
Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage

Proportional thresholding in resting-state fMRI functional connectivity
networks and consequences for patient-control connectome studies: Issues
and recommendations

Martijn P. van den Heuvela,⁎, Siemon C. de Langea, Andrew Zaleskyb, Caio Seguinb,
B.T. Thomas Yeoc, Ruben Schmidtd

a Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Heidelberglaan 100 PO Box 85500, Room: A01.126, Utrecht,
GA 3508, The Netherlands
b Melbourne Neuropsychiatry Centre & Melbourne School of Engineering, The University of Melbourne, Australia
c Dept of Electrical and Computer Engineering, Clinical Imaging Research Center, Singapore Institute for Neurotechnology, Memory Network Program,
National University of Singapore, Singapore
d Brain Center Rudolf Magnus, Department of Neurology, University Medical Center Utrecht, The Netherlands

A B S T R A C T

Graph theoretical analysis has become an important tool in the examination of brain dysconnectivity in
neurological and psychiatric brain disorders. A common analysis step in the construction of the functional graph
or network involves “thresholding” of the connectivity matrix, selecting the set of edges that together form the
graph on which network organization is evaluated. To avoid systematic differences in absolute number of edges,
studies have argued against the use of an “absolute threshold” in case-control studies and have proposed the use
of “proportional thresholding” instead, in which a pre-defined number of strongest connections are selected as
network edges, ensuring equal network density across datasets. Here, we systematically studied the effect of
proportional thresholding on the construction of functional matrices and subsequent graph analysis in patient-
control functional connectome studies. In a few simple experiments we show that differences in overall strength
of functional connectivity (FC) – as often observed between patients and controls – can have predictable
consequences for between-group differences in network organization. In individual networks with lower overall
FC the proportional thresholding algorithm has to select more edges based on lower correlations, which have
(on average) a higher probability of being spurious, and thus introduces a higher degree of randomness in the
resulting network. We show across both empirical and artificial patient-control datasets that lower levels of
overall FC in either the patient or control group will most often lead to differences in network efficiency and
clustering, suggesting that differences in FC across subjects will be artificially inflated or translated into
differences in network organization. Based on the presented case-control findings we inform about the caveats
of proportional thresholding in patient-control studies in which groups show a between-group difference in
overall FC. We make recommendations on how to examine, report and to take into account overall FC effects in
future patient-control functional connectome studies.

Introduction

The measurement and investigation of functional connectivity has
become an important approach in the field of connectomics, the study
of the topological organization of the structural and functional wiring
of nervous systems (Bullmore and Sporns, 2009; Damoiseaux et al.,
2006; Fox and Raichle, 2007; Smith et al., 2009; Smith et al., 2011; van
den Heuvel and Hulshoff Pol, 2010). Furthermore, the examination of
the topological aspects of functional brain networks and the possibility

of examining possible disruptions in network organization in disease
has become an invaluable tool for studying brain dysconnectivity in a
wide range of psychiatric and neurological disorders (Filippi et al.,
2013; Fornito and Bullmore, 2012; Stam and Reijneveld, 2007).

A typical experimental setting to examine differences in functional
brain network organization is the acquisition of resting-state fMRI data
(or equivalent EEG/MEG), followed by the computation of functional
connectivity by means of correlation analysis between the measured
time-series. Performing correlation analysis for all possible pairs of
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brain regions results in a functional connectivity matrix for each of the
individual subjects, with the obtained case and control matrices often
“thresholded”, meaning the selection of those connections that reach a
certain absolute or relative threshold. Although studies have suggested
that this operation may ignore potentially valuable information during
functional network construction (Gallos et al., 2012; Goulas et al.,
2015; Santarnecchi et al., 2014), thresholding is a commonly applied
approach in functional connectomics to remove spurious connections
and to obtain sparsely connected matrices, a prerequisite for the
computation of many graph theoretical metrics.

Two of the most commonly applied approaches to perform this
thresholding include the “absolute threshold” and the “proportional
threshold” approach. The absolute threshold approach describes the
selection of those network edges that exceed an absolute threshold T,
for example all correlations higher than 0.3, with (in the binary case) all
surviving connections set to 1 and all other network connections set to
0. Although a simple and potentially powerful approach to reconstruct
functional networks, setting an absolute threshold can lead to different
numbers of network edges across datasets, and -importantly for disease
studies- different levels of network density between control and patient
cases. Network density, expressing the proportion of all possible
connections that are present in the network (also commonly referred
to as “graph density” or “connection density”) has been shown to have a
direct effect on the computation of many graph metrics (see in
particular the study of Van Wijk et al. (2010) for a detailed theoretical
and experimental overview), potentially leading to statistical differ-
ences in network metrics between patient and control populations,
effects that should be attributed to underlying differences in number of
network connections and not directly to disease related differences in
network topology. As such, this approach has been suggested to be less
favorable for case-control studies (Nicols et al., 2016).

To overcome this issue, studies have proposed an alternative
approach of using a proportional threshold (Achard and Bullmore,
2007; Bassett et al., 2009; Van den Heuvel et al., 2008), aiming to keep
the number of connections fixed across all individuals to rule out the
influence of network density on the computation and comparison of
graph metrics across groups. The proportional thresholding approach
includes the selection of the strongest PT% of connections in each
individual network, setting all (in the binary case) surviving connec-
tions to 1 and other connections to 0. This selection procedure is often
referred to in literature as an analysis in which the “density” (Jalili,
2016; Van den Heuvel et al., 2008) or “network cost” (Achard and
Bullmore, 2007; Bassett et al., 2008; Ginestet et al., 2011) is set fixed
across patient and healthy control cases, with potential between-group
differences in graph metrics (e.g. clustering, path length) assumed to
result from differences in the topological organization of edges and not
due to differences in number of edges. Compared to absolute thresh-
olding, proportional thresholding has been argued to reliably separate
density from topological effects (Braun et al., 2012; Ginestet et al.,
2011) and to result in more stable network metrics (Garrison et al.,
2015), making it a commonly used approach for network construction
and analysis in disease connectome studies.

However, as discussed in the graph theoretical studies of Van Wijk
et al. (2010) and others (e.g. (Alexander-Bloch et al., 2010; Fornito
et al., 2013; van den Heuvel and Fornito, 2014) the inclusion of lower
and thus potentially less reliable correlations as functional network
edges can have an effect on the organization of the constructed
functional network, and thus an effect on subsequently derived graph
metrics. The effect of including potentially less reliable connections has
been discussed in the theoretical setting of artificially generated toy
networks (van Wijk et al. 2010). Here, we take an empirical and
practical approach on this matter. We studied the effect of proportional
thresholding on the formation of functional networks and the subse-
quent computation and comparison of graph metrics across groups, in
particular in the case of studying patient-control differences in func-
tional network organization.

To be more specific about our study aim, we set out to investigate
how the use of proportional thresholding can introduce (artifactual)
topological differences in network structure in a patient - control brain
network study, differences that perhaps should be attributed to under-
lying between-group differences in functional connectivity and not
directly to network architecture. We write this report to caution against
the use of this approach in disease network studies in which there is a
widespread between-group difference in overall functional connectivity
strength (FC). Patient populations often show different levels of FC as
compared to controls (be it the result of disturbed brain communica-
tion, changes in neural activity and/or of increased noise, global signal
or motion), and in the methods and results section of this report we
show that this can have a pronounced effect on the computation and
between-group comparison of network metrics when using propor-
tional thresholding.

