
Learning Bounded Treewidth Markov Networks: A Survey

Harr Chen Boon Thye Thomas Yeo
6.856 Randomized Algorithms

1 Introduction

Graphical models are a powerful tool in statistical ma-
chine learning. They are used to represent the properties
of a joint distribution over a set of random variables—
in particular, they encode conditional independencies be-
tween the variables. A particular kind of graphical model
is the Markov network, where the variables are repre-
sented as vertices and dependencies are encoded asundi-
rectededges between the vertices.

A natural question that arises in the study of Markov
networks is how to learn the model from observation data.
This in turn is divided into two problems—learning the
graph structure, and inferring the conditional distributions
at each vertex. The latter problem is known as theinfer-
enceproblem, and is well studied [8]. The former problem
of learning the graph structure itself, is what we study in
this report.

Learning graph structure is an exercise in trading off be-
tween representative power and overfitting. A fully con-
nected graph on the vertices will always fit any set of ob-
servation data best (in terms of training error), but does
not make any independence assumptions and thus will al-
most always overfit and is slow. Therefore, it is useful
to learn from a restricted hypothesis space of graph struc-
tures.

In this report, we look at two papers from the lit-
erature that operate on the same restricted space of
models—specifically, so-calledbounded treewidthtrian-
gulated graphs. They solve closely related problems.
Karger and Srebro (hereafter KS) look at learning the
maximum likelihoodbounded treewidth graph given some
observation data [3, 7]. They show that the problem is NP-
complete, but use an integer linear program, relaxed to a
linear program, and a clever iterative rounding scheme to
derive a randomized approximation algorithm that is op-
timal to within a constant factor. Narasimhan and Bilmes
(hereafter NB) demonstrate an algorithm to efficiently
PAC-learna bounded treewidth graphical model [5]. That
is, they show that, assuming the underlying source of the
observation data is a bounded treewidth graphical model,
we can efficiently recover a bounded treewidth model that
is close, with respect to KL-divergence, to the true model.
“Close” means within an arbitrarily smallε-factor with ar-

bitrarily high confidence1 − δ, and “efficient” means in
time polynomial inn, 1/ε, and1/δ (assuming treewidth
is a constant).

We can understand the difference between the ap-
proaches through KL-divergence. KS’s goal is to mini-
mize the KL-divergence between theempirical distribu-
tion induced by the observation data, and the resulting es-
timated maximum likelihood model. It takes as input a
previously generated observation sequence, and operates
only on that data. NB tries to minimize the KL-divergence
between thetrue distribution and the resulting estimated
distribution. It relies on being able to dynamically sample
from the true distribution, and it will usually only return a
valid answer if the true distribution is of the right type.

This paper is organized as follows. In sections 2 and 3,
we introduce some graph and machine learning concepts
common to both KS’s and NB’s work. We then study each
individually, with an emphasis on the randomization tech-
niques and concepts used.

In section 4, we will look at KS’s reduction of the max-
imum likelihood Markov network to a purely algorithmic
problem—themaximum hypertreeproblem. This problem
can be approximated by the so-called maximumwindmill
farmproblem (section 5). Next, they formulate an integer
linear program to solve the maximum windmill farm (sec-
tion 6), relax it to a regular linear program (section 7), and
present a sophisticated rounding scheme that preserves a
constant integrality gap (section 8).

We then look at NB’s approach to PAC-learning a
bounded treewidth model. They show that mutual infor-
mation, a measure of the closeness of two probability dis-
tributions, is a so-calledsubmodular and symmetricfunc-
tion (section 10). This lends itself to a polynomial time
minimization technique. Then they show that finding the
minimum mutual information based on the sampled dis-
tribution, while not strictly submodular, is guaranteed to
be within anε-factor of the true minimum with constant
probability. This allows us to partition the variables into
sets that have low mutual information with respect to each
other (section 11), and therefore admits a polynomial time
algorithm that recovers a graphical model that is arbitrar-
ily close to the true model, as measured by KL-divergence
(section 12).

1

2 Graphical Models and More

A Markov network consists of a tuple(G,P), whereG is
an undirected graph andP is a joint probability distribu-
tion. The vertices ofG represents the random variables
of P and the absence of edges inG represents conditional
independence between the random variables ofP .

Definition 2.1 (Separator). A separatorS ⊂ V is a set
of vertices whose removal disconnects the graph.

Hence in figure 1(a),{2, 4} is a separator and so is{5,
7}. In figure 1(b),{5} is a separator. In a Markov net-
work, if S separates the network into a collection of dis-
joint subgraphs,{Ai}, then this implies that theAi’s are
independent givenS. This further implies thatAj andAk

are independent given S, forj 6= k.

Definition 2.2 (Triangulation). A graphG is triangu-
lated if every cycle of length at least 4 has a chord.

Figure 1(b) shows a triangulated graph, while the graph
in figure 1(a) is not triangulated because of the cycle{2,
5, 6, 7, 4}. Using the definition of separators, another
alternative definition of triangulation is as follows:

Definition 2.3 (Triangulation). A graphG is triangu-
lated if all minimal separators are cliques. A clique is a
set of vertices that are completely connected. A separator,
S is minimal if there does not exist a proper subset ofS
that separatesG.

Hence in figure 1(a),{5, 7} is a minimal separator but
is clearly not a clique, whereas{2, 4} is both a minimal
separator and a clique. The existence of minimal separa-
tor {5, 7} means figure 1(a) is not triangulated. that We
generalize the concept of a graph to a hypergraph:

Definition 2.4 (Hypergraph). A hypergraphH(V) is a
collection of subsets of vertices (hyperedges) of the ver-
tex setV . Furthermore, for all hyperedges,h ∈ H,
h′ ⊂ h impliesh′ ∈ H, i.e. a hypergraph includes all
subsets of its edges.

