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1 Introduction bitrarily high confidence — 4, and “efficient” means in
time polynomial inn, 1/¢, and1/§ (assuming treewidth

Graphical models are a powerful tool in statistical mas & constant).

chine learning. They are used to represent the propertie§ye can understand the difference between the ap-
of a joint distribution over a set of random variables—proaches through KL-divergence. KS's goal is to mini-
in particular, they encode conditional independencies Bgize the KL-divergence between tieenpirical distribu-
tween the variables. A particular kind of graphical mod@bn induced by the observation data, and the resulting es-
is the Markov network where the variables are repretimated maximum likelihood model. It takes as input a
sented as vertices and dependencies are encodewlas previously generated observation sequence, and operates
rectededges between the vertices. only on that data. NB tries to minimize the KL-divergence

A natural question that arises in the study of Markdvetween thdrue distribution and the resulting estimated
networks is how to learn the model from observation datdistribution. It relies on being able to dynamically sample
This in turn is divided into two problems—Ilearning thérom the true distribution, and it will usually only return a
graph structure, and inferring the conditional distributionalid answer if the true distribution is of the right type.
at each vertex. The latter problem is known asittfer- Thi . . .

. : is paper is organized as follows. In sections 2 and 3,

enceproblem, and is well studied [8]. The former problem . : .
of learning the graph structure itself, is what we study i introduce some graph and machine learning concepts
this report, ' common to both KS’s and NB’s work. We then study each

] ] o ] individually, with an emphasis on the randomization tech-
Learning graph structure is an exercise in trading off bgrgues and concepts used.

tween representative power and overfitting. A fully con- . ) .

nected graph on the vertices will always fit any set of ob- In séction 4, we will look at KS's reduction of the max-
servation data best (in terms of training error), but doB8UM likelihood Markov network to a purely algorithmic
not make any independence assumptions and thus willflePlem—thenaximum hypertreproblem. This problem
most always overfit and is slow. Therefore, it is usefGan be approximated by the so-called maximumdmill

to learn from a restricted hypothesis space of graph strfRM problem (section 5). Next, they formulate an integer
tures. linear program to solve the maximum windmill farm (sec-

In this report, we look at two papers from the Iit:[lon 6), relax it to a regular linear program (section 7), and

: present a sophisticated rounding scheme that preserves a
erature that operate on the same restricted space” 0 X . .

models—specifically, so-callelounded treewidthrian- constant integrality gap (section 8).

gulated graphs. They solve closely related problemsWe then look at NB’s approach to PAC-learning a
Karger and Srebro (hereafter KS) look at learning thmunded treewidth model. They show that mutual infor-
maximum likelihoodbounded treewidth graph given somenation, a measure of the closeness of two probability dis-
observation data [3, 7]. They show that the problem is Nfibutions, is a so-calledubmodular and symmetrianc-
complete, but use an integer linear program, relaxed tti@ (section 10). This lends itself to a polynomial time
linear program, and a clever iterative rounding schemerntonimization technique. Then they show that finding the
derive a randomized approximation algorithm that is opzinimum mutual information based on the sampled dis-
timal to within a constant factor. Narasimhan and Bilmegbution, while not strictly submodular, is guaranteed to
(hereafter NB) demonstrate an algorithm to efficientlye within ane-factor of the true minimum with constant
PAC-learna bounded treewidth graphical model [5]. Thairobability. This allows us to partition the variables into
is, they show that, assuming the underlying source of thets that have low mutual information with respect to each
observation data is a bounded treewidth graphical modwher (section 11), and therefore admits a polynomial time
we can efficiently recover a bounded treewidth model thaljorithm that recovers a graphical model that is arbitrar-
is close, with respect to KL-divergence, to the true moddl close to the true model, as measured by KL-divergence
“Close” means within an arbitrarily smadifactor with ar- (section 12).



2 Graphical Models and More

A Markov network consists of a tuplgz, P), whereG is

an undirected graph ané is a joint probability distribu-
tion. The vertices of5 represents the random variables
of P and the absence of edgegiirepresents conditional
independence between the random variableB.of

Definition 2.1 (Separator) A separatorS C V' is a set
of vertices whose removal disconnects the graph.

Hence in figure 1(a){2, 4} is a separator and so {,

7}. In figure 1(b),{5} is a separator. In a Markov net-
work, if S separates the network into a collection of dis-
joint subgraphs{ A4;}, then this implies that thel;’s are
independent gives. This further implies tha#l; and A,

are independent given S, fgr£ k. (b) Hyperforest (c) 3-Hypertree

Definition 2.2 (Triangulation). A graphG is triangu-

Figure 1: Hypergraph, Hyperforest, Tree-Decomposition
lated if every cycle of length at least 4 has a chord. d ypergrap vp P

and3-Hypertree

Figure 1(b) shows a triangulated graph, while the graph

in figure 1(a) is not triangulated because of the cy{@de Definition 2.6 (Leaf). A maximal hyperedgé € H is

5, 6, 7, 4. Using the definition of separators, anotheme where there does not extét> h, such thath’ € H.

alternative definition of triangulation is as follows: A leaf of a hypergraptf (V) is a vertex that appears in
only one maximal hyperedge,c H.

Definition 2.3 (Triangulation). A graphG is triangu- o )

lated if all minimal separators are cliques. A clique is &€nce in figure 1(b), vertices 1, 3, 6 and 7 are leaves,

set of vertices that are completely connected. A separat¥file 2, 4, 5 are not.

