cleveland, 2001; Donoho, 2015). Additionally, even students with a natural aptitude for mathematics and quantitative thinking typically
require several years of practical experience to develop deep analytical skills (Barlow, 2013) that add to the load of traditional neuroscientific training.
As a global phenomenon, 140,000 to 190,000 jobs in modern statistical analysis are expected to remain vacant in the US in 2018 due to severe talent
gap (Manyika et al., 2011). This growing scarcity is also manifested in acquisitions of machine learning startups that frequently cost between $5 to $10
million per 'aqui-hired' data analyst (Henke et al., 2016). In fact, perhaps for the first time in history, the optimal skill set to become a successful
(neuro)scientist is converging to the optimal skill set for a career in data-intensive industry. Many promising quantitative neuroscientists will be lured
away to industry by higher salaries and better working conditions ('big data brain drain'; Vanderplas, 2013). In our opinion, the stakeholders in
neuroscience research need to come up with an action plan to help close the talent gap in quantitative skills.

5) "One can get by without programming skills."
Analyzing large data collections to address neuroscientific questions requires many complicated and nested modeling choices. We would like to

emphasize that the modeling choices are almost impossible to be performed by hand and exhaustively verbalized in paper publications.
Automation by computer programming will become an essential toolkit addition for next-generation neuroscientists (Wilson et al., 2014). A
scripted analysis pipeline defines a chain of experimental actions that can be infinitely copied for reuse in other laboratories.4 Computational
know-how manifested in programming code is increasingly shared with the international community and collaboratively evolves on social-coding
platforms (e.g., www.github.com). In our opinion, the widespread adoption of script programming is likely to propel high-throughput statistical
analysis, improve provenance tracking and reproducibility (Nosek et al., 2015), hence accelerating the pace of neuroscientific knowledge
production.

4 It is worth pointing out that running the same scripts might not necessarily lead to
the same results because underlying software libraries (e.g., floating point libraries)
might be different across computing platforms (linux versus windows). The use of
containers might alleviate this issue (Poldrack et al., 2017).
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endo-phenotypes in Alzheimer's disease. The clinical relevance of the
atrophy endo-phenotypes was subsequently corroborated by revealing
distinct decline trajectories in behavioral data on memory and execu-
tive function (Zhang et al., 2016). Additionally, informal extrapolation
can also be performed based on different kinds of neuroscientific
methods that address the same brain phenomenon. For instance, the
neurobiological question "Are regions A and B connected?" can be
confirmed by independent methods to quantify inter-regional coupling,
such as structural and functional connectivities (Eickhoff et al., 2015).
This is important because fMRI, EEG, MEG, fNIRS, and other brain
imaging methods measure biological phenomena only indirectly. As
such, complex processing and analysis methods are necessary to extract
neuroscience discoveries from data. Extrapolating a demonstrated
effect in a different modality (e.g., behavior, genetics, microbiomics)
increases confidence that the findings reflect neurobiological reality.
Combining different forms of validating discovered statistical relation-
ships can therefore enhance the reproducibility of neurobiological
findings (also see Nichols et al., 2017).

In sum, the leap from quantitative brain measurements to neuro-
biological knowledge is secured by statistical inference. We emphasize
that there exists not one but several different types of statistical
inference that can ask a certain neuroscientific question in different
mathematical contexts that require differently nuanced neurobiological
interpretations. Historically, classical inference was invented for pro-
blems with small samples that can be addressed by plausible, hand-
picked models with a small number of parameters (Efron and Hastie,
2016). P-values and other classical in-sample estimates may therefore
lose their ability to meaningfully evaluate model fit in data-rich
neuroscience. Indeed, some authors emphasize that "one should never
use sum of squared errors, p-values, R2 statistics, or other classical
measures of model fit on the training data as evidence of a good model
fit in the high-dimensional setting." (James et al., 2013, p. 247, their
emphasis). In contrast, we expect that out-of-sample generalization by
successful cross-validation to independent data samples will be in-
creasingly used given natural tuning to statistical estimations with
more parameters and larger datasets. Moreover, out-of-sample gen-
eralization may be particularly important for a future of personalized
psychiatry and neurology because cross-validated predictive models
can be applied to and obtain answers from a single patient (Stephan
et al., 2015b). Classical inference by null-hypothesis testing cannot
typically produce such intra-individual predictions as it is constrained
to using the entire data sample to test for (theoretical) extrapolation of
an effect at the population level (Bzdok et al., 2016b; Arbabshirani
et al., 2017). Ultimately, data richness will increasingly require
preliminary dimensionality-reduction and feature-engineering proce-
dures, such as k-means clustering and ICA decomposition, that do not
themselves perform any type of statistical inference. We think that a
back and forth between dimensionality-reducing data transformations,
pattern generalization and hypothesis testing of the discovered candi-
date effects will become indispensable tools for understanding brain
and behavior in the 21st century.

Towards deep learning models?