For example, see figure 1(a).
A clique-hypergraph of a graphG is the hypergraph

whose hyperedges are the cliques ofG. For the purpose of
this paper only, we will only consider clique-hypergraphs,
hence an alternative definition of hypergraph is the follow-
ing:

Definition 2.5 (Hypergraph). A hypergraphH(V) is
a graphG(V) whose cliques are hyperedges ofH(V).
Hence in this paper, we use cliques and hyperedges inter-
changeably.

We now define leaves and acyclicity in hypergraphs:

(a) Hypergraph

(b) Hyperforest (c) 3-Hypertree

Figure 1: Hypergraph, Hyperforest, Tree-Decomposition
and3-Hypertree

Definition 2.6 (Leaf). A maximal hyperedgeh ∈ H is
one where there does not existh′ ⊃ h, such thath′ ∈ H.
A leaf of a hypergraphH(V) is a vertex that appears in
only one maximal hyperedge,h ∈ H.

Hence in figure 1(b), vertices 1, 3, 6 and 7 are leaves,
while 2, 4, 5 are not.

Definition 2.7 (Hyperforest). A hypergraphH(V) is
acyclic if it is empty or it contains a leaf,v such that
H(V − v) is acyclic. A hyperforest is an acyclic hyper-
graph.

Because of our paper-specific alternative definition of the
hypergraph, we have the following fact: a hyperforest≡
triangulated graph. This recursive definition of acyclicity
induces a Graham reduction of the hyperforest: we be-
gin with a hypergraph,H(V) and iteratively remove the
leaves ofH(V) until there are no more leaves. If the re-
sulting hypergraph is empty, we concludeH(V) is a hy-
perforest. Note that the Graham reduction is usually not
unique, since there might be multiple candidate leaves that
can be removed at each stage of the reduction. For exam-
ple, for the hyperforest in figure 1(b): we can first remove
vertices 1, 3, 6 and 7, and then remove 2, 4 and 5. Alter-
natively, we can remove vertices 1 and 3, followed by 2
and 4, followed by 5, 6 and 7.

We now define the concept of treewidth.

Definition 2.8 (Treewidth). The treewidth of a hyper-
forestH(V) is the size of its largest hyperedge minus 1:
maxh∈H |h| − 1.

In the context of our paper, a hyperforest is equivalent
to a triangulated graph and hence the treewidth of a tri-
angulated graph is the size of its largest clique minus 1.

2

Furthermore, the sizes of the minimal separators of the
triangulated graph are at most the treewidth.

Treewidth is important in both learning and inference.
A Markov network with higher treewidth has greater
representative power, encoding more dependencies be-
tween variables, and hence can often explain data bet-
ter. However, the efficiency of most inference algorithms
decreases with increasing treewidth, and in learning, a
higher treewidth could result in overfitting. Hence it is a
common practice to use a Markov network of a bounded
treewidth to fit the data.

An alternative definition of treewidth is via tree decom-
position which we will not discuss here for brevity [7, 1].
In fact NB makes heavy use of tree decomposition, but we
will reformulate their arguments without it.

We now define ak-hypertree. The concept of the hy-
pertree is essential to KS:

Definition 2.9 (Hypertree). A k-hypertree is a maximal
hyperforest of widthk, i.e. no more edges can be added to
thek-hypertree without increasing its treewidth.

A more intuitive definition of ak-hypertree might be the
following construction:

Definition 2.10 (Hypertree). A clique withk+1 vertices
is a k-hypertree. Given ak-hypertree,Tn on n vertices,
we can obtain ak-hypertree,Tn+1 by adding a new vertex
to Tn and connecting it to a singlek-clique ofTn.

For example, figure 1(c) shows a3-hypertree, which can
be constructed by beginning with vertices{1, 2, 3, 4}
(which is a clique of size 4) and adding vertex 5 and con-
necting it to vertices{1, 2, 5}, a3-clique.

The following two theorems explain why triangulated
graphs are preferred [7, 5]:

Theorem 2.1 (Hammersley-Clifford). A random vec-
tor X has a probability distribution that factorizes over
a Markov network (or hypergraph) with cliques (or hy-
peredges,H) iff it’s probability distribution has the form:

PX(x) =
∏

h∈H

φh(xh) (1)

whereφh(xh) is called a clique factor and is a function of
the outcomes of random variables of the cliqueh. Note
that the product can be either over all cliques (not neces-
sarily maximal) or over maximal cliques since the non-
maximal clique factors can always be absorbed by the
maximal clique factors. We say that the probability dis-
tribution P factorizesover the graph. Note that in gen-
eral, there does not exist a bijection between a graph and
a probability distribution. For example, all probability
distributions factorize over the complete graph, and any
graph encodes conditional independencies consistent with
an unlimited number of probability distributions.

Really, we are interested in calculating the probabili-
ties of random variables in the network, but unfortunately,
the clique factors,φ might not correspond directly to
clique probabilities in general. In particular, a change in
marginal probabilities of a particular clique can propagate
to clique factors of faraway cliques. Fortunately, in the
case of triangulated graphs, clique factors do correspond
to clique marginals:

Theorem 2.2 (Clique Factorization in Triangulated
Graphs). Clique factors in triangulated graphs corre-
spond to marginal distributions, i.e.

φh(xh) =
Ph(xh)∏

h′⊂h φh′(xh′)
(2)

The product is over all cliques, not necessarily maximal.