S'is minimal if there does not exist a proper subsebof pefinition 2.7 (Hyperforest). A hypergraphH (V) is
that separates.. acyclic if it is empty or it contains a leafy such that

Hence in figure 1(a){5, 7} is a minimal separator butH(V — v) is acyclic. A hyperforest is an acyclic hyper-

is clearly not a clique, whered®, 4} is both a minimal raph.
separator and a clique. The existence of minimal sepag®cause of our paper-specific alternative definition of the
tor {5, 7} means figure 1(a) is not triangulated. that Weypergraph, we have the following fact: a hyperforest
generalize the concept of a graph to a hypergraph:  triangulated graph. This recursive definition of acyclicity
induces a Graham reduction of the hyperforest: we be-
Definition 2.4 (Hypergraph). A hypergraphH (V) isa gin with a hypergraphf (V) and iteratively remove the
collection of subsets of verticebyperedges) of the ver- |eaves ofH (V) until there are no more leaves. If the re-
tex setV. Furthermore, for all hypel’edgeS‘L € H, Su|ting hypergraph is empty, we CO”C'U%V) is a hy_
W' C himpliesh’ € H, i.e. ahypergraph includes allperforest. Note that the Graham reduction is usually not
subsets of its edges. unique, since there might be multiple candidate leaves that
can be removed at each stage of the reduction. For exam-

. . ple, for the hyperforest in figure 1(b): we can first remove
A clique-hypergraph of a graplv is the hypergraph vertices 1, 3, 6 and 7, and then remove 2, 4 and 5. Alter-

whose hyperedges are the chqugs‘;oﬂ:qr the purpose of natively, we can remove vertices 1 and 3, followed by 2
this paper only, we will only consider clique-hypergraphs

) L ’ and 4, followed by 5, 6 and 7.
hence an alternative definition of hypergraph is the follow- We now define the concept of treewidth.

ing:

For example, see figure 1(a).

Definition 2.8 (Treewidth). The treewidth of a hyper-

Definition 2.5 (Hypergraph). A hypergraphH (V') is forestH (V') is the size of its largest hyperedge minus 1:
a graph G(V) whose cliques are hyperedges (V). 142, |h| — 1.

Hence in this paper, we use cliques and hyperedges inter- ] )
changeably. In the context of our paper, a hyperforest is equivalent

to a triangulated graph and hence the treewidth of a tri-
We now define leaves and acyclicity in hypergraphs: angulated graph is the size of its largest clique minus 1.



Furthermore, the sizes of the minimal separators of theReally, we are interested in calculating the probabili-

triangulated graph are at most the treewidth. ties of random variables in the network, but unfortunately,
Treewidth is important in both learning and inferencéhe clique factors,¢ might not correspond directly to

A Markov network with higher treewidth has greateclique probabilities in general. In particular, a change in

representative power, encoding more dependencies toarginal probabilities of a particular clique can propagate

tween variables, and hence can often explain data ketclique factors of faraway cliques. Fortunately, in the

ter. However, the efficiency of most inference algorithntase of triangulated graphs, clique factors do correspond

decreases with increasing treewidth, and in learningtcacligue marginals:

higher treewidth could result in overfitting. Hence it is a ] o ) )

common practice to use a Markov network of a boundd@€orem 2.2 (Clique Factorization in Triangulated

treewidth to fit the data. Graphs). Clique factors in triangulated graphs corre-
An alternative definition of treewidth is via tree deconsPOnd to marginal distributions, i.e.
position which we will not discuss here for brevity [7, 1].
. Py (zn)
In fact NB makes heavy use of tree decomposition, but we on(zp) = =———— 2
will reformulate their arguments without it. wen ow (@)

We now define d-hypertree. The concept of the NyThe product is over all cliques, not necessarily maximal.
pertree is essential to KS:

The following theorem is essential to NB, a partial

Definition 2.9 (Hypertree). A k-hypertree is a maximalt%roof of which is found in [7]:

hyperforest of widtlk, i.e. no more edges can be added
the k-hypertree without increasing its treewidth. Theorem 2.3 (Projecting Probability Distributions
onto Hyperforests) Let Px (z) be a probability distribu-
tion, andH (V') a hyperforest. Then the unique minimizer,
P of D(P||P) (KL-divergence betweeR and P) subject
Definition 2.10 (Hypertree). A clique withk+1 vertices to the constraint thaf factorizes over (V') is

is a k-hypertree. Given &-hypertree,T;, on n vertices,

we can obtain &-hypertree T}, ;; by adding a new vertex Py (z) = [hen- Plan) 3)

to 7}, and connecting it to a single-clique of7,. [locs Plxs)

A more intuitive definition of ak-hypertree might be the
following construction:

For example, figure 1(c) shows3ahypertree, which canwhere H* is the set of maximal hyperedges#f1’) and

be constructed by beginning with verticés, 2, 3, 4§ is the set of minimal separators &F. In particular,

(which is a clique of size 4) and adding vertex 5 and con-

necting it to verticeq1, 2, 5, a3-clique. D(P||P) < Z[P(Vsl; Vials) 4)
The following two theorems explain why triangulated ses

graphs are preferred [7, 5]: o
whereV,; andV,, are the two disjoint components &f

Theorem 2.1 (Hammersley-Clifford). A random vec- gbtained via removing (we can always group the com-
tor X has a probability distribution that factorizes oveponents into two even if there are more than two disjoint
a Markov network (or hypergraph) with cliques (or hycomponents). Ip(V1; Via|s) is the mutual information
peredgesH) iff it's probability distribution has the form: betweenl,; andV,, givens, and is zero iff;; andV,,

are independent given Mutual information can be eval-
Px(x) =[] én(zn) () uvated by [2]:

heH

. . . . X\ Y\|Z
wheregy, (xp,) is called a clique factor and is a function of I(X;Y|Z) = Epzy,»)| %
the outcomes of random variables of the cliqgueNote p(X|Z2)p(Y]2)

that the product can be either over all cliques (not necgssere x v 7 are random vectors and.) is their prob-

sarily maximal) or over maximal cliques since the nony,jjiry gistribution. D(-) is KL-divergence and is defined
maximal clique factors can always be absorbed by the 2:

maximal clique factors. We say that the probability dis- p(z)

tribution P factorizesover the graph. Note that in gen- D(pllq) = ZP(I)ZOQq<x) (6)
eral, there does not exist a bijection between a graph and z

a probability distribution. For example, all probabilitywherep(-) andg(-) are both probability distributions of
distributions factorize over the complete graph, and athe random vectotX, and the sum is over all possible
graph encodes conditional independencies consistent vaitiicomes ofX. KL-divergence is a measure of how
an unlimited number of probability distributions. closeq is to p, and is at least zero, and equals to zero

log )




iff p = ¢. Notice the similarity between mutual infor4  Learning to Maximum Hypertree
mation and KL-divergence. We can rewrif¢X;Y|Z)

asD(p(X,Y|2)||p(X|Z)p(Y|Z)) and thus mutual infor- In this section we describe the equivalence of the learning
mation measures how close the joint probability distribproblem formulated by KS and the maximum hypertree
tion of X, Y givenZ is to being independent. problem.