It is important to appreciate that some statistical models, especially
modern deep neural network (DNN) algorithms, may not neatly fit into
the traditional definitions of parametric versus non-parametric, dis-
criminative versus generative, and frequentist versus Bayesian (Efron
and Hastie, 2016, p. 446). DNNs excel at hierarchical non-linear
classification or regression to automate feature extraction and capture
higher-order statistical relationships (Schmidhuber, 2015; Goodfellow
et al., 2016). Today's DNN models were recently enabled by the co-
occurrence of i) increased data availability, ii) more computational
resources to train always-larger DNNs, iii) a series of algorithmic
advances.

More specifically, the parametric versus non-parametric distinction

may become blurry for DNNs because of their high number of nested
non-linear layers and possibly tens of millions of model parameters (cf.
Bach, 2014; Mohamed et al., 2015; Efron and Hastie 2016; Goodfellow
et al., 2016, chapter 6.2.1.2). On the one hand, DNNs practically
correspond to the non-parametric notion in capturing always more
complex structure with increasing input data as they utilize extremely
large number of parameters and hence have a higher than necessary
expressive capacity. On the other hand, DNNs do not formally satisfy
the non-parametric notion of growing model parameters as data
accumulate because the number of parameters is fixed. Similarly, the
majority of current DNNs primarily qualify as discriminative statistical
models. They can however use differentiable generator networks that
take hidden variables as input to learn and draw samples from possible
distributions over the data x determined by the model architecture
(Goodfellow et al., 216, p. 684–686). Generative adversarial networks
are an example of a discriminative-generative hybrid model, where a
discriminative component distinguishes real data points as synthesized
or real and its generative component aims to increase the error of the
discriminative component (Goodfellow et al., 2014). Finally, many
DNNs primarily qualify as frequentist models. They can however
incorporate an unusual Bayesian component, such as by approximating
the Bayesian posterior distribution using a separate deep inference
network (Kingma et al., 2013; Kingma et al., 2014). Collectively,
modern DNN approaches appear to often escape classical statistical
notions.

Moreover, the tremendous success of recent DNNs in different
application domains is partly due to sample sizes of n > 1,000,000
(LeCun et al., 2015; Jordan et al., 2015). In stark contrast, the
reference datasets in brain imaging, today, reach between ~1000
participants (Human Connectome Project) and ~10,000 participants
(UK Biobank Imaging), while genetic datasets are approaching the
100,000 participant margin for certain phenotypes (e.g., Psychiatric
Genomics Consortium). Therefore, despite the growing literature
applying DNNs to neuroscience applications (e.g., Kim et al., 2014;
Plis et al., 2014; Khaligh-Razavi et al., 2014; Yamins et al., 2014; Zhang
et al., 2015; Güçlü et al., 2015; Eickenberg et al., 2016; Jang et al.,
2017), exploiting DNNs in neuroscience may be hindered by the brain
data we currently have. Truly deploying DNNs for current neuroima-
ging resources would require a non-traditional formulation of neu-
roscience applications where for instance, the number of samples
corresponds to the number of voxels or the number of time points,
rather than the number of participants.

Concluding remarks and future perspectives

Following astronomy, particle physics, and genetics (Burns et al.,
2014), massive data is the new reality in neuroscience and medicine.
Rich datasets can extend the spectrum of possible findings and
permissible conclusions about the brain. The progressively growing
datasets and information granularity will, in our opinion, require a
tectonic shift in data analysis practices (Bühlmann et al., 2016; Henke
et al., 2016). Neuroscientists have to extend their modeling instincts
towards quality of neurobiological insight that adaptively increases as
data accumulate (Ghahramani, 2013; Efron and Hastie, 2016) and
towards prediction on the single-subject level (Roberts et al., 2012;
Arbabshirani et al., 2017; Stephan et al., 2017). Successfully adopting
and flexibly switching between neuroscientific thought styles and
statistical thought styles will probably turn into a precious key skill
(Abbott, 2016; Goodman, 2016). We believe that next-generation PhD
curricula should foster understanding of core statistical principles and
include machine learning, computer programming, distributed multi-
core processing, cloud computing, and advanced visualization (Akil
et al., 2016; Vogelstein et al., 2016). Neuroscience is entering the era of
large-scale data collection, curation, and collaboration (Poldrack and
Gorgolewski, 2014) with a pressing need for statistical approaches
tailored for the data-rich setting. These may frequently lie beyond the
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scope of the statistical repertoire cherished today. Analyzing extensive
datasets with the most effective statistical techniques at our disposal
would be an optimal use of public financial resources and our limited
scientific efforts (Box 6).
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● Adaptive modeling approaches with non-parametric scaling can automatically increase model complexity (and potentially neurobiological
insight) with increasing amount of data. We believe that non-parametric modeling strategies will therefore increasingly complement

parametric statistical models.
● We believe that the widespread use of discriminative statistical models will be supplemented by more interpretable generative models that

reveal biological insights into behavior and disease.
● It is our opinion that the tension between frequentist and Bayesian attitudes in statistical analysis may be relieved by hybrid models comb-

ining their advantages.
● While neurobiological knowledge is routinely inferred by null-hypothesis testing, we believe that the use of out-of-sample generalization by

cross-validation is likely to grow in importance.
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