The theoretical background of this effect can be understood as
follows (see also (Fornito et al., 2013; van den Heuvel and Fornito,
2014; van Wijk et al., 2010)): When setting a proportional threshold,
the number of connections across patient and healthy control subjects
is set to the same fixed number, leading to a fixed network cost /
density across all included participants. In the case of a dataset in
which the edges show lower levels of FC as compared to other datasets
in the sample, this network density can only be reached by including
more low correlations to reach the required number of network edges.1

Due to the nature of the computation of the correlation coefficient,
lower correlations based on the same number of time-point samples
are less reliable, which will increase the chance of including a random
noisy connection into the reconstructed network, an effect detrimental
for the computation of network metrics (see also Zalesky et al. (2016)
and discussion).

While this effect may average out when averaging functional
networks, for example in studying the healthy functional connectome,
in the setting of a patient-control study this can have severe con-
sequences. Having lower overall functional connectivity in one of the
groups could lead to significant differences in network structure due to
the inclusion of more random connections, making the network as a
whole more comparable to randomly connected networks. The small-
world model of Watts and Strogatz (1998) shows that random edges
can act as shortcuts in the network, reducing the overall shortest path
length and lowering the chance of finding topologically closed local
circuits. Moreover, the Watts and Strogatz model illustrates that the
inclusion of even a few random edges can strongly reduce the overall
shortest path length (and therewith increase global efficiency) in the
network, illustrating that graph properties can rapidly change with
respect to small changes in network wiring. Following this line of
thought, in the case of a patient population showing lower overall
connectivity, setting a proportional threshold may introduce additional
random shortcuts, which can in turn have a pronounced effect on the
creation of shortest paths. This will be reflected in an increase in
network global efficiency, reduction in overall network clustering, and a
network topology more comparable to that of random networks.
Conversely, if patients show increased levels of functional connectivity
as compared to healthy controls, this can lead to lower global efficiency
and increased local clustering, and thus a -perhaps incorrectly con-
cluded- less efficient and more locally clustered network organization
in patients.

In what follows we show empirical evidence for this phenomenon in

1We assume that a large subset of elements in the matrix show reduced correlations.
We recognize that this does not always have to be the case: overall FC can be lower while
the proportionally thresholded edges across datasets are similar. For example, compar-
ison of the sorted list of edge weights of two toy networks A=[0.9 0.8 0.5 0.4] and B=[0.9
0.8 0.2 0.1] results in network B having a lower overall weight, but a proportional
threshold of 50% results in networks with equal strength across selected edges. In the
Supplemental Materials we verify that in the empirical datasets examined in this study
the overall strength of all as well as of the selected subset of edges is lower.
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functional brain networks constructed using proportional thresholding.
First, we illustrate the effect in patient and control datasets, derived
from both fMRI and EEG data. Second, we explore the consequence of
using proportional thresholding in functional networks of a population
of healthy control subjects, data taken from the high-quality HCP
dataset. We show that by ordering subjects solely on their overall FC we
can mimic typically observed patient-control effects of network differ-
ences, with the extent of between-group differences dependent on the
difference in FC between groups. We conclude by making recommen-
dations for functional network researchers to verify that their reported
patient-control effects of disrupted network organization are not a
direct result of underlying differences in overall connectivity strength.

Methods

By means of four simple experiments we examined and tested the
effect of inter-subject variation in overall FC on the construction of
functional networks using proportional thresholding and the subse-
quent computation of the graph metrics of global efficiency GE and
network clustering C, two basic metrics commonly examined in disease
connectome studies. We focus our examination on graph metrics of
binary versions of the derived functional networks, describing only the
presence and absence of connections between cortical regions. We
decided to primarily focus on binary networks to show that differences
in graph metrics between selected groups are the result of the
topological organization of selected network edges and not the result
of differences in amount and/or distribution of weights across the set of
selected network edges. In the Discussion and Supplemental Materials
(page 4–8, section normalized binary and weighted metrics) we discuss
and show that the same effect might occur –but with varying degree–
in normalized binary and normalized weighted graphs.

In what follows we first describe the fMRI and EEG functional
connectivity datasets used in this study, followed by a brief formal
description of the examined graph metrics and the procedures used for
statistical evaluation of between-group effects. The Results section
gives a description of four illustrative experiments that examine the
influence of overall FC on graph metrics and between-group effects, as
well as strategies to correct for confounding effects of total functional
connectivity on graph metrics.

Dataset I: Schizophrenia

The first patient-control dataset was taken from a study on
anatomical network connectivity and structural-functional coupling
in schizophrenia patients (van den Heuvel et al., 2013), from which we
included functional connectivity networks of 48 patients and 44
matched healthy controls. A brief description of the construction of
the functional connectivity matrices is given below and for details we
refer to previous work of (van den Heuvel et al., 2013). Data was
acquired on a 3 T Philips Achieva clinical scanner at the University
Medical Center Utrecht, using an eight-element SENSE receiver head-
coil. Participants underwent a 45-minute scanning session, in which a
resting-state fMRI and an anatomical T1 scan was acquired. Resting-
state Blood Oxygenation Level Dependent (BOLD) signals were re-
corded during a period of 8 min (parameters: 3D PRESTOSENSE, TR/
TE 22/32 ms using shifted echo, flip-angle 9 degrees; p/s-reduction 2/
2; dynamic scan time 502 ms, 4 mm isotropic voxel size, 32 slices
covering whole brain). A T1-weighted image was acquired for anato-
mical reference (parameters: 3D FFE using parallel imaging; TR/TE
10 ms/4.6 ms; FOV 240×240 mm, 200 slices, 0.75 mm isotropic voxel
size). Data processing of the resting-state fMRI data involved realign-
ment and co-registration to the T1 image, removal of linear trends and
first order drifts, removal of global effects (regressing out the white
matter, ventricle, and global mean signals, as well as 6 motion
parameters) and band-pass filtering (0.02–0.12 Hz). Potential effects
of motion were removed by means of ‘scrubbing’ (Power et al., 2012),

removing scan frames from the individual time-series in which
significant movement was detected (see for details (van den Heuvel
et al., 2013)). Next, tissue classification and cortical segmentation was
performed on the basis of the T1 scan, followed by parcellation of the
cortex into 68 cortical areas using the Desikan-Killiany atlas (Desikan
et al., 2006; Hagmann et al., 2008). Functional connectivity between
each of the 68 cortical regions (34 left hemisphere, 34 right hemi-
sphere) was assessed by means of correlation analysis, computing the
Pearson correlation coefficient between the time-series of region i and
region j, for all combinations of regions i and j of the Desikan-Killiany
atlas, resulting in a fully filled 68×68 FC matrix.

Dataset II: ADHD and Autism

Functional connectivity matrices of patients with ADHD and
healthy controls were downloaded from the open data USC
Multimodal Connectivity Database, describing resting-state functional
connectivity between 190 brain regions for 190 patients and 330
healthy controls (URL:http://umcd.humanconnectomeproject.org/)
(Brown et al., 2012). Functional connectivity matrices of patients
with autism and matched healthy controls were taken from the same
connectivity database, describing functional connectivity matrices
between 264 regions for 42 patients and 37 matched controls.