Note that if Px(x) is factorizable overH (V'), then As mentioned in section 3, we are trying to fiRg, ;, €
equation 3 yieldsPx (z) and D(P||P) is zero. We can T}, that minimizesD(Pe,,||Pyr). From theorem 2.3
think of equation 4 as summing the error incurred as a feeplacingPx (z) with P.,,,(x)), we find that for every
sult of H (V) assuming conditional independencies wher € Gy, the bestP* that factorizes ovet; and mini-
there is none. mizesD(P.p||P*) is given by equation 3. Hence if we

go through every triangulated graph (hyperforest)sire

Gy, calculateP* by equation 3, calculat®(P.,,,||P*)
3 The Learning Problem and then selecP* with the lowestD(P.,,, || P*), we are

done. However, there are an exponential number of such
In this section, we define the learning problems that Kggaphs and so this is intractable. But let's continue this
and NB are studying. line of thought: for each hyperfore&t € Gy, we want to

We would like to estimate an unknown distributioninimize D(Pey,,||P*), where P* is given by equation
Pyye Of n variables, based on samples drawn from 8. Hence,

We could use the empirical distributid®.,,,,, of the sam- p
ples but that easily suffers from overfitting and dimeraaneGkD(pempHp*) = mingec, Ep,,., [log—22)

sional blow-up due tav. A standard approach would be pr
to limit the class of distribution hypotheses to a smaller = C=> w (1)
subset,T’, and attempt to estimatefa®, such thatP* = hea
argminperQ(Pldata), whereQ(-) is some measure of

goodness. where the sum is over all (not necessarily maximal) hyper-

In this paper, we will consider the class of distributiong,dges of, andC is a constant, same for all hyperforests
T}, that are factorizable over triangulated grapfis, of and
treewidth at most;, and we use KL-divergence as our
measure of goodness.

Given observed data, and treewidth KS aims

to find the distribution Py, € T}, that minimizes \here we are summing all subsets/oincluding itself
D(Pemp||Pa1). Itis straightforward to show from theang the expectation term is simply the negative of the
definition of KL-divergence thaP,,, is also the distribu- entropy of X. Dropping the constants, this is equiva_
tion within 7}, that maximizes the likelihood of the ob4ent to finding a triangulated Markov network (hyperfor-
served data. Such a problem is NP-hard, and KS ggtg) with the largest weight given bBY cc wn. Note
around it by first establishing equivalence to the maximuiat this weight is always negative, but it can be shown
hypertree problem and creating an approximate structgt if G’ — G are both hyperforests, then . wn —
to get a constant factor approximation to the maximuEheG/ wy, > 0 [7]. This is not at all surprising because
hypertree problem. S heq Wh — Sopecr wn > 0 simply means that the opti-
On the other hand, given a treewidth NB wants to mal P* that factorizes ove€ is closer toP,,,, than the
find the distribution that factorizes ovet; (assuming optimal P* that factorizes ovey’. But this is obvious
Py factorizes over at least one graphdf), so as to since the set of probability distributions that factorize over
minimize D (P, ||P). Obviously it is impossible to ex- 7 is a strict superset of the probability distributions that
actly find the true distribution given any finite number q’bctorize over?’. We call such a property of the weights
samples, so as a compromise, they find a polynomial ti@notonicity Formally, we have:
algorithm that samples the true distributian, ..., a poly-
nomial number of times to find a grapy, € G.. G has Definition 4.1 (Monotonic Weights) Given an input,
the property that the optimal distributioft,that factorizes a weight functionv over a set of verticed/, is a mapping
overG according to equation 3 hd3¥( Py...||P) < e with from subsets o of size< k+1t0R, i.e.w : (<X+1) —
probability at least — 4. Note that?;.,. might not nec- R. We sayw(-) is monotonic if/hs| < k + 1 andh; C
essarily be factorizable oveér. In fact, even in the casep, ¢ impliesy”, -, w(h) < 3, cp, wlh).
when P, does not factorize oveFy, if Py IS such
that there existé/ € Gy, such thatD(Pt,.ueHP) < ¢,the  Summarizing this section, this is the problem we would
algorithm can still find the answer with high confidencelike to solve:

wy, = Z (—1)|h"|h/‘Epmp [log(Xn)) (8)
hCh



Definition 5.3 (Windmill Farm) . A k-windmill farm is a
® disjoint collection of k-windmills.

Here are some obvious properties of windmills:

@ @ /0\
0‘9/ \@>9 1. k-windmills andk-windmill farms are hyperforests.

@ G 6 O @ & This can be seen by the Graham reduction beginning
with the vertices of levek, k — 1, k — 2 and so on.
For example, in figure 2(b), we can perform a graham
(@) A rooted tree, (b) 2-windmill based on rooted reduction by starting with vertices 4, 5, 6, 7, followed
Tr2(V) tree in () by 2, 3, and finally vertex 1.

. ] . . 2. Since the largest hyperedge ik-avindmill is of size
Figure 2: Rooted tree and correspondagiindmill k + 1, the treewidth of a&-windmill (and hencek-

windmill farm) is at most.