The following theorem is essential to NB, a partial
proof of which is found in [7]:

Theorem 2.3 (Projecting Probability Distributions
onto Hyperforests). LetPX(x) be a probability distribu-
tion, andH(V) a hyperforest. Then the unique minimizer,
P̃ ofD(P ||P̃) (KL-divergence betweenP andP̃) subject
to the constraint that̃P factorizes overH(V) is

P̃X(x) =
∏

h∈H∗ P (xh)∏
s∈S P (xs)

(3)

whereH∗ is the set of maximal hyperedges ofH(V) and
S is the set of minimal separators ofH. In particular,

D(P ||P̃) ≤
∑

s∈S

IP (Vs1;Vs2|s) (4)

whereVs1 andVs2 are the two disjoint components ofH
obtained via removings (we can always group the com-
ponents into two even if there are more than two disjoint
components).IP (Vs1;Vs2|s) is the mutual information
betweenVs1 andVs2 givens, and is zero iffVs1 andVs2

are independent givens. Mutual information can be eval-
uated by [2]:

I(X;Y |Z) = Ep(x,y,z)[log
p(X,Y |Z)

p(X|Z)p(Y |Z)
] (5)

whereX, Y , Z are random vectors andp(·) is their prob-
ability distribution.D(·) is KL-divergence and is defined
as [2]:

D(p||q) =
∑

x

p(x)log
p(x)
q(x)

(6)

wherep(·) andq(·) are both probability distributions of
the random vectorX, and the sum is over all possible
outcomes ofX. KL-divergence is a measure of how
closeq is to p, and is at least zero, and equals to zero

3

iff p = q. Notice the similarity between mutual infor-
mation and KL-divergence. We can rewriteI(X;Y |Z)
asD(p(X,Y |Z)||p(X|Z)p(Y |Z)) and thus mutual infor-
mation measures how close the joint probability distribu-
tion ofX,Y givenZ is to being independent.

Note that if PX(x) is factorizable overH(V), then
equation 3 yieldsPX(x) andD(P ||P̃) is zero. We can
think of equation 4 as summing the error incurred as a re-
sult ofH(V) assuming conditional independencies when
there is none.

3 The Learning Problem

In this section, we define the learning problems that KS
and NB are studying.

We would like to estimate an unknown distribution,
Ptrue of n variables, based on samples drawn from it.
We could use the empirical distributionPemp of the sam-
ples but that easily suffers from overfitting and dimen-
sional blow-up due ton. A standard approach would be
to limit the class of distribution hypotheses to a smaller
subset,T , and attempt to estimate aP ∗, such thatP ∗ =
argminP∈TQ(P |data), whereQ(·) is some measure of
goodness.

In this paper, we will consider the class of distributions,
Tk that are factorizable over triangulated graphs,Gk, of
treewidth at mostk, and we use KL-divergence as our
measure of goodness.

Given observed data, and treewidthk, KS aims
to find the distributionPML ∈ Tk that minimizes
D(Pemp||PML). It is straightforward to show from the
definition of KL-divergence thatPML is also the distribu-
tion within Tk that maximizes the likelihood of the ob-
served data. Such a problem is NP-hard, and KS gets
around it by first establishing equivalence to the maximum
hypertree problem and creating an approximate structure
to get a constant factor approximation to the maximum
hypertree problem.

On the other hand, given a treewidthk, NB wants to
find the distributionP̃ that factorizes overGk (assuming
Ptrue factorizes over at least one graph inGk), so as to
minimizeD(Ptrue||P̃). Obviously it is impossible to ex-
actly find the true distribution given any finite number of
samples, so as a compromise, they find a polynomial time
algorithm that samples the true distribution,Ptrue, a poly-
nomial number of times to find a graph,̃G ∈ Gk. G̃ has
the property that the optimal distribution,P̃ that factorizes
overG̃ according to equation 3 hasD(Ptrue||P̃) < ε with
probability at least1 − δ. Note thatPtrue might not nec-
essarily be factorizable over̃G. In fact, even in the case
whenPtrue does not factorize overGk, if Ptrue is such
that there existsG ∈ Gk, such thatD(Ptrue||P̃) < ε, the
algorithm can still find the answer with high confidence.

4 Learning to Maximum Hypertree

In this section we describe the equivalence of the learning
problem formulated by KS and the maximum hypertree
problem.

As mentioned in section 3, we are trying to findPML ∈
Tk that minimizesD(Pemp||PML). From theorem 2.3
(replacingPX(x) with Pemp(x)), we find that for every
G ∈ Gk, the bestP ∗ that factorizes overG and mini-
mizesD(Pemp||P ∗) is given by equation 3. Hence if we
go through every triangulated graph (hyperforest) inG ∈
Gk, calculateP ∗ by equation 3, calculateD(Pemp||P ∗)
and then selectP ∗ with the lowestD(Pemp||P ∗), we are
done. However, there are an exponential number of such
graphs and so this is intractable. But let’s continue this
line of thought: for each hyperforestG ∈ Gk, we want to
minimizeD(Pemp||P ∗), whereP ∗ is given by equation
3. Hence,

minG∈Gk
D(Pemp||P ∗) = minG∈Gk

EPemp
[log

Pemp

P ∗
]

= C −
∑

h∈G

wh (7)

where the sum is over all (not necessarily maximal) hyper-
edges ofG, andC is a constant, same for all hyperforests
and

wh =
∑

h′⊆h

(−1)|h|−|h
′|EPemp [log(Xh′)] (8)

where we are summing all subsets ofh including itself
and the expectation term is simply the negative of the
entropy ofXh′ . Dropping the constants, this is equiva-
lent to finding a triangulated Markov network (hyperfor-
est) with the largest weight given by

∑
h∈G wh. Note

that this weight is always negative, but it can be shown
that if G′ ⊂ G are both hyperforests, then