Dataset III: EEG Autism

To show that the reported effects are not specific to networks
derived from resting-state fMRI data, we also examined the effect of
proportional thresholding on functional connectivity matrices derived
from EEG recordings. FC networks were taken from a previously
described EEG study (Boersma et al., 2010), including EEG recordings
and subsequent functional connectivity reconstruction in a set of 12
autistic children and 19 matched healthy controls (32 electrodes,
2048 Hz sampling rate, neutral stimuli condition) (Boersma et al.,
2010). In this study, functional connectivity was assessed by means of
the phase lag index (PLI) (Stam et al., 2007) between the time-series of
32 skull electrodes (a metric ranging from 0 to 1, with 0 indicating no
functional coupling and 1 indicating strong coupling, beta-band),
resulting in a filled 32×32 functional connectivity matrix for each of
the participants.

Dataset IV: Human Connectome Project

Functional connectivity matrices were reconstructed for the Human
Connectome Project (Glasser et al., 2013; Van Essen et al., 2012) (Q3
release, resting-state fMRI data of 466 healthy controls included, voxel-
size 2mm isotropic, TR/TE 720/33.1 ms, 1200 volumes, 14:33 min,
first LR run taken here). fMRI volumes were realigned, co-registered
with the T1 image, band-pass filtered (0.01–0.1 Hz), corrected for
global effects by regressing out effects of motion (taken as the
realignment parameters as described by HCP), global signal mean,
ventricle and white matter signal, and scrubbed (FD=0.25,
DVARS=1.5) for potential movement artifacts following standard
procedures (see (van den Heuvel et al., 2015; van den Heuvel et al.,
2016) for all details). T1 scans were used to parcellate the cortex into
68 cortical areas using the Desikan-Killiany atlas (the same as in the
schizophrenia dataset), after which a functional connectivity matrix
was derived by computing Pearson correlation coefficients between
every pair of average regional time-series. In addition, regional signal
power was computed over the preprocessed time-series for all regions i,
with total signal power over the entire dataset computed as the average
power across all regions i.

Within-subject networks

To examine the effect of proportional thresholding on graph metrics

M.P. van den Heuvel et al. NeuroImage 152 (2017) 437–449

439

http://umcd.humanconnectomeproject.org/


of functional networks constructed within a single subject we divided
the functional time-series (1200 time-points) in half and made a
corresponding FC matrix of each of the two parts (i.e. time points 1
to 600 and time points 601 to 1200) in the exact same way as on the
entire time-series. We chose to split one time-series in half rather than
taking one of the other runs available in the HCP data to rule out any
potential difference in physiological state between different runs,
assuming that within one run (~15 min) the physiological state of a
subject would remain the same. To verify this, we checked across the
466 datasets that the low and high overall FC runs (see next paragraph
for the formal definition and computation of overall FC of a matrix)
were equally distributed across the two runs to rule out any potential
systematic differences between the two runs (for example differences in
arousal as one might argue that subjects are potentially more relaxed or
more sleepy in the second part of a run). This was indeed the case (242
subjects showed the lowest FC in the first part and the highest in the
second part (52% of total group), 224 subjects showed the highest FC
in the first and the lowest FC in the second part (48%)). Extending this
split-half analysis we also examined dynamical networks creating
multiple FC networks by selecting blocks of 100 time-points by means
of a moving window across the complete time-series (Results shown in
Supplemental Materials, page 15, dynamical networks).

Overall functional connectivity

For each individual matrix, the overall functional connectivity of a
matrix (referred to in this paper as overall FC) was taken as the mean of
all positive values across all elements of the matrix. Computing overall
FC by taking absolute values revealed similar findings.

Proportional thresholding

Proportional thresholding was performed on the FC matrices by
selecting the PT% strongest connections (i.e. the strongest PT%
correlations) of the derived functional connectivity matrix and setting
these connections to 1, with all other connections set to 0. The
application of a PT% proportional threshold to a functional connectiv-
ity matrix resulted in a binary graph with a density of PT%. In this
study we examined a range of levels of PT from 35% to 1% in steps of
1% (see experiments below), with the application of the proportional
threshold of PT=15% used to illustrate effects. From now on we refer to
setting a proportional threshold of PT% and the subsequent binariza-
tion of the matrix to make an unweighted undirected graph as the
application of a proportional threshold of PT%.

Graph metrics

After thresholding, topological properties of the reconstructed
binary connectivity matrices were quantified by means of graph
theoretical analysis. We focus on the commonly used basic metrics of
global efficiency GE and clustering C, computed as implemented in the
Brain Connectivity Toolbox (Rubinov and Sporns, 2010). Binary global
efficiency GE was computed as the inverse of the harmonic mean of the
shortest path length between all nodes i and j in the network, with
higher levels of GE often interpreted as a network topology better
suited for efficient network transfer. Binary clustering C was computed
as the ratio of the present and total possible number of connected
triangles around a network node i, averaged over all nodes i in the
network. In the Supplemental Materials we report on a few other
commonly used metrics (Supplemental Materials, page 13, other
metrics).

Between-group comparison and statistical evaluation

Statistical evaluation of differences in graph metrics was assessed
using t-tests, with differences between two groups (i.e. patient /

controls) tested using two-sample t-tests and differences within
individual datasets (see experiment 2 evaluating HCP data) tested by
means of paired samples t-tests. Non-parametric testing by means of
permutation testing (random shuffling group assignment) (Bassett
et al., 2008; van den Heuvel et al., 2010)(10,000 permutations
examined) revealed similar findings. We examined and statistically
tested a wide range of proportional thresholds as well as several
different patient and healthy control groups to illustrate that the same
effect occurs over a range of thresholds and across a wide range of
conditions. To test across a wide range of settings and analysis
strategies a two-sided alpha threshold of 0.05 was used.

Results

Experiment 1: Disease datasets

In the first experiment we examined empirical differences in GE
and C in the patient-control datasets, examining graph organization in
schizophrenia, ADHD and autism, across both fMRI and EEG datasets.
For this we followed a standard analysis procedure for disease
connectome studies, with individual functional connectivity matrices
first proportionally thresholded, binarized and then analyzed with
graph theory, followed by statistical evaluation of the derived graph
metric values across the patient and control group.

Schizophrenia dataset

As expected, the population of schizophrenia patients showed
significantly higher GE and lower C as compared to the population of
controls. For example, for an exemplary threshold of 15%, patients
showed a significantly higher global efficiency GE (p=0.0284, Fig. 1)
and trend-level lower clustering C (p=0.0523, Fig. 1) as compared to
the population of healthy controls, which is commonly interpreted as a
more random network organization in patients. We tested overall FC
between patients and controls, observing a 4.8% lower overall FC in
patients (p=0.0052). Fig. 1C shows the effect in GE for the range of
examined proportional thresholds.

Next, we examined whether these group differences could be driven
by a general relationship between overall FC and graph metrics across
the group of subjects. Across the complete group (thus patients and
controls combined) overall FC correlated to binary GE (proportional
threshold: 15%, r=−0.87, p < 0.001, Fig. 1D), with networks based on
lower FC connections on average showing higher GE. Overall FC and
binary C were also correlated (r=0.82, p < 0.001).