Definition 4.2 (The Maximum Hypertree Problem). 3 | _\windmills are star graphs anghwindmills look
Given inputs: treewidthk, vertex setl” and monotonic like physical windmills as shown in figure 2.

weight functionw : (_,,,) — R, we want to find the

heaviest hyperforest (), that is the hyperforest thatTheorem 5.1 (Windmill Cover Theorem). For any hy-
maximizesy_, . ; w(h). Because of the monotonicity operforest, (V') of width £ and monotonic weight func-
the weight function, the heaviest hyperforest will be a hjon w(-), there exists &-windmill farm F'(V') such that
pertree, and hence we have the maximum hypertree pralfdd) < (k + 1)!w(F).

lem.
The proof of the windmill cover is a constructive prob-

abilistic proof, so we give a brief outline here. We first
5 Maximum Hypertree to Wind- prove a version of the theorem for nonnegative weight
. functions, and then generalize that to monotonic weight
mills functions.
. , . The basic idea behind the proof is that by randomly
Be_zcause_ the maximum hypertree problem is NP-hard, Bhstructing ak-windmill farm, we can in expectation
th.'s section, we e>_<p|ore atype of hyper_graph known as e e e ql—, fraction of the weight, by showing that
windmill, which will be used to approximate a hypertree, hh ’fGU- e ko1 is included in the wind
Consider a tre€T;. (V') over the set of vertice¥, with cach hyperedge of size up ?F Is Included in the wind-
’ mill farm with probablhtym. Then by the definition

rootr and depth at mogt. _ ; : .
of expectations there must exist a windmill farm that cap-
Definition 5.1 (Level of Vertices) Vo € T, (V), the tures at least that fraction of weight of the maximum hy-

level ofu is defined to be the length of the shortest pafiftforest (i.e. the hypertree). ,
from to v. Levelg) is unique becausg, (V) is a tree. Consider coloring the vertices of the hypergraph with

’ k + 1 colors, where we color each vertex of a hyperedge
For example, in figure 2(a), vertex 1 is at level 0, whildifferently. Such a coloring exists: take a leabf (V'),

vertices 2, 3 are at level 1 and vertices 4, 5, 6, 7 are'§fursively coloi (V —v) (whichis also a hyperforest by
level 2. the Graham reducibility of hyperforests), and then color

Sincev is a leaf it has at mogt neighbors (the hyperedge

Definition 5.2 (Windmill) . Consider a hypergraph de-it is on), so there will definitely be a color remaining for

rived from the rooted tre€l’. (V'), by including all ver- v- This coloring scheme imposes on each hyperedge a

tices in each path from the roat,to every vertexy to be color ordering—namely, the order of colors that was used

a hyperedge. Such a hypergraph is called-aindmill. 10 color that hyperedge. Now consider a random permuta-
tion of thek + 1 colors,nx. Our hyperforest’, is defined

Hence in figure 2, the sets of verticgs, 2} and{1, 2, 4y to be the set of hyperedges that amnsistentwith the

are both hyperedges because 2} and {1, 2, 4 spec- orderingw. A hyperedge is consistent withif its color

ify paths from vertex 1 (the root) to vertex 2 and vertesrdering forms a prefix or the entirety af We need to

4 respectively. The level of a vertex,in a windmill is verify that F; is indeed a windmill farm, and that in ex-

equal to the level of the vertex in the rooted trég;, (V) pectation it preserves gy; fraction of the weight of

from which the windmill is derived from. Therefore, inthe maximum hypertree. The former is not difficult to

the windmill shown, vertex 1 is at level 0, vertices 2, 3 aiiatuit—if a vertex of colori + 1 is included in the wind-

at level 1 and vertices 4, 5, 6, 7 are at level 2. mill farm, then it has to be on a hyperedge with a vertex



of color, which serves as its parent in the windmill farm. Therefore, we can consider the incremental improve-
Each hyperedge of sizeis selected to be in the wind-ments in the total weight of the windmill farm by adding
mill farm if it prefixes 7, which happens with probability v, to our windmill farm, assuming the previous vertices
(k(jg:)’",)! > (kil),. Thus the maximum windmill farm of p are already part of the windmill farm. To be pre-
should capture at least that fraction of the weight of ti§ése, letw, be the weight of patlp. Then we have
maximum hypertree. wp = 3, w(h) = Xo,c,w(h). Because the weight
To extend this proof to monotonic rather than just nofidnctionw(h) is monotonic fork up to sizek + 1, we can
negative weight functions, we tweak the analysis slight§onclude that allu, are nonnegative.
As we color the vertices in reverse Graham reduction or-Based on these definitions, we can express our ILP ob-
der, note that we are incrementally building up the windgctive function a_  «,w,, wherep ranges over all pos-
mill farm one vertex at a time. Each vertex and its asible paths from length O to+1. Note there ar@®(n*+1)
sociated hyperedge is added only once, and due to mosigsh paths, and thus the number of variables is polyno-
tonicity, the weight of the windmill farm can only increasgnial.
with each addition. Therefore the same analysis holds foMe also need to ensure that the hypergraph induced
monotonic weight functions. from z,, is indeed ak-windmill farm, by enforcing two
From the Windmill Cover Theorem, we know that thereonstraints on our ILP:
exists ak-windmill farm that covers at Iea% of the
weight of the maximum hypertree. Consequently, if we
can find the heaviegt-windmill farm over the input ver-
tex set,V, then we have found @j—l), factor approxima-
tion to the maximum hypertree problem.

1. Path consistency If we decide to include a path
p = (v1, 02, ...,0s), We also have to include the path
leading up to the second-to-last vertex (defined as
q in the above example). In other words, for all
such thatlp| < k, and for all successor vertices
Zpy = lonlyif x, = 1. Expressed as a linear con-

6 ILP for Windmill Farms straint, we havgVp, v)x,., < z, andz, € {0,1}.
2. Tree structure: For the underlying structure of the

Given inputs treewidtht, vertex setlV and monotonic
weight functionw : (<;’+1) — R, we want to find the
heaviestk-windmill farm. In this section, we establish
an integer linear program whose solution is exactly the
heaviestk-windmill farm. Of course, solving an ILP is

intractable, but with the appropriate relaxation and ran-

domized rounding scheme, we can obtain a reasonable o ) ]
Putting together the objective function and constraints,

we have the following ILP:

approximation to the ILP.

First, a brief word on notation. We define a “pafhto
be a sequence of vertices frdm and lengthp| to be the
number of vertices ip. Let - denote the concatenation
operator for paths. For example; ¢ is pathp followed
by pathg, andp - v is pathp followed by vertexv.

Consider associating a variabtg with each patfp of
length at most + 1. Whenz, = 1, we consider the
vertices ofp to be a hyperedge in our-windmill farm.
For example, ifp = (v1,ve,...,v,) for somea < k +
1, then settingr, = 1 implies that{v,,vs,...,v,} is &
hyperedge of ouk-windmill farm.