∑
h∈G wh −∑

h∈G′ wh ≥ 0 [7]. This is not at all surprising because∑
h∈G wh −

∑
h∈G′ wh ≥ 0 simply means that the opti-

mal P ∗ that factorizes overG is closer toPemp than the
optimal P ∗ that factorizes overG′. But this is obvious
since the set of probability distributions that factorize over
G is a strict superset of the probability distributions that
factorize overG′. We call such a property of the weights
monotonicity. Formally, we have:

Definition 4.1 (Monotonic Weights). Given an inputk,
a weight functionw over a set of vertices,V , is a mapping
from subsets ofV of size≤ k+1 toR, i.e.w :

(
V

≤k+1

)→
R. We sayw(·) is monotonic if|h2| ≤ k + 1 andh1 ⊆
h2 ∈ V implies

∑
h⊂h1

w(h) ≤∑
h⊂h2

w(h).

Summarizing this section, this is the problem we would
like to solve:

4

(a) A rooted tree,
Tr,2(V)

(b) 2-windmill based on rooted
tree in (a)

Figure 2: Rooted tree and corresponding2-windmill

Definition 4.2 (The Maximum Hypertree Problem).
Given inputs: treewidthk, vertex setV and monotonic
weight functionw :

(
V

≤k+1

) → R, we want to find the
heaviest hyperforestH(V), that is the hyperforest that
maximizes

∑
h∈H w(h). Because of the monotonicity of

the weight function, the heaviest hyperforest will be a hy-
pertree, and hence we have the maximum hypertree prob-
lem.

5 Maximum Hypertree to Wind-
mills

Because the maximum hypertree problem is NP-hard, in
this section, we explore a type of hypergraph known as the
windmill, which will be used to approximate a hypertree.
Consider a tree,Tr,k(V) over the set of verticesV , with
root r and depth at mostk.

Definition 5.1 (Level of Vertices). ∀v ∈ Tr,k(V), the
level ofv is defined to be the length of the shortest path
from r to v. Level(v) is unique becauseTr,k(V) is a tree.

For example, in figure 2(a), vertex 1 is at level 0, while
vertices 2, 3 are at level 1 and vertices 4, 5, 6, 7 are at
level 2.

Definition 5.2 (Windmill) . Consider a hypergraph de-
rived from the rooted tree,Tr,k(V), by including all ver-
tices in each path from the root,r to every vertex,v to be
a hyperedge. Such a hypergraph is called ak-windmill.

Hence in figure 2, the sets of vertices{1, 2} and{1, 2, 4}
are both hyperedges because{1, 2} and{1, 2, 4} spec-
ify paths from vertex 1 (the root) to vertex 2 and vertex
4 respectively. The level of a vertex,v in a windmill is
equal to the level of the vertex in the rooted tree,Tr,k(V)
from which the windmill is derived from. Therefore, in
the windmill shown, vertex 1 is at level 0, vertices 2, 3 are
at level 1 and vertices 4, 5, 6, 7 are at level 2.

Definition 5.3 (Windmill Farm) . A k-windmill farm is a
disjoint collection of k-windmills.

Here are some obvious properties of windmills:

1. k-windmills andk-windmill farms are hyperforests.
This can be seen by the Graham reduction beginning
with the vertices of levelk, k − 1, k − 2 and so on.
For example, in figure 2(b), we can perform a graham
reduction by starting with vertices 4, 5, 6, 7, followed
by 2, 3, and finally vertex 1.

2. Since the largest hyperedge in ak-windmill is of size
k + 1, the treewidth of ak-windmill (and hencek-
windmill farm) is at mostk.

3. 1-windmills are star graphs and2-windmills look
like physical windmills as shown in figure 2.

Theorem 5.1 (Windmill Cover Theorem). For any hy-
perforest,H(V) of width k and monotonic weight func-
tion w(·), there exists ak-windmill farmF (V) such that
w(H) ≤ (k + 1)!w(F).

The proof of the windmill cover is a constructive prob-
abilistic proof, so we give a brief outline here. We first
prove a version of the theorem for nonnegative weight
functions, and then generalize that to monotonic weight
functions.

The basic idea behind the proof is that by randomly
constructing ak-windmill farm, we can in expectation
preserve a 1

(k+1)! fraction of the weight, by showing that
each hyperedge of size up tok+1 is included in the wind-
mill farm with probability 1

(k+1)! . Then by the definition
of expectations there must exist a windmill farm that cap-
tures at least that fraction of weight of the maximum hy-
perforest (i.e. the hypertree).

Consider coloring the vertices of the hypergraph with
k + 1 colors, where we color each vertex of a hyperedge
differently. Such a coloring exists: take a leafv of H(V),
recursively colorH(V −v) (which is also a hyperforest by
the Graham reducibility of hyperforests), and then colorv.
Sincev is a leaf it has at mostk neighbors (the hyperedge
it is on), so there will definitely be a color remaining for
v. This coloring scheme imposes on each hyperedge a
color ordering—namely, the order of colors that was used
to color that hyperedge. Now consider a random permuta-
tion of thek + 1 colors,π. Our hyperforestFπ is defined
to be the set of hyperedges that areconsistentwith the
orderingπ. A hyperedge is consistent withπ if its color
ordering forms a prefix or the entirety ofπ. We need to
verify thatFπ is indeed a windmill farm, and that in ex-
pectation it preserves a 1

(k+1)! fraction of the weight of
the maximum hypertree. The former is not difficult to
intuit—if a vertex of colori + 1 is included in the wind-
mill farm, then it has to be on a hyperedge with a vertex

5

of color i, which serves as its parent in the windmill farm.
Each hyperedge of sizer is selected to be in the wind-
mill farm if it prefixesπ, which happens with probability
(k+1−r)!
(k+1)! ≥ 1

(k+1)! . Thus the maximum windmill farm
should capture at least that fraction of the weight of the
maximum hypertree.