To further illustrate the potential influence of overall FC on graph
metrics, in particular in the context of between-group comparison of
graph metrics, we ordered the set of 48 patients and 44 controls
according to individual overall FC, with the set of controls and patients
ordered separately. We then tested, for an exemplary proportional
threshold of 15% (see below for an examination of the entire range
between 35% and 1%) the difference in GE and C for a subsample of
patients and controls that no longer showed a significant difference in
overall FC, removing one by one the remaining lowest FC scoring
patient and the top highest FC scoring control from the two samples
until the overall between-group difference in overall FC showed a p >
0.05. The first subsample that reached this criterion involved 46 patient
and 42 control datasets, i.e. the removal of 4 datasets in total.
Statistical testing of this subpopulation of patients and controls no
longer revealed a significant effect in GE (p=0.134) nor in C (p=0.239).
To be more strict on differences in FC (to rule out that small effects in
FC could still result in changes in GE and C) we also performed the
same analysis but now with a stricter threshold, removing subjects
until a t-statistic of < 1 (p~0.15) was reached. The first subsample that
reached this criterion involved 44 patient and 40 control datasets.
Statistical testing of this subpopulation of patients and controls no
longer revealed any indication of a between-group effect in GE

M.P. van den Heuvel et al. NeuroImage 152 (2017) 437–449

440



(p=0.4272, Fig. 1) nor in C (p=0.5217). To further verify that this
reduction was not an effect of reduced study power (due to a smaller
sample size), we performed a similar test on a subset of 44 patients and
40 controls, randomly selected from the total population of patients
and controls, which did again reveal differences in GE (p=0.0272,
Fig. 1) and a trend level difference in C (p=0.0681), as well as a
difference in overall FC (p < 0.001). Performing a 1000 random draws
revealed similar findings (e.g. GE: median t-score −2.01 corresponding
to p=0.02168). To finally show that the effect was not the result of the
removal of the most severely ill patients, we performed the same
subsample analysis one more time, now removing only control samples
(7 removed until between-group FC showed a t-score < 1). This
similarly revealed a diminishing effect on group differences in GE
(p=0.551) and C (p=0.406).

To further examine the extent of FC differences on the computation
and evaluation of graph metrics between groups, we next performed a
series of comparisons between a range of subsamples of patients and

controls. First, from both the patient and control population a
subsample of the top m=20 subjects (i.e. subjects [1,2,.,m]) scoring
respectively the lowest (for the patients) and the highest (for the
controls) on FC were selected and compared (see Fig. 2A for a
schematic overview of this analysis). Next, subsamples with the second
highest / lowest overall FC, i.e. subjects [2,3,.,m+1], of both popula-
tions were selected and compared, followed by a selection of the
subsample [3,4,.,m+2] etcetera, until n – m + 1 ordered subgroups
were selected (i.e. up until the set [n-m+1,n-m+2,.,n], with n the
sample size of the smallest of the two groups). [To match the size of the
two samples we sampled until the size of the smallest of the two groups
was reached. Excluding the four lowest FC samples of the largest of the
two groups revealed similar results]. As such, for the first test the
difference in overall FC between the patient and control sample was
maximized (controls having 17% more overall FC than the subsample
of patients, p < 0.0001), but per subsequent test the total difference in
FC between the tested patient and control set was reduced, and with

Fig. 1. Effect of proportional thresholding on an exemplary patient-control dataset. Panel A reports the results of a typical graph theoretical analysis on functional connectivity (FC)
networks of schizophrenia patients (n=48) and matched healthy controls (n=44). FC networks are thresholded with a proportional threshold of 15% and from the binary graphs global
efficiency GE and clustering C are computed and tested, resulting in increased GE and reduced C (trend-level) in patients. The right bar plot shows the significant difference in total
functional connectivity (FC) between patients and controls. Panel B describes the results of the same dataset, but now with the two samples matched for overall FC, by removing the top 4
patients showing the lowest FC and the top 4 controls showing the highest FC removed from the sample (overall FC t-score < 1). GE and C now do not show group-differences. Panel C
shows the difference (as expressed in t-scores) in GE between controls and patients across a range of proportional thresholds (35% to 1%). X indicates a significantly higher GE in patients as
compared and controls. Overall FC shows the t-statistic of testing group differences in overall FC between the control and patient population using a two-sample t-test. Panel D shows the
relationship between overall FC and GE across the entire sample. Control samples are plotted as black dots, patient samples as grey triangles.
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this the effect in GE diminished (as shown in Fig. 2B). At the level at
which the group difference ΔFC was around 0 (subsample 16, showing
the minimal ΔFC meaning that patients and controls showed equal
levels of overall FC), effects in GE were no longer present. In
subsequent subsamples the set of patients demonstrated higher FC
than the controls (as we were now selecting the highest FC patients and
the lowest FC controls) with GE now lower in the patient population
than in the control population. The relationship between effects in GE
and effects in FC became more even apparent when we correlated ΔGE
to ΔFC across all subsamples, showing a strong association between the
two values (r=−0.96, p < 0.001).

We next tested the effect of △FC on △GE across the range of
proportional thresholds (Fig. 2C). Testing across proportional thresh-
olds from 35% to 1% again showed the strongest group effects in
network metrics to be present in subsamples of maximal differentiating
levels of overall FC and with diminished effects when subsamples of
equal levels of FC were tested. The right panel of Fig. 2B shows for the
total range of proportional thresholds (left to right: 35% to 1% network
density) the computed between-group effect size in GE (in percentage
of change between patients and controls, and corresponding t-statistic)
for each of the subsequently tested subsamples until the minimal ΔFC
of ~0% was reached (bottom to top). The left panel shows the
accompanying difference in overall FC between the tested patient and
control samples (left to right).

As for an alternative strategy to examine the confounding influence
of overall FC on comparisons of graph metrics between two groups, we
performed a final analysis in which patient - control status was ignored
altogether, comparing differences in overall FC, GE and C between
groups randomly selected from the total included population of 48 + 44
datasets. For 10,000 iterations, we drew two random groups (n=48,
n=44) and computed the difference in overall FC, binary GE and C
(resulting in △FC, △GE and △C respectively) between the two
randomized groups. Across the 10,000 random iterations, △FC was
strongly correlated to △GE (r=−0.87, p < 0.001) and △C (r=0.82, p <
0.001), further confirming a strong influence of overall FC on between-
group differences in network organization.

Autism dataset

Similar findings were observed when examining the fMRI func-
tional connectivity dataset of the autism sample. Functional connec-
tivity matrices of autism patients showed significantly lower levels of
overall FC as compared to controls (proportional threshold 15%,
p=0.0070), as well as higher levels of GE (p=0.0180) and lower C
(p=0.0094) (Supplemental Figure 1). Excluding the 14 lowest FC
patient datasets and the 14 highest FC controls until the between-
group difference in FC level showed a t-test score < 1, group effects
vanished in GE (p=0.404) and C (p=0.345) (Supplemental Figure 1).