In particular, recall from section 5 that /awindmill
farm is induced from a disjoint collection of rooted trees
of depth at mostt. Settingz, = 1 implies thatv; 7
or v, is the root of one of those trees. By convention,
we shall assume; to be the root andv, v, ..., v4)

windmill farm to be a tree, there can only be one path
to each vertex from the root of the tree it is in. For all
verticesv, there can only be one pagi{where|q| <

k) leading to it. Therefore, there exists at most gne
wherez,., = 1. This can be expressed in constraint
form as(Vv) 3, 24, < 1andz, € {0,1}.

max Z WpTp
{p: IpI<k+1}
(7o) D wg <1
{q: la|<k}
(o.lpl <k) 2o < ap
(vp) =, € {01} )

(In our notation we explicitly specify the lengths of the
paths, though technically, for |p| > k+1is not defined.)

LP Relaxation

To make the problem tractable, we now relax the ILP to

is therefore a walk down that tree. However, this alsibtain a linear program. The naive relaxation of the above
means that there exists a path from ragtto v,_1, via ILP would be to replace the constrainf € {0,1} with

q = (v1,v2,...,04-1), Wherep = ¢ - v,, thus imply- z, € [0,1]. However, if we can find a relaxation that has

ing thatq is also a hyperedge of our windmill farm anc more restricted feasible polytope, while still containing

zq = 1.

the feasible solutions of the original ILP, we have a chance



of reducing the integrality gap when we round. With thison. Letz? be the respective optimal solution for L.P

in mind, consider the following relaxed LP: Let Z represent the rounded variables. Putting these ideas
together, we obtain the following rounding scheme:
mazx Z WpLp o .
(o Inl<kt1} 1. Solve LP to obtainz®.
(Yo, |p| < k) Z Tpagw < I 2. Forifrom 1 tok:
{a: la|<k—|p[} (a) For each vertex:

(¥p) @ = 0 i. Randomly select a paghwith probability

z. = 1 (10) ai-} wherelp| = i — 1, or no path at all

’ L ‘ i1
First, let us verify that this relaxation sufficiently cap- . \:cwth prﬁb"’_‘b'“t{l gz{p: lpl=i—1} Tp-v
tures the original ILP constraints. Note that when con- il. It a pat pisse ected, set,., to one
sidering just theg = ¢ term, the constraint becomes (b) Setall remaining:, where|p| = i to zero
T < xp, the path consistency constraint from the  (c) Add newly rounded variables as constraints
ILP. Additionally, whenp = ¢, the constraint becomes to LP—! to obtain LP
> T < 1, thetree constraint from thg ILP. _ (d) Solve LP to obtaing’
We also need to verify that the original ILP feasible
polytope is contained within this LP’s feasible solution 3. Returnz* (which will be integral)

set. When we restrict our consideration to integratal- ) ) ) .
ues, note that the — e case specifies that there is only_ This scheme rounds variables associated with succes-

onez,., for eachw that can be one. Therefore, given patfive!y longer paths. We guarantee path consistency—

consistency, we can conclude the LP constraint above,WNen we round some,, to zero, we add, = 0 to all
future LPs, thereby enforcing that for anyz,., is con-

strained to be zero. We also guarantee tree structure—
8 Iterative Randomized Rounding when we round some,,., to one, we cannot round,.,,

to one. To see why, consider two cases|q|f= |p|, we
The relaxed LP will generally give fractional solutionszan only select either one of them to round to one, because
which by themselves do not specify a proper windmilhey are selected within the same iteration]qg|f > |p|,
farm structure, and thus cannot be used as the maximilna LP includes a constraint for tree structure that prevents
hypertree. We need to round the LP solutions to integral.,, from taking on any value but zero.
values, while still satisfying the original feasibility con- It remains to show that this rounding scheme introduces
straints of the ILP. A straightforward one-pass roundiragreasonably small bounded integrality gap.

(W?Erle we rognft;l/ ehachp tr? one .With probz;bilityxp) Is Theorem 8.1 (Integrality Gap). The optimal value for
unlikely to satisfy the path consistency and tree structLLrB S I ' :
" is within a -—— factor of the optimal value for

constraints of the ILP, because we could very well round . 8(k+1—9)

somez, to zero butz,., to one, or bothr,,.,, andz,., to .

one (wherey andg are different paths). Thus, we'd like to  pye to space constraints, here we give an intuitive ar-
round in a way that preserves both path consistency ajifnent why this theorem holds. Rather than showing that

tree structure. the optimal solution to LP is within a 5 factor of

1
. . . . . ) i 8(k+1—i
_ To' do s'o, we round in aiterative fashlon. At itera LPi—1's optimal, we show that there existdeasibleso-
tion 4, for ¢ from 1 tok, we round all variables, where

, . ~_lution to LP that is within that factor. The optimal P
lp| = i. To guaran.tee path consistency, we automatica Slution (that isz*) can only have as good or better of a
roundz,., to zero ifz, is zero. To guarantee tree StrUCe.1ue. Consider this solutian(® to LP:
ture, for any given vertex we only round at most one
of the variables,,, to one. In particular, if some,,., ¢ Forvariables already rounded (thatis,for |p| < i),
was already rounded to one in an earlier iteration (i.e., LP! constrains that',(f) = ip.
for a shorter path), we are not allowed to round any fu- ]
ture vertex ending inv to one. Between every iteration ® FOr variablesr,., where|p| = i andz, = 0, set

of rounding, we should readjust the not-yet-roundgd :c,(fz] = 0 to ensure path consistency.
values so that they continue to be optimal. We do so by ) _ ~ ()
re-solving the LP at each iteration, using the previously® FOr variabless, , wherelp| = i andi;, = 1, setz;.
rounded variables as constraints. to ie1

Let LP’ denote theth iteration’s linear program, where zf’—q (11)
LPY is the original relaxed LP defined in the previous sec- Ak + 1 —d)ay



e For each vertexv, if the above settings causeBy summing over alk+ 1 —i vertices ofg, in expectation