To extend this proof to monotonic rather than just non-
negative weight functions, we tweak the analysis slightly.
As we color the vertices in reverse Graham reduction or-
der, note that we are incrementally building up the wind-
mill farm one vertex at a time. Each vertex and its as-
sociated hyperedge is added only once, and due to mono-
tonicity, the weight of the windmill farm can only increase
with each addition. Therefore the same analysis holds for
monotonic weight functions.

From the Windmill Cover Theorem, we know that there
exists ak-windmill farm that covers at least 1

(k+1)! of the
weight of the maximum hypertree. Consequently, if we
can find the heaviestk-windmill farm over the input ver-
tex set,V , then we have found a 1

(k+1)! factor approxima-
tion to the maximum hypertree problem.

6 ILP for Windmill Farms

Given inputs treewidthk, vertex setV and monotonic
weight functionw :

(
V

≤k+1

) → R, we want to find the
heaviestk-windmill farm. In this section, we establish
an integer linear program whose solution is exactly the
heaviestk-windmill farm. Of course, solving an ILP is
intractable, but with the appropriate relaxation and ran-
domized rounding scheme, we can obtain a reasonable
approximation to the ILP.

First, a brief word on notation. We define a “path”p to
be a sequence of vertices fromV , and length|p| to be the
number of vertices inp. Let · denote the concatenation
operator for paths. For example,p · q is pathp followed
by pathq, andp · v is pathp followed by vertexv.

Consider associating a variablexp with each pathp of
length at mostk + 1. Whenxp = 1, we consider the
vertices ofp to be a hyperedge in ourk-windmill farm.
For example, ifp = (v1, v2, ..., vα) for someα ≤ k +
1, then settingxp = 1 implies that{v1, v2, ..., vα} is a
hyperedge of ourk-windmill farm.

In particular, recall from section 5 that ak-windmill
farm is induced from a disjoint collection of rooted trees
of depth at mostk. Settingxp = 1 implies thatv1
or vα is the root of one of those trees. By convention,
we shall assumev1 to be the root and(v1, v2, ..., vα)
is therefore a walk down that tree. However, this also
means that there exists a path from root,v1 to vα−1, via
q = (v1, v2, ..., vα−1), wherep = q · vα, thus imply-
ing thatq is also a hyperedge of our windmill farm and
xq = 1.

Therefore, we can consider the incremental improve-
ments in the total weight of the windmill farm by adding
vα to our windmill farm, assuming the previous vertices
of p are already part of the windmill farm. To be pre-
cise, letwp be the weight of pathp. Then we have
wp =

∑
h⊆p w(h) −∑

h⊆q w(h). Because the weight
functionw(h) is monotonic forh up to sizek+1, we can
conclude that allwp are nonnegative.

Based on these definitions, we can express our ILP ob-
jective function as

∑
p xpwp, wherep ranges over all pos-

sible paths from length 0 tok+1. Note there areO(nk+1)
such paths, and thus the number of variables is polyno-
mial.

We also need to ensure that the hypergraph induced
from xp is indeed ak-windmill farm, by enforcing two
constraints on our ILP:

1. Path consistency: If we decide to include a path
p = (v1, v2, ..., vα), we also have to include the path
leading up to the second-to-last vertex (defined as
q in the above example). In other words, for allp
such that|p| ≤ k, and for all successor verticesv,
xp·v = 1 only if xp = 1. Expressed as a linear con-
straint, we have(∀p, v)xp·v ≤ xp andxp ∈ {0, 1}.

2. Tree structure: For the underlying structure of the
windmill farm to be a tree, there can only be one path
to each vertex from the root of the tree it is in. For all
verticesv, there can only be one pathq (where|q| ≤
k) leading to it. Therefore, there exists at most oneq
wherexq·v = 1. This can be expressed in constraint
form as(∀v) ∑

q xq·v ≤ 1 andxp ∈ {0, 1}.
Putting together the objective function and constraints,

we have the following ILP:

max
∑

{p: |p|≤k+1}
wpxp

(∀v)
∑

{q: |q|≤k}
xq·v ≤ 1

(∀v, |p| ≤ k) xp·v ≤ xp

(∀p) xp ∈ {0, 1} (9)

(In our notation we explicitly specify the lengths of the
paths, though technicallyxp for |p| > k+1 is not defined.)

7 LP Relaxation

To make the problem tractable, we now relax the ILP to
obtain a linear program. The naive relaxation of the above
ILP would be to replace the constraintxp ∈ {0, 1} with
xp ∈ [0, 1]. However, if we can find a relaxation that has
a more restricted feasible polytope, while still containing
the feasible solutions of the original ILP, we have a chance

6

of reducing the integrality gap when we round. With this
in mind, consider the following relaxed LP:

max
∑

{p: |p|≤k+1}
wpxp

(∀v, |p| ≤ k)
∑

{q: |q|≤k−|p|}
xp·q·v ≤ xp

(∀p) xp ≥ 0
xε = 1 (10)

First, let us verify that this relaxation sufficiently cap-
tures the original ILP constraints. Note that when con-
sidering just theq = ε term, the constraint becomes
xp·v ≤ xp, the path consistency constraint from the
ILP. Additionally, whenp = ε, the constraint becomes∑

q xq·v ≤ 1, the tree constraint from the ILP.
We also need to verify that the original ILP feasible

polytope is contained within this LP’s feasible solution
set. When we restrict our consideration to integralxp val-
ues, note that thep = ε case specifies that there is only
onexp·v for eachv that can be one. Therefore, given path
consistency, we can conclude the LP constraint above.