Fig. 2. Panel A provides a schematic overview of the performed subsample analysis, selecting subsamples of maximum and minimum differences in overall FC. Patients and controls
were ordered according to their overall FC and starting with two subsamples of m=20 patients with the lowest FC and m=20 controls with the highest FC maximizing the largest group
difference in overall FC (lower row). Next, a subsample of m=20 of the top-1 scoring patients and controls was tested (second row), followed by testing the top-2 subsample (third row)
etcetera, until a minimum positive difference of overall FC was reached (upper row). Panel B shows that the difference in overall FC across tested subsamples declines (a trivial effect
given the ordered selection of the subsamples), an effect accompanied by a decrease in the between-group difference in GE, with eventually (at levels where overall FC is matched across
groups) effects in GE disappearing. Panel C shows the results of the exact same analysis as Panel B, but now for the entire range of proportional thresholds 35% to 1% (left to right).
Panel shows that the effect of overall FC is present across almost all proportional thresholds, and particularly disruptive at high to medium network density levels and in subsamples
where the difference in overall FC is the strongest. △GE is given as the t-statistic score in GE between the subsamples of patients and controls. △FC is computed as the percentage of
difference in overall FC between patients and controls, computed (controls - patients) / controls x 100%.
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Across the entire population overall FC correlated significantly to both
GE (r=−0.93, p < 0.001) and C (r=0.92, p < 0.001). Similar effects were
observed when testing other proportional thresholds.

ADHD dataset: an opposite effect

Similar observations were made for the examined ADHD dataset,
but now the bias in GE and C was in the opposite direction. The
functional networks of the ADHD patients did not show a significantly
higher overall FC as compared to the functional networks of the healthy
controls (patients, on average 1% higher FC, p=0.30 ns). We did
however observe the proportionally thresholded networks of the
ADHD population to show a trend-level effect of lower GE (propor-
tional threshold: 15%, p=0.058) and higher C (p=0.0291, Fig. 3) as
compared to the healthy controls. Despite FC not being statistically
different across groups, the differences in GE and C could still be
influenced by individual variation in FC. Indeed, across the entire
population overall FC significantly correlated to both GE (r=−0.90, p <
0.001) and C (r=0.89, p < 0.001).

Autism EEG dataset

We also examined the same effects in functional connectivity
networks derived from EEG recordings. Overall FC was found to be
lower in patients as compared to controls (p=0.0182), but proportional
thresholding of functional networks did not reveal a significant
difference in GE (proportional threshold 25%, p=0.19 ns; proportional
threshold 35%, p=0.19 ns) nor in C (p=0.18 ns) as compared to
controls. Results were thus less pronounced than in the fMRI examples
and mostly present at the higher proportional thresholds. This effect
might be due to the small sample size. As in the fMRI experiments, GE
and overall FC were still significantly correlated (r=−0.60, p=0.0010),
which suggested an effect of overall FC on graph metrics. Indeed,
testing small subsamples (here m=6) by ordering all patients and
controls and examining subsets of the lowest FC patients and highest

FC controls revealed a strong association between the ΔFC between
subsamples and ΔGE (r=−0.88, p=0.0181). Alternatively, selecting
10,000 times two random subsamples of equal the size of the patient
and control group from the total dataset again revealed a significant
correlation between △FC and △GE (r=−0.60, p < 0.001).

Experiment summary

Findings show overall FC in combination with proportional thresh-
olding to have pronounced effects on between-group comparison of
graph organizational metrics. Across four different patient-control
datasets GE and C showed a general relationship with overall FC, with
data points with high FC showing low GE and high C. Across the
disease datasets, we replicated commonly reported differences in GE
and C, with between-group differences diminished when removing the
most extreme cases of high/low FC from the patient and control
populations. Furthermore, reported between-group differences in
graph metrics GE and C were found to gradually decrease when testing
subgroups of patients and controls with gradually matching levels of
FC.

Experiment 2: HCP data

One possible argument for the relationship between overall FC and
network metrics could be that changes in overall FC and changes in
network topology are both pathological effects in the patient popula-
tion, occurring simultaneously and in parallel, but not directly influen-
cing each other. To further show that this effect is also present in a
healthy population (thus with no neurological or psychiatric disease
pathology) we performed a second experiment in which we examined
the same phenomenon in healthy controls of the HCP dataset. After
reconstruction and quality control of the FC matrices (466 HCP
datasets remained, Q3 release, see methods), datasets were ordered
according to overall FC and a subsample of the n=100 top lowest FC
and the subsample of n=100 highest FC subjects were selected for

Fig. 3. Data for the exemplary ADHD dataset. Panel A shows that, opposite to the schizophrenia dataset, testing the entire sample resulted in ADHD patients revealed a slightly (but
non-significant) higher overall FC in the patient population in comparison to the controls. This was accompanied by a borderline lower GE (p=0.058, ns) and higher C in the patient
population. Panel B shows that matching the samples in terms of overall FC diminished findings in GE and C. Panel C shows the relationship between overall FC and GE across the
entire sample. Control samples are plotted as black dots, patient samples as grey triangles.
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further examination (selecting the top n=50 or top n=200 revealed
similar results). FC matrices were proportionally thresholded, after
which binary graph metrics GE and C were computed. First, we
examined effects using a proportional threshold of 15% and compared
derived graph metrics GE and C across the top n=100 lowest and top
n=100 highest FC subjects. We observed the same effects as seen in the
patient - control comparisons of experiment 1, namely a significantly
higher GE (p < 0.001, Fig. 4A) and significantly lower C (p < 0.001,
Fig. 4A) in the group of low FC subjects as compared to the group of
high FC subjects (Fig. 4). Overall FC was (by construction) different
between the two groups (22% higher in the high overall FC group, p <
0.001).

Examination of the entire set of HCP subjects revealed the same
effect. First, across the entire HCP dataset GE (r=−0.73, p < 0.001,
Fig. 2) and C (r=0.62, p < 0.001) significantly correlated to overall FC.
Second, selecting opposite groups of m=50 subjects out of the lowest
and highest FC scoring subjects (i.e. comparing groups of lowest and
highest [1,2,.,m], [2,3,.,m+1], etcetera, see experiment 1 and Fig. 2A)
showed that differences in GE and C go hand in hand with underlying
group differences in overall FC, with between-group differences in
graph metrics being lower (and eventually disappearing) when sub-
groups with smaller differences in FC are tested (Fig. 4C).

We continued by examining differences in graph metrics across the
entire HCP dataset. Similar as in the schizophrenia dataset, we
randomly selected two groups of each m=100 subjects from the HCP
dataset and computed △FC, △GE and △C as the differences in
respectively overall FC, GE and C between the two selected groups.

Across 10,000 iterations, △GE (r=−0.73, p < 0.001) showed a strong
correlation with △FC. △C showed a similar △FC dependency
(r=0.62, p < 0.001).

HCP within subject variation

We continued by examining the within-subject matrices to show
that the effect is potentially not due to biological individual variation in
overall FC. For each HCP subject, we took the low and high FC matrix
(obtained by splitting the time-series in half and computing for each
part the overall FC, see methods). Both matrices were proportionally
thresholded (exemplary proportional threshold 15%), and graph
metrics GE and C were computed for each of the two parts. Testing
differences in graph metrics between the low FC and high FC parts
revealed significant differences in graph metrics between the two parts,
with the proportionally thresholded matrices based on the low FC
matrices showing higher GE (p < 0.001) and lower C (p < 0.001).
Examination of dynamical networks revealed similar findings, with
GE and C across runs related to overall FC (data shown Supplemental
Materials, page 15, dynamical networks).