>, 2\, to exceed one, we set any variable whictere isl /2 weight entering the patih By the Markov in-
equality, this implies that with at leasf2 probability we

ill not purge the path. Thus, the overall expected value
or zp.q IS m By linearity of expectation, and be-
cause the LP objective function is linear, this implies that
‘ in expectationz(”) preserves am fraction of the
We need to show that?) is a feasible solution, and that inweight of the previous LP optimumf—!.
expectation it preserv% fraction of the optimal  Applying theorem 8.1 foi = 1 to k readily gives us
value of LP~1. this overall integrality gap:

First, we argue that this solution is feasible. We need to
verify that > .o i iy 2, < 2 is satisfied for all Corollary 8.2 (Overall Integrality Gap) . The rounding

p. Consider t ese cases for the constraint: scheme returns an integral solution that is wi'[hirgg—,éﬁ
factor of the optimal value for LP

has av on its path to zero. That s, any variabalﬁl.q
(for all p andq) is set to zero, causing the sum to g
to zero. In this situation, vertex overflowedso we
purgeall paths that include.

e |p| = 0: The purging step guarante§§q xfﬁ, <1, _ _ _ o
which is thep = e constraint. Thus, compounded with the windmill approximation
o _ . gap ofm, our approximation to maximum hypertree
o 1 < |p| <4 Tp = 0: This constraint already ap-ig i, expectation within a factor ng
peared in LP™", and the entire sum was set to zero, We have demonstrated a constant factor approximation

and remains zero. ; .
for maximum hypertree, as we set out to do. This con-

e 1 < |p| <i, & = 1: The sum over paths startingfludes our study of KS's work.
with p is obviously less than or equal to the sum over

all paths, which is thép| = 0 case. Thus, the sum is S =
at most 1, which ig;),. 9 Mlnlmlzmg D(Ptme‘ |P)

e |p| > i: Write p asr - s where|r| = i. Now consider We recall from section 3 that NB [5] presents a poly-
two subcases: nomial time algorithm that samples the true distribution,

Py @ polynomial number of times to find a graph,
— @, = 0 or a vertex ofp overflows: The sumis G ¢ G,. G has the property that the optimal distribu-
zeroed in either case, so the constraint is satifon, P, that factorizes ovef: as given by equation 3 has
fied. D(Pyye||P) < € with probability at least — 6.
— & = 1 and no vertex op overflows: Ignor-  The basic strategy comes from theorem 2.3, equation

ing purging, the constraint is equivalent to 4: the projection error of%,.,. on a given triangulated

constraint of LP~1, except scaled down by agraph (hyperforestfz is < > 5 Ip(Vi1; Viz|s), where
factor of ——L1 — so it is satisfied. Note S is the set of minimal separators 6f. Because there

4(k+1—d)zi _
that purging can only make the constraint mof& € &t mos{V| = n terms (equal to number of random
strongly satisfied variables) in the summation, if we can ensure that each
' term is small enough, we can be confident of the error
Second, we argue that we preservg(@rll—_i) fraction being belowe.

of the optimal value of LP-!. Ignoring purging for the Because we only consider triangulated graghsof at
moment, consider a pathq where|p| = i. z, is rounded MOSt treewidthk, the minimal separators are at most of
to one with probabilitysi=, in which case patl,,., will sizek. Hence there are onl(n*) (polynomial) number

contribute L___fraction of the weight,., that of separa_tqrs to c0n3|d¢r._ If for e_ach pos:_;|ble se_panator
o A(k+1—i)zy we can divide the remaining vertices (variables) into two

x,, did. Thus,in expectationpathp - ¢ will contribute a groupsV,, and V., in such a way as to approximately
m fraction of the weight after rounding. Howeverminimize or upper boundp(V;;; Viz|s), then our task is

if the path is purged, then it will contribute no weight ailmost complete. To do this, NB [5] makes use of an algo-
all. Therefore we'd like to bound the probability that theithm from another paper [6], as a black-box subprocedure
path is purged, i.e., that any vertexon p - ¢ overflows. of their algorithm.

By the LP~" constraints, the incoming valu§ Y z,.,)  The problem is complicated by the fact that we do not
to a vertexv via paths that share the prefixis at most know P,,.,.. although theorem 2.3 depends on us knowing
m. For paths that do not share the prefixthe p,.,.. To get around this, we observe that we are only in-
expected contribution is even less. Adding these two terested in minimizing g Ip(Vs1; Viz|s). For certain

gether, the total incoming value tois at mostm. classes of distributions, we can estimate entropies (and



hence mutual information) of arbitrary subsets of randofiheorem 10.1 (Submodularity Gap) Supposeip s :
variables with precisionand confidencé—J using poly- 2 — R* is a symmetric submodular function and
nomial (in n, % %) number of samples. For examplef g : 2V — R* is another function that is not necessar-
the generalized Chernoff-Hoeffdings bound shows thisiig submodular, but satisfigld”’s ¢(A) — Fps(A)| < e
possible for discrete distributions, and specialized techd C Vg, then QA will return a non-empty proper sub-
niques exist for certain continuous distributions such ast A c Vg, such that for all non-empty proper subset
Gaussians. A C Vs,

Fpg(A) = Fp g(A) < V] & (14)

10 SmeOdUIamy Because our sampler only guarantegsrecision with
We first define the concept of submodular and symmetﬁllrcobf“zI I||;[§ ! u_siilg, :Egoﬁirgnlg(')luleg;xtgirﬁﬁ%gg
- 1

functions: makeO(|V,|3) queries to the sampler.

Definition 10.1 (Submodularity). A functionf : 2 —  ThereforeA is an approximate minimizer df; 4 and

R is submodularit’A, B C V, f(A) + f(B) > f(Au canalso be easily shown to be the approximate minimizer

B)+ f(AN B). of Fpg: VA, Fps(A) — Fps(A) < ([V| + 2)e1. We
can intuitively see this}V|e; comes from the modularity

Definition 10.2 (Symmetric) A functionf : 2 — R* gap (theorem 10.1), whilee; comes from possibly un-

is symmetric iff (A) = f(V\A). derestimatingFp 5(A) and overestimating’s s(A4) (see

equation 13). Once again this is true with probability
LetS C V and letVs = V'\S. A useful submodular and _ Vs |361. Summarizing, we have

symmetric function is mutual informatiorfp s : Vs

R, Theorem 10.2 (Approximation of Fpg).  Suppose
Fps : 2V — R* is a symmetric submodular function and
Fps(A) = Ip(A4;Vs\A|S) (12) Fpg:2" — R* isanother function that is not necessar-
P(A,Vs\A|S) ily submodular, but satisfigld”'s ¢(A) — Fps(A)| < e
= EP[lOgP(A|S)P(V5\A|S) VA C Vs with probability at leastl — §;, then running