8 Iterative Randomized Rounding

The relaxed LP will generally give fractional solutions,
which by themselves do not specify a proper windmill
farm structure, and thus cannot be used as the maximum
hypertree. We need to round the LP solutions to integral
values, while still satisfying the original feasibility con-
straints of the ILP. A straightforward one-pass rounding
(where we round eachxp to one with probabilityxp) is
unlikely to satisfy the path consistency and tree structure
constraints of the ILP, because we could very well round
somexp to zero butxp·v to one, or bothxp·v andxq·v to
one (wherep andq are different paths). Thus, we’d like to
round in a way that preserves both path consistency and
tree structure.

To do so, we round in aniterative fashion. At itera-
tion i, for i from 1 tok, we round all variablesxp where
|p| = i. To guarantee path consistency, we automatically
roundxp·v to zero ifxp is zero. To guarantee tree struc-
ture, for any given vertexv we only round at most one
of the variablesxp·v to one. In particular, if somexp·v
was already rounded to one in an earlier iteration (i.e.,
for a shorter path), we are not allowed to round any fu-
ture vertex ending inv to one. Between every iteration
of rounding, we should readjust the not-yet-roundedxp

values so that they continue to be optimal. We do so by
re-solving the LP at each iteration, using the previously
rounded variables as constraints.

Let LPi denote theith iteration’s linear program, where
LP0 is the original relaxed LP defined in the previous sec-

tion. Let xi be the respective optimal solution for LPi.
Let x̃ represent the rounded variables. Putting these ideas
together, we obtain the following rounding scheme:

1. Solve LP0 to obtainx0.

2. Fori from 1 tok:

(a) For each vertexv:

i. Randomly select a pathp with probability
xi−1

p·v where|p| = i − 1, or no path at all
with probability1−∑

{p: |p|=i−1} x
i−1
p·v

ii. If a pathp is selected, set̃xp·v to one

(b) Set all remaining̃xp where|p| = i to zero

(c) Add newly rounded variables̃x as constraints
to LPi−1 to obtain LPi

(d) Solve LPi to obtainxi

3. Returnxk (which will be integral)

This scheme rounds variables associated with succes-
sively longer paths. We guarantee path consistency—
when we round somexp to zero, we addxp = 0 to all
future LPs, thereby enforcing that for anyq, xp·q is con-
strained to be zero. We also guarantee tree structure—
when we round somexp·v to one, we cannot roundxq·v
to one. To see why, consider two cases. If|q| = |p|, we
can only select either one of them to round to one, because
they are selected within the same iteration. If|q| > |p|,
the LP includes a constraint for tree structure that prevents
xq·v from taking on any value but zero.

It remains to show that this rounding scheme introduces
a reasonably small bounded integrality gap.

Theorem 8.1 (Integrality Gap). The optimal value for
LPi is within a 1

8(k+1−i) factor of the optimal value for

LPi−1.

Due to space constraints, here we give an intuitive ar-
gument why this theorem holds. Rather than showing that
theoptimalsolution to LPi is within a 1

8(k+1−i) factor of

LPi−1’s optimal, we show that there exists afeasibleso-
lution to LPi that is within that factor. The optimal LPi

solution (that is,xi) can only have as good or better of a
value. Consider this solutionx(i) to LPi:

• For variables already rounded (that is,x̃p for |p| < i),

LPi constrains thatx(i)
p = x̃p.

• For variablesxp·q where |p| = i and x̃p = 0, set

x
(i)
p·q = 0 to ensure path consistency.

• For variablesxp·q where|p| = i andx̃p = 1, setx(i)
p·q

to
xi−1

p·q
4(k + 1− i)xi−1

p

(11)

7

• For each vertexv, if the above settings cause∑
p x

(i)
p·v to exceed one, we set any variable which

has av on its path to zero. That is, any variablex(i)
p·v·q

(for all p andq) is set to zero, causing the sum to go
to zero. In this situation, vertexv overflowedso we
purgeall paths that includev.

We need to show thatx(i) is a feasible solution, and that in
expectation it preserves 1

8(k+1−i) fraction of the optimal

value of LPi−1.
First, we argue that this solution is feasible. We need to

verify that
∑
{q:|q|≤k−|p|} x

(i)
p·q·v ≤ x

(i)
p is satisfied for all

p. Consider these cases for the constraint:

• |p| = 0: The purging step guarantees
∑

q x
(i)
q·v ≤ 1,

which is thep = ε constraint.

• 1 ≤ |p| ≤ i, x̃p = 0: This constraint already ap-
peared in LPi−1, and the entire sum was set to zero,
and remains zero.

• 1 ≤ |p| ≤ i, x̃p = 1: The sum over paths starting
with p is obviously less than or equal to the sum over
all paths, which is the|p| = 0 case. Thus, the sum is
at most 1, which isxp.

• |p| > i: Write p asr · s where|r| = i. Now consider
two subcases:

– x̃r = 0 or a vertex ofp overflows: The sum is
zeroed in either case, so the constraint is satis-
fied.

– x̃r = 1 and no vertex ofp overflows: Ignor-
ing purging, the constraint is equivalent to a
constraint of LPi−1, except scaled down by a
factor of 1

4(k+1−i)xi−1
p

, so it is satisfied. Note

that purging can only make the constraint more
strongly satisfied.