Experiment summary

The characteristic effects in GE and C metrics seen in patient-
control datasets were also observed in subsets of healthy subjects of the
HCP dataset that were solely selected on the basis of whether they
showed low or high overall FC. Testing sub-groups of HCP subjects

Fig. 4. HCP data. Figure shows the results for experiment 2, examining the effect of proportional thresholding on HCP healthy control data. Panel A shows the levels of GE and C of the
subsample of the top n=50 highest (black) and top n=50 lowest overall FC subjects out of the entire HCP subset. Right panel illustrates the difference in overall FC between the two
groups. Panel B shows the direct association between overall FC of the matrix and GE computed on the extracted binary proportionally thresholded functional graph (proportional
threshold of 15%), clearly indicating that GE is dependent on overall FC. Panel C illustrates the findings in GE as computed by testing subsamples of maximal and minimal differences
in FC. Panel shows the results of the same analysis as shown in Fig. 2 on the schizophrenia data. All HCP subjects were ordered according to overall FC and subsamples of m=50 were
selected. The first t-test included the top [1,2,.,50] vs last [417,425,.,466] sample (with maximal difference in overall FC between subsamples), the second subsample the top [2,3,.,51] vs
[416, 424,.,465], etcetera, until the subsample of minimal difference in overall FC was selected (i.e the two subsamples in the middle of the distribution). Panel shows t-statistic scores in
GE computed across a range of proportional thresholds (35–1%), with negative values indicating higher GE in the low FC population versus the high FC population.△GE is given as the
t-statistic score in GE between the selected subsamples of HCP subjects. △FC is computed as the percentage of difference in overall FC between the two groups, computed as (A - B) / A
x 100%, with A the high FC and B the low FC group. Low FC subjects are plotted as light grey dots, high FC subjects as black dots, and the rest as grey dots.
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with diminishing group differences in overall FC showed a similar
diminishing group effect in GE and C as seen in experiment 1.
Furthermore, selecting and testing overall FC, GE and C between
randomly drawn subsets of HCP data showed a strong relationship
between-group differences in FC and between-group differences in GE
and C. The effect of overall FC on graph metrics was not only present
between selected groups of subjects, but also present within the data of
single subjects, as shown by testing network metrics between propor-
tionally threshold graphs derived from the first and second half of the
individual fMRI time-series.

Experiment 3: Edge prevalence

How can differences in functional connectivity strength result in
differences in graph theoretical metrics when they are computed on
binary functional networks? We hypothesize this effect to be the result
of lower FC connections to have (on average) a higher probability of
being spurious, and therefore to result in the inclusion of more noisy
and potentially false-positive edges in the final binary graph. To test
this hypothesis, we examined whether the edges in the functional
networks derived from lower FC subjects in the HCP data would show a
lower edge prevalence, expressing the number of times a network edge
is observed across the included population and a metric indicative of
potentially less reliably measured network edges (de Reus and van den
Heuvel, 2013; Roberts et al., 2016). Across the group of HCP subjects
we determined for each observed edge in the network the level of edge
prevalence, counting the number of times a binary edge was present
across the total examined population. Next, for each individual dataset,
we selected the top 100 lowest (as we hypothesized the most varying)
and top 100 highest FC connections (hypothesized as the most stable
and thus most group prevalent) of the proportionally thresholded
graph. From these two groups of edges, per individual dataset, we
computed the average group prevalence by taking the mean prevalence
of the selected edges, a metric indicative of how often the lowest FC and
highest FC connections of a subject's dataset were found to be present
across the total group of subjects. Within the HCP dataset, prevalence
of the class of low FC connections revealed a positive correlation to
overall FC (r=0.16, p < 0.001), suggesting that networks based on lower
overall FC show on average less reliably measured edges across the
HCP group. As hypothesized, prevalence of edges based on high FC
correlations did not reveal this effect (p > 0.05).

Experiment summary

Further testing HCP data shows that network edges resulting from
proportional thresholding in low FC datasets are on average less
frequently found across the total group of datasets and thus potentially
more variable as compared to edges in the functional networks of high
FC subjects.

Experiment 4: potential strategies for correction for overall FC

In a fourth experiment, we once again examined the patient and
HCP dataset and now aimed to examine potential counter measures to
correct or compensate for the effect of overall FC across groups. First,
in the schizophrenia dataset, overall FC was regressed out of the graph
metrics across the total population (i.e. the total group of both controls
and patients) and the corrected graph metrics (i.e. the residuals) were
tested between groups. Including overall FC as a covariate diminished
between-group effects (threshold 15%, GE: p=0.822, C: p=0.974).
Similarly, regressing out overall FC also diminished between-group
effects in the autism (proportional threshold 15%, fMRI: GE:
p=0.0732, C: p=0.746; EEG: GE: p=0.312, C: p=0.877) and ADHD
datasets (exemplary threshold 15%, GE: p=0.879). A marginal effect in
C remained in the ADHD dataset (p=0.0354), which may suggest a
potential remaining group-effect in global clustering after correction

for overall FC. Regressing out overall FC from GE and C in the entire
HCP dataset and testing the n=100 lowest versus n=100 highest FC
subjects no longer showed differences in graph metrics (exemplary
threshold 15%, GE: p=0.6015, C: p=0.4722).

As a second alternative we explored the use of permutation testing.
In a typical permutation test a null-distribution of between-group
differences is obtained by randomly drawing subsamples from the total
population, to examine which effect sizes occur irrespective of patient/
control status. In addition to a normal permutation approach (in which
only group assignment is randomized), here we also took into account
the observed difference in overall FC between the two groups. First,
group assignment was randomized by randomly drawing two samples
of the size of the patient and control population (e.g. n=48 and n=44 in
the schizophrenia dataset) from the total set of participants. Next, two
random subjects were drawn, one from each sample, and subjects were
swapped between groups until the difference in overall FC between the
two samples reached the level of the original between-group difference
in FC (i.e. 4.8% in the schizophrenia dataset). The patient and control
distribution was kept fixed to that of the initially randomly drawn
samples, by swapping only control subjects for control subjects and
patient subjects for patient subjects between groups. Once the two
pseudo-randomly drawn samples were established, matrices were
proportionally thresholded, graph metrics were computed and differ-
ences in graph metrics GE and C between the two groups were
obtained. We performed this procedure for 10,000 permutations,
resulting in a null-distribution of expected effects under the null-
hypothesis of A) no effect of group assignment and B) a difference in
overall FC equal to the observed difference between the patient and
control group. Next, similar as in a typical permutation testing
approach, the obtained null-distribution was used to assign a p-value
to the originally observed effects in GE, by computing the proportion of
the null-distribution that exceeded the originally observed group
difference in GE.

In the schizophrenia dataset, overlapping with the results of the t-
tests, normal permutation testing revealed a difference in GE
(p=0.0152) and C (p=0.0259). However, using the alternative null-
distribution in which we controlled for differences in FC, the effects in
GE and C were no longer found to be significant (GE:p= 0.4605,
C:p=0.344), indicating that the h0 hypothesis of GE and C being equal
in the patient population could no longer be rejected. Similar statistical
effects were observed in the autism dataset (GE:p=0.241, C:p=0.414)
with a permutation test controlling for differences in overall FC
showing no longer a significant difference in graph metrics. In the
ADHD dataset, effects in GE were diminished (GE:p=0.0890), but
some effects in C remained (p=0.0218), which again may suggest a
remaining group effect in network clustering in ADHD patients after
correcting for group differences in overall FC.