QA with I ¢ returns aA, such that for all4, with prob-

From the definition of mutual informatio;p s is clearly ability at leastl — |Vs|361,
symmetric. The proof of submodularity is easily done by -
plugging in the definition of mutual information. Fps(A) = Fps(A) < (V] +2)a (15)

Given a symmetric and submodular functign, 2" — Suppose{A4, B} is a O-partition of(Vs, S, P) (that
R* using Queyranne’s Algorithm [6] (henceforth knowny Ip(A;B|S) = 0), then with probability at least
as QA), we can obtain a proper subsetC V suchthat | _ |35, {A, B} will also be ane;-partition of
A* = argminpesv(v,g) f(B) using onlyO(|V; ) calls (v g P). On the other hand, fA,B} is ane; -partition
to evaluatef. Suppose we input the functiafip 5 into  of (5, S, P), then with probability at least — |V |35y,
QA, whereS C V, and find thatFp 5(A*) < e. Then (4 B} will be a2e -partition of (Vs, S, P).
we say thatS is ane-separator of” and (A, V\ A) is an
e-partition of (Vs, S, P). o

In our case however, we do not kna®,..., but, we 11  Partitions
shall assume the existence of a sampler so that we can es-
timate F'p 5 in polynomial time. In particular, we shall as{t may happen that disconnecting a separaidrom a

sume that the sampler gives an estimfge, upon query, graph might result in more than two disjoint components.
such thatvA C Vg ’ We can always union the components so that we end up

with two components only, but if we decide not to, let
|Fpg(A) — Fps(A) <erwp.>1-6 (13) 7 = {A;,A,,---,A,,} be the set of disjoint compo-
) . nents. Extending our old terminologies, we calbn e-
Now, pelng randc_)meys might no longer be SmeOQ'partition of (Vs, S, P) if Ip(A;; A;|S) < e Vi # J.
ular, since there is no guarantee that separate queries sting this terminology, we have the following theorem:
FIE’,S(A)’F}S.S(B)’FIE’,S(AUB) andFP’S(AﬂB) will .
yield consistent estimates such that 4 (A) + Fj o(B) Theorem 11.1 (Multiple Components)
is atleast’s 5(AU B) + Fp 5(AN B). Because of this, 1. |f A C Vs and 7 is an e-partition for (Vs, S, P),
A, the result returned by QA might no longer be the min- then74 = {4; N A : A; € 7} is an e-partition
imizer of 5 . for (As, S, P) becauselp(A; N A; A; N AlS) <
However, this submodularity gap can be bounded: Ip(A;;A458) <e



2. Conversely, supposer is an e;-partition for
(Vs,S,P), and A € «. If ¢ is an ez-partition for
(Ag, S, P), theny = (w\A) U ¢ is amax(es, €3)-
partition for (Vg, S, P)

This theorem is intuitive. Part 1 says that if you start Wi%astl _

ane-partition, say{(a, b), (¢,d,e),(f,g,h,i)}, and form

Theorem 11.3 (CIP) Let CIP (Conditional Inde-
pendence Partitions) be a collection of partitions
{(S,7s(e2 + (V| + 2)e1) : |S] > k} found with
the algorithm just stated. Then QA will make at most
O(|V|F+2) queries tof’s 5, and so with probability at
|V|k+551:

a new set by drawing elements from each component, say. V(S,ns) € CIP, ©s refines anye, partition of

{(a,b) U (¢,d) U (f)}, then{(a,b), (c,d), (f)} is still an

(Vs, S, P).

e-partition of the new set. This is not surprising because )
reducing the number of elements in each partition compo?: Conversely, if you take anys, ns) € CIP, and

nent won't provide partition components with more infor-

mation about each other than before.

Part 2 says that if you start with am-partition,
say {(a,b),(c,d,e),(f,g,h,i)}, and split up one
of the partition component into anez-partition,

say {(f,9),(h), (D)},

then the combined partition

unionmg’s components into a partitiof4, B} such
that g refines it, then{ A, B} is an|V|?(e2 + 3¢1)-
partition for (Vg, S, P).

12 Partitions to Graphical Model

{(a,0), (¢,d;e), (f.9), (h), (1)} is now @amaz(ez €3)-  \ye first need to define compatibility:

partition for (Vg, S, P). Once again this is not surprising

since splitting{(f, g, h,%)} up won't give the original Definition 12.1 (Compatibility). We say that a partic-
partition components more information about each othatar triangulated Markov network(7 is compatible with
The only thing that might happen is that > €3, which CIP if for everys € S (the set of minimal separators of
means thaf(f, ), (h), (i)} have more information aboutG) with corresponding partition{ VA, V.?} there exists

each other than about the original components.

Note that the above theorem still holds when replaci
P with P. Using the above theorem, given a $etC V/
ande > 0, we can find a-partition, 7 (¢) for (Vs, S, P).
Because we are using QA with; ¢, the e-partition we
found might not be the “best” one, but it is still &n
partition for (Vs, S, P):

1. 7% — {Vs}i—0;

2. while3X" € m§ such that{ 4;, B;} is ane-partition
of (X%, S, P)

(@) 75— (mE\XT) U {4, B;}
(b) i—i+1
3. mg(e) — 7

Note however, that the algorithm is run usifg , and

S0 we obtain am-partition for(Vg, S, P), but what we are
really interested in, is how thispartition for (Vs, S, P)

relates to(Vs, S, P). We need another definition before o

stating the relationship:

Definition 11.2 (Refinement) A partition« is a refine-
ment ofr if every element of can be written as union of
elements of).

So for example{(a,b), (¢,d,e), (f,g),(h), (i)} is a re-
finement of{(a, b), (c,d,e), (f,g,h,i)}

Invoking theorems from section 10 and combining the

results from this section, we get:

(s,ms) € CIP which refines it.

n
I—%r example, in figure 1(b)5} is a minimal separator

whose corresponding partition i$(1,2,3,4),(6,7)},

if CIP contains ({5},{(1,2,3,4),(6,7)}) or
({5},{(1,2),(3,4),(6,7)}) and so on, we are satis-
fied. We then have to check the other minimal separators
of the graph of interest.