Second, we argue that we preserve a1
8(k+1−i) fraction

of the optimal value of LPi−1. Ignoring purging for the
moment, consider a pathp ·q where|p| = i. xp is rounded
to one with probabilityxi−1

p , in which case pathxp·q will
contribute a 1

4(k+1−i)xi−1
p

fraction of the weightwp·q that

xi−1
p·q did. Thus,in expectation, pathp · q will contribute a

1
4(k+1−i) fraction of the weight after rounding. However,
if the path is purged, then it will contribute no weight at
all. Therefore we’d like to bound the probability that the
path is purged, i.e., that any vertexv on p · q overflows.
By the LPi−1 constraints, the incoming value (

∑
p xp·v)

to a vertexv via paths that share the prefixp is at most
1

4(k+1−i) . For paths that do not share the prefixp, the
expected contribution is even less. Adding these two to-
gether, the total incoming value tov is at most 1

2(k+1−i) .

By summing over allk+1−i vertices ofq, in expectation
there is1/2 weight entering the pathq. By the Markov in-
equality, this implies that with at least1/2 probability we
will not purge the path. Thus, the overall expected value
for xp·q is 1

8(k+1−i) . By linearity of expectation, and be-
cause the LP objective function is linear, this implies that
in expectationx(i) preserves a 1

8(k+1−i) fraction of the

weight of the previous LP optimumxi−1.
Applying theorem 8.1 fori = 1 to k readily gives us

this overall integrality gap:

Corollary 8.2 (Overall Integrality Gap) . The rounding
scheme returns an integral solution that is within a1

8kk!
factor of the optimal value for LP0.

Thus, compounded with the windmill approximation
gap of 1

(k+1)! , our approximation to maximum hypertree

is in expectation within a factor of 1
8kk!(k+1)!

.
We have demonstrated a constant factor approximation

for maximum hypertree, as we set out to do. This con-
cludes our study of KS’s work.

9 Minimizing D(Ptrue||P̃)

We recall from section 3 that NB [5] presents a poly-
nomial time algorithm that samples the true distribution,
Ptrue a polynomial number of times to find a graph,
G̃ ∈ Gk. G̃ has the property that the optimal distribu-
tion, P̃ , that factorizes over̃G as given by equation 3 has
D(Ptrue||P̃) < ε with probability at least1− δ.

The basic strategy comes from theorem 2.3, equation
4: the projection error ofPtrue on a given triangulated
graph (hyperforest),G is≤ ∑

s∈S IP (Vs1;Vs2|s), where
S is the set of minimal separators ofG. Because there
are at most|V | = n terms (equal to number of random
variables) in the summation, if we can ensure that each
term is small enough, we can be confident of the error
being belowε.

Because we only consider triangulated graphsGk of at
most treewidthk, the minimal separators are at most of
sizek. Hence there are onlyO(nk) (polynomial) number
of separators to consider. If for each possible separators
we can divide the remaining vertices (variables) into two
groupsVs1 andVs2 in such a way as to approximately
minimize or upper boundIP (Vs1;Vs2|s), then our task is
almost complete. To do this, NB [5] makes use of an algo-
rithm from another paper [6], as a black-box subprocedure
of their algorithm.

The problem is complicated by the fact that we do not
knowPtrue although theorem 2.3 depends on us knowing
Ptrue. To get around this, we observe that we are only in-
terested in minimizing

∑
s∈S IP (Vs1;Vs2|s). For certain

classes of distributions, we can estimate entropies (and

8

hence mutual information) of arbitrary subsets of random
variables with precisionε and confidence1−δ using poly-
nomial (in n, 1

ε , 1
δ) number of samples. For example,

the generalized Chernoff-Hoeffdings bound shows this is
possible for discrete distributions, and specialized tech-
niques exist for certain continuous distributions such as
Gaussians.

10 Submodularity

We first define the concept of submodular and symmetric
functions:

Definition 10.1 (Submodularity). A functionf : 2V →
R+ is submodular if∀A,B ⊆ V , f(A) + f(B) ≥ f(A ∪
B) + f(A ∩B).

Definition 10.2 (Symmetric). A functionf : 2V → R+

is symmetric iff(A) = f(V \A).

Let S ⊂ V and letVS = V \S. A useful submodular and
symmetric function is mutual information:FP,S : 2Vs →
R+,

FP,S(A) = IP (A;VS\A|S) (12)

= EP [log
P (A, VS\A|S)

P (A|S)P (VS\A|S)
]

From the definition of mutual information,FP,S is clearly
symmetric. The proof of submodularity is easily done by
plugging in the definition of mutual information.

Given a symmetric and submodular function,f : 2V →
R+ using Queyranne’s Algorithm [6] (henceforth known
as QA), we can obtain a proper subsetA∗ ⊂ V such that
A∗ = argminB∈2V \{V,φ}f(B) using onlyO(|Vs|3) calls
to evaluatef . Suppose we input the functionFP,S into
QA, whereS ⊆ V , and find thatFP,S(A∗) ≤ ε. Then
we say thatS is anε-separator ofV and(A, V \A) is an
ε-partition of(VS , S, P).

In our case however, we do not knowPtrue, but, we
shall assume the existence of a sampler so that we can es-
timateFP,S in polynomial time. In particular, we shall as-
sume that the sampler gives an estimateFP̃ ,S upon query,
such that∀A ⊆ VS

|FP̃ ,S(A)− FP,S(A)| ≤ ε1 w.p.≥ 1− δ1 (13)

Now, being random,FP̃ ,S might no longer be submod-
ular, since there is no guarantee that separate queries of
FP̃ ,S(A), FP̃ ,S(B), FP̃ ,S(A ∪B) andFP̃ ,S(A ∩B) will
yield consistent estimates such thatFP̃ ,S(A) + FP̃ ,S(B)
is at leastFP̃ ,S(A∪B) + FP̃ ,S(A∩B). Because of this,

Ã, the result returned by QA might no longer be the min-
imizer ofFP̃ ,S .