We note that adding a constraint to a permutation test reduces the
amount of possible permutations. To quantify this effect, we computed
for both the random and pseudo-random permutation test the level of
overlap of each permutation with all other permutations, counting the
number of samples similarly included across the 10,000 iterations. In
the schizophrenia dataset, in the random permutation condition the
average overlap was on average 21 and 25 (as expected from
respectively the size of the control and patient group), and in the
pseudo-random condition the empirical overlap was on average 23
(std:2.3) and 27 (std:2.3).

Experiment summary

We tested two potential strategies for correction of overall FC on
between-group comparison of graph metrics. Findings showed that
taking overall FC as a covariate may compensate for the influence of FC
on graph metrics (see also Discussion on potential drawbacks of this
method). Second, we examined the use of a permutation based test in
which group differences in overall FC were incorporated in the null-
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condition and thus taken into account when testing group differences
in derived graph metrics GE and C.

Discussion

In this study we examined the effects of proportional thresholding
on the construction of functional connectivity graphs and the computa-
tion of graph theoretical metrics. The main conclusion is that propor-
tional thresholding should be used with care when there are differences
in total functional connectivity between the examined groups, because
a minimal difference in overall FC may introduce potential between-
group differences in network metrics. We present a few simple
recommendations to examine, report and potentially correct for the
effect of differences in total functional connectivity in disease con-
nectome studies.

Our study findings confirm the intuitive notion that the inclusion of
lower correlations as functional edges will lead to the inclusion of more
noisy and thereby potentially more random connections into the
reconstruction of a functional network, an effect reflected in the
evaluation of graph metrics. We conclude from our presented findings
that low FC connections tend to have a higher probability of being
spurious, with their inclusion into network reconstructions leading to
the inclusion of more random connections as compared to network
reconstructions based on high FC. In turn, the inclusion of these more
random connections can give the topology of the reconstructed graph a
more random character, most notably reflected in higher global
network efficiency and lower network clustering.

Zalesky and colleagues (2016) examined the effects of false-positive
(FP) connections and false-negatives (FN) edges to network analysis of
healthy human and animal connectomes and showed empirical and
theoretical evidence of the inclusion of FPs to be more detrimental to
the computation of network metrics as compared to the exclusion of FN
connections (Zalesky et al., 2016). Specificity was reported to be at least
twice as important as sensitivity with respect to computation and
evaluation of graph theoretical metrics of reconstructed brain net-
works, advocating a 2:1 ratio of FP and FN inclusions in anatomical
brain networks. Our current functional results are clearly in line with
these findings and extend these findings by showing that proportional
thresholding of matrices may further inflate the effect, with profound
consequences for between-group comparisons.

We have no intention of arguing that alterations in functional brain
connectivity as commonly reported in brain disorders are in any way
false effects or effects driven by artifacts. We thus intentionally refrain
from naming specific studies that used proportional thresholding in
examining for example schizophrenia, ADHD and/or autism.2 In
contrast, we emphasize that disturbances in neuronal activity, accom-
panying changes in BOLD fluctuations or EEG/MEG recordings, as
well as disturbances in region-to-region functional communication are
all likely to include key factors in many brain disorders, resulting in the
correct observation of changes in interregional functional connectivity.
Our main point here is that subsequent proportional thresholding of
such functional connectivity matrices in disease studies may translate
into or influence differences in graph metrics as measured between
groups, effects that may rather be the result of the inclusion of (even a
few) spurious connections in one of the two groups. These reported
between-group differences in network organization may be driven by,
or at least cannot fully be disentangled from, underlying changes in
overall functional connectivity. The goal of our study is thus not to
name specific studies that used this approach, but rather to inform
about the potential consequence of using proportional thresholding in
context of between-group differences in overall FC. This to create

awareness for future studies to test and put effort in correcting for
overall connectivity where needed and where possible.

Binary versus functionally weighted networks

In this study we focused on the examination of binary functional
networks with the presence and absence of functional edges forming
the main topic of investigation. We focused on binary networks to
illustrate the disruptive effect of low FC connections on the topological
organization of networks. For this, we thus excluded any additional
influence of differences in edge weights between subject groups.
Including weights on the edges would potentially introduce a second
effect, with between group differences in overall edge weight directly
translating into graph metrics. For example, functional networks of low
FC subjects would include (on average) lower weighted network edges,
resulting now in lower GE values. To examine to what extent potential
between-group effects in graph metrics go beyond simple differences in
edge weights, studies most often compare normalized GE and C across
groups (i.e. taking the ratio of GE and C with their counterparts as
computed in comparable random networks). Normalized weighted
metrics are often argued in literature to counteract potential be-
tween-group differences in network strength, as the total sum of
weights in the network of interest and the randomized networks are
equal and thus cancel out. A second suggested strength of this type of
approach is that connections with a higher strength make a stronger
contribution in the computation of graph metrics, with lower weight
connections (here argued to be less reliable and thus more random)
having less impact (but see also (Drakesmith et al., 2015; Ginestet
et al., 2014; Ginestet et al., 2011) for discussion). In the case of
evaluating weighted graphs, false positive connections based on lower
correlations may thus inherently have a less disruptive impact on
network topology. Nevertheless, with many of the graph metrics (and
in particular global efficiency and clustering) still dependent on
underlying binary patterns, the disruptive effect of including more
random edges in low FC networks may -to some extent- remain. In the
Supplemental Materials we examined the effect of overall FC on
(normalized) weighted graph metrics in a patient-control setting
(Supplemental Materials, page 5–6, normalized weighted networks).
We report on attenuated, but potentially remaining effects of overall FC
on normalized weighted global efficiency and thus between-group
evaluation of global network organization. From our simple post-hoc
analyses the influence of overall FC on normalized weighted clustering
appeared to be less severe, suggesting that weighting and normal-
ization may counteract the influence of overall FC on local graph
organization. Future work specifically focused on the use and the
development of new (normalized) weighted metrics optimized for the
influence of overall FC on graph organization is clearly of great
importance to the field.

Anatomical networks

Our main topic of study here is functional networks. Proportional
thresholding is less commonly used in the reconstruction and analysis
of structural graphs (as the matrix is most often already sparse), but the
inclusion of false-positive edges may –in principle– in a similar way
influence anatomical network reconstruction and as such introduce
influence between-group differences in graph metrics when comparing
groups. For example, overall lower number of reconstructed stream-
lines and/or lower levels of fractional anisotropy of edges in the patient
and/or control population potentially lead to the inclusion of more
false-positive edges in proportionally thresholded anatomical graphs
and as such influence the computation of graph metrics (Zalesky et al.,
2016). The examination of structural networks is out of the scope of
this study, but future studies examining this effect in more detail in
anatomical networks and compare across DWI reconstruction strate-
gies to show or to rule out the influence of overall connectivity strength

2 We examined schizophrenia, ADHD and autism as exemplary datasets. We argue
that overall FC has an effect on group comparison of graph metrics in functional
connectome studies in general, thus also including studies that examine neurological
conditions.
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on the evaluation and between-group comparison of graph metrics
would be of interest.