Putting everything together, we remind the readers of
theorem 2.3 and how it's key to the problem NB is solv-
ing. From theorem 2.3, the projection error of project-
ing P, onto a graphical modeli7 € Gy, is given by
> ses Ip(Vir; Vials), whereS is the set of minimal sep-
arators ofG. Supposé- is compatible withC'I P, we can
then make the following observations:

1. For a given graphical model, there cannot be more
minimal separators than there are vertices, hence
|S] < |V]. The maximum number of minimal sepa-
rators is actuallyV'| — 2 which occurs when there’s
a Markov chain of vertices.

Furthermore, sincé&' is compatible withC'I P, this
means that's € S with corresponding partition
{VA VB, 3 (s,ms) € CIP which refines it, and
this implies by theorem 11.3, th&p (VA V.E|s) <
‘V‘?’(EQ + 361).

. Combining the first two points, it means that if
we can find aG that is compatible withC'IP, we
have achieved a projection error (KL-divergence)
< |V|*(e2 + 3e1) (with probability at leastl —
|V |¥+55,). Thus by settingy, €1, e; appropriately,

10



we can ensure an errgf ¢ with probability at least close the windmill cover gap [4]. Second, we could try

1-9. to find a structure that captures more of the weight of the

o ) . . . hyperforest than windmill farms currently do, while still

Finding the graph that is compatible with! 2 in poly-  yaving a reasonable integrality gap when it comes to the

nomial time involves a deterministic dynamic programyg|axed linear program. One of our original project ideas
ming algorithm. .Essent|ally, we'con3|der mcreasmgwas along this direction—we studied what we called a
large sets of vertices, and check if they form a compafi; ;y-hydra swarn, a generalization of windmill farms
ble graph. A vertex set has a compatible graph if it ¢t allows each constituent tree to have deftand hy-
be split into two components, both of which have comyereqges (compared to a windmill farm) are taken to be
patible graphs. The algorithm terminates when it f'”dsp%ths of lengthk + 1 in the hydra. Presumably @, d)-
partitioqing where each compongnt of the partition hasr19dra swarm fod > k should cover a larger portion of
compatible graph, and thus the final graph can be recijfs hypergraph at the cost of a larger integrality gap. (For
sively built using the memoized _subgraphs. We omit ﬂé‘iample, 41, n)-hydra swarm can cover the entirety of a
grungy details here (as the algorithm and proof do not relya s, of treewidth one—it is simply the tree itself.) Third,
on randomization or randomized techniques) and refer f§g oyid forego the intermediary structure entirely and
reader to [S] for the full exposition. try to devise an approximation to the maximum hyperfor-
est directly, such as by an ILP. We (unsuccessfully) tried
this route as well, though the resulting ILP formulations
we found were invariably too large and complex.

In this paper we studied the problem of learning the struc-FOr NB, the most obvious future work would be to gen-
ture of a Markov network. We studied two papers thgfalize thewtechmqugs to classes of Markoy networks be-
considered the same restricted class of such netwod)d bounded treewidth models. As we did not explore
bounded treewidth models. These models allow us to f€ NB paper until much later in our project cycle, we
strict the number of dependencies between vertices, to§iVe not yet considered this problem.

low for fast operations and less overfitting. Karger and

Srebro’s work focused on finding the “best” such mod

given some arbitrary observation data, and demonstra! ferences

an algorithm that is able to come to within a constant fac- . )

tor of the best model. Narasimhan and Bilmes lookéyl Hans L. Bodlaender. A tourist guide through
at a related problem of “recovering” a bounded treewidth réewidth.Acta Cyberneticapages 1-21, 1993.

model from observation data that is assumed to have b

n
generated from such a model. They proved that if we ir% Thomas_M. Cover anq Joy A. ThomaEIements of

. . Information Theory Wiley-Interscience, 1991.
allowed to sample a polynomial number of times from

the true model, we could construct an arbitrarily goc@] David Karger and Nathan Srebro. Learning markov
approximation to the true model with high confidence.” atworks: Maximum bounded tree-width graphs. In

NB's analysis applies only when the observations are ac- Proceedings of ACM-SIAM Symposium on Discrete
tual samples from a bounded treewidth distribution; if the Algorithms pages 392—401, 2001.

true distribution is not of that type, the algorithm may not
return an answer. KS does not assume control over {hp Percy Liang and Nathan Srebro. How much
way the observations were sampled, and will find the best of a hypertree can be captured by wind-
bounded treewidth model regardless of the true underly- mills? Technical report, Massachusetts In-
ing distribution of the data. However, it only makes a stitute of Technology, 2003. Available at
guarantee of the “goodness” of the resulting model with  http://people.csail.mit.edu/nati/HyperTrees/.
respect to the maximum likelihood bounded treewidth
model—whether this maximum likelihood model is closgp] Mukund Narasimhan and Jeff Bilmes. Pac-learning
to the true underlying distribution, or even the empirical bounded treewidth graphical models. Rroceedings
distribution induced by the observations, is uncertain. :

There is an abundance of future work possible for both The Lemaean Hydra of Greek mythology was a fearsome many-

. . headed creature defeated by Heracles. Arguably, the many strongly con-
papers. Fo.r KS, the Curre_nt apprOX|maF|on fgctor, thouglreq paths emanating from the root of this structure resemble the long
constant with respect to, is very explosive with respectnecks and heads of the hydra, though at the present we have not success-
to k. There are multiple conceivable ways to try to reully emulated Heracles in defeating the hydra and unlocking its hydra

; ; ; ver and integrality gap secrets. However, Heracles did not have to
duce this factor. First, we could try to tlghten the Curre@gttle an entirswarmof hydras, unlike the valiant Chen and Yeo, who

analyses for bOth windmill cover and in'_[egrality gap. INsoth in the process sustained severe injuries, especially to their research
deed, work by Liang and Srebro has tried to empiricaltygans.

13 Conclusion
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