However, this submodularity gap can be bounded:

Theorem 10.1 (Submodularity Gap). SupposeFP,S :
2V → R+ is a symmetric submodular function and
FP̃ ,S : 2V → R+ is another function that is not necessar-
ily submodular, but satisfies|FP̃ ,S(A) − FP,S(A)| ≤ ε1
∀A ⊆ VS , then QA will return a non-empty proper sub-
set Ã ⊂ VS , such that for all non-empty proper subset
A ⊂ VS ,

FP̃ ,S(Ã)− FP̃ ,S(A) ≤ |V | · ε1 (14)

Because our sampler only guaranteesε1 precision with
probability 1 − δ1, theorem 10.1 holds with probability
1 − |VS |3δ1 using the union bound since QA will only
makeO(|Vs|3) queries to the sampler.

ThereforeÃ is an approximate minimizer ofFP̃ ,S and
can also be easily shown to be the approximate minimizer
of FP,S : ∀A,FP,S(Ã) − FP,S(A) ≤ (|V | + 2)ε1. We
can intuitively see this:|V |ε1 comes from the modularity
gap (theorem 10.1), while2ε1 comes from possibly un-
derestimatingFP,S(Ã) and overestimatingFP,S(A) (see
equation 13). Once again this is true with probability
1− |VS |3δ1. Summarizing, we have

Theorem 10.2 (Approximation of FP,S). Suppose
FP,S : 2V → R+ is a symmetric submodular function and
FP̃ ,S : 2V → R+ is another function that is not necessar-
ily submodular, but satisfies|FP̃ ,S(A) − FP,S(A)| ≤ ε1
∀A ⊆ VS with probability at least1 − δ1, then running
QA withFP̃ ,S returns aÃ, such that for allA, with prob-
ability at least1− |VS |3δ1,

FP,S(Ã)− FP,S(A) ≤ (|V |+ 2)ε1 (15)

Suppose{A,B} is a 0-partition of(VS , S, P) (that
is IP (A;B|S) = 0), then with probability at least
1 − |VS |3δ1, {A,B} will also be an ε1-partition of
(VS , S, P̃). On the other hand, if{A,B} is anε1-partition
of (VS , S, P̃), then with probability at least1 − |VS |3δ1,
{A,B} will be a2ε1-partition of(VS , S, P).

11 Partitions

It may happen that disconnecting a separatorS from a
graph might result in more than two disjoint components.
We can always union the components so that we end up
with two components only, but if we decide not to, let
π = {A1, A2, · · · , Am} be the set of disjoint compo-
nents. Extending our old terminologies, we callπ an ε-
partition of(VS , S, P) if IP (Ai;Aj |S) ≤ ε ∀i 6= j.

Using this terminology, we have the following theorem:

Theorem 11.1 (Multiple Components).

1. If A ⊆ VS and π is an ε-partition for (VS , S, P),
thenπA = {Ai ∩ A : Ai ∈ π} is an ε-partition
for (AS , S, P) becauseIP (Ai ∩ A;Aj ∩ A|S) ≤
IP (Ai;Aj |S) ≤ ε.

9

2. Conversely, supposeπ is an ε2-partition for
(VS , S, P), andA ∈ π. If φ is an ε3-partition for
(AS , S, P), thenψ = (π\A) ∪ φ is amax(ε2, ε3)-
partition for (VS , S, P)

This theorem is intuitive. Part 1 says that if you start with
anε-partition, say{(a, b), (c, d, e), (f, g, h, i)}, and form
a new set by drawing elements from each component, say
{(a, b) ∪ (c, d) ∪ (f)}, then{(a, b), (c, d), (f)} is still an
ε-partition of the new set. This is not surprising because
reducing the number of elements in each partition compo-
nent won’t provide partition components with more infor-
mation about each other than before.

Part 2 says that if you start with anε2-partition,
say {(a, b), (c, d, e), (f, g, h, i)}, and split up one
of the partition component into anε3-partition,
say {(f, g), (h), (i)}, then the combined partition
{(a, b), (c, d, e), (f, g), (h), (i)} is now a max(ε2, ε3)-
partition for(VS , S, P). Once again this is not surprising
since splitting{(f, g, h, i)} up won’t give the original
partition components more information about each other.
The only thing that might happen is thatε3 > ε2, which
means that{(f, g), (h), (i)} have more information about
each other than about the original components.

Note that the above theorem still holds when replacing
P with P̃ . Using the above theorem, given a setS ⊆ V
andε > 0, we can find aε-partition,π(ε) for (VS , S, P̃).
Because we are using QA withFP̃ ,S , the ε-partition we
found might not be the “best” one, but it is still anε-
partition for(VS , S, P̃):

1. π0
S ← {VS}; i← 0;

2. while∃Xi ∈ πi
S such that{Ai, Bi} is anε-partition

of (Xi
S , S, P̃)

(a) πi+1
S ← (πi

S\Xi) ∪ {Ai, Bi}
(b) i← i+ 1

3. πS(ε)← πi
S

Note however, that the algorithm is run usingFP̃ ,S , and

so we obtain anε-partition for(VS , S, P̃), but what we are
really interested in, is how thisε-partition for (VS , S, P̃)
relates to(VS , S, P). We need another definition before
stating the relationship:

Definition 11.2 (Refinement). A partitionψ is a refine-
ment ofπ if every element ofπ can be written as union of
elements ofψ.

So for example,{(a, b), (c, d, e), (f, g), (h), (i)} is a re-
finement of{(a, b), (c, d, e), (f, g, h, i)}

Invoking theorems from section 10 and combining the
results from this section, we get:

Theorem