Alternative methods for thresholding

Studies have suggested useful alternative approaches to avoid or
reduce the effect of thresholding in the examination of functional
networks. One alternative approach includes the evaluation of graph
metrics suited for fully weighted networks, avoiding the need for any
type of thresholding in the first place. Although the main topic of
investigation in this study is the evaluation of proportional threshold-
ing on functional networks and not the evaluation of non-thresholded
approaches, we do argue that potentially the same effect of overall FC
might influence the computation of such graph metrics. Here too, the
inclusion of functional edges based on lower correlations could lead to
the inclusion of less accurate estimations of connections and hence
potentially more random network connections. Similar to the use of
weighted networks (see discussion above), the advantage of a weighted
approach is that such edges will have lower weights and are thus
argued in literature to have less impact on overall network organiza-
tion. However, some of the effect of a more randomly organized
network may still be present. Indeed, a post-hoc analysis of graph
metrics on fully weighted functional connectivity matrices of the
patient-control and HCP dataset again revealed a –but less severe–
remaining effect of overall FC on graph metrics, with differences in
overall FC between groups going hand in hand with between-group
differences in network metrics (see Supplemental Materials, page 5–6,
weighted normalized metrics).

A second class of proposed alternative strategies does not aim to
directly avoid any use of thresholding, but rather aims to avoid the
selection of one specific threshold. Examples of these approaches
include the computation of a minimal spanning tree (MST) or the
related local k-nearest neighbor graph (k-NNG) of functional matrices
(Alexander-Bloch et al., 2010; Jalili, 2016; Tewarie et al., 2015) and
approaches that work by integrating effects across a wide range of
thresholds, such as so-called Area Under the Curve (AUC) methods
(Ginestet et al., 2011; Hosseini et al., 2012) (see also (Langer et al.,
2013) for discussion) and multi-threshold permutation correction
(MTPC) methods (Drakesmith et al., 2015). The MST describes the
tree of minimal number of strongest edges needed to keep the network
connected. Related to this, in a local k-NNG a local threshold is applied
to the functional matrix, selecting the k strongest edges of each node,
often with the MST used as a starting point to ensure global
connectedness of the resulting graph. MST and k-NNG approaches
have been successfully applied in several functional connectivity
studies and argued to avoid methodological biases for the selection of
an arbitrary threshold level, having the strong advantage of ensuring
equal network density levels across groups (Tewarie et al., 2015). In
mathematical terms, the selection of the MST could be seen as one of
the strictest levels of proportional thresholding, namely the application
of a (n-1)/(n x (n-1)) = 1/n threshold with the additional selection rule
that the network has to remain connected. As such, we could argue that
the MST approach may also be subject to the same issues of propor-
tional thresholding as described in this paper, albeit substantially lower
as the MST is optimized for including edges corresponding to strong
(and thus more reliable) correlations. Similarly, one could argue that k-
NGG thresholding may be influenced by variation in overall FC
(Alexander-Bloch et al., 2010). Moreover, since the k-nearest neighbor
approach mandates a minimal number of edges per node, this may
result in the inclusion of more weaker edges as compared to the
application of a global proportional threshold, something that may
exacerbate the effect of overall FC on graph metrics. Indeed, as
expected based on the high-threshold effects as shown in Fig. 2,
post-hoc analysis in the HCP data indeed revealed that the effect of
overall FC is much less severe on MST graphs, but that adding
additional locally thresholded edges in k-NGG graphs may again result

in inflated between-group comparisons of graph metrics (data shown in
Supplemental Materials, page 8–10, MST and k-NGG).

In contrast, MTPC and AUC methods avoid the selection of a single
threshold by alternatively integrating effects across multiple thresh-
olds. With our findings suggesting that overall FC influences between-
group comparison of graph metrics across almost the entire range of
tested thresholds (see Fig. 1c), one could argue that methods that
integrate effects across threshold levels are potentially as sensitive to
the influence of overall FC as methods that use one single threshold.
Indeed, testing group-differences between high and low FC subjects in
the HCP data similarly showed significant differences in both GE
(tested thresholds 35% to 1% with steps of 1%, p < 0.001) and C (p <
0.001) when using proportional thresholding in combination with AUC
and MTPC (see Supplemental Materials, page 10–13, AUC and MTPC).
Moreover, by merging effects across thresholds, AUC methods may
potentially further inflate the described effect of overall FC, with now
even smaller group differences in overall FC still resulting in significant
between-group differences in graph metrics. Indeed, testing GE and C
across sub-groups of HCP subjects with declining levels of between-
group difference in overall FC showed more pronounced effects when
using AUC as compared to the use of a single proportional threshold
(see Supplemental Results, page 10–13, AUC and MTPC).

Strategies to compensate and control for the effect of overall FC on
graph metrics

We discuss two potential strategies to correct for the effect of
differences in overall FC when using proportional thresholding. First,
in case of a difference in overall FC across participant groups, we show
that the inclusion of the overall FC as a covariate could be used to
compensate for the effect of proportional thresholding on the compu-
tation of graph metrics during statistical evaluation. However, we
recognize that this involves a rather strict correction, as in the severe
case of all patients showing lower FC as compared to the controls this
could lead to the removal of a large portion of potentially true
differences in network organization between patients and controls. As
a potential second strategy, we advise patient-control network studies
to include post-hoc control analyses in which one examines subsamples
matched on FC levels, for example by removing some of the most
severe cases on both sides of the spectrum and show that the same
between-group effects in graph organization are also present when
samples are matched on FC. In case there is evidence of the highest or
lowest FC subjects to include the most severely ill patients, permuta-
tion approaches with null-distributions matched on FC could be used
as a potential alternative.

We note that both of the above mentioned strategies do not really
correct for the potential selection of more random connections in the
construction of the functional network, but rather aim to control for the
effect during statistical evaluation. We strongly encourage the field to
design methods that take care of this potential bias earlier in the
analysis, preferably already during network construction (e.g. (Ramsey
et al., 2011; Ramsey et al., 2010; Smith et al., 2011)) and/or during the
computation or normalization of the graph metrics. Examples of these
might include better techniques to distinguish between true and false
positives, other types of evaluation null-models, and/or the inclusion of
more subtle covariates in the statistical evaluation. Until such normal-
ization and/or correction approaches are proposed we advise that
patient-control connectome studies include some of the discussed post-
hoc analyses, just to verify that one's reported case-control differences
in network organization are not simply the result of underlying
differences in overall FC, but reflect true differences in network
configuration. Moreover, individual variation in FC could cloud true
between-group differences in network organization, which further
advocates controlling for the effects of overall FC in connectome
studies.
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Conclusion and recommendations

We show the influence of overall FC on proportional thresholding of
functional brain networks and the subsequent computation and
comparison of graph metrics across groups. Fixed thresholding of
matrices and resulting differences in network density has rightfully
been suggested to have an important effect on the computation of
graph metrics (van Wijk et al., 2010) and thus to be less suitable for the
examination of network organization in patient-control studies. Our
current findings now similarly advise against the use of the proposed
alternative approach of using density matched networks in situations
where a clear difference exists in underlying total functional connec-
tivity strength between groups. We make two recommendations for
future patient-control functional connectome studies. First, in a
between-group functional connectome study, we advise authors to
examine, statistically test and to report overall FC between tested
groups. Second, in case of the suspicion of a potential difference in
overall FC between groups we advise that these differences are taken
into account when graph metrics are statistically tested between
patients and controls, for example by including overall FC as a
covariate and/or by including post-hoc control analyses in which one
verifies that reported between-group differences in graph metrics
remain when testing subsamples matched for overall FC. We hope
these recommendations will be of use for future functional disease
connectome studies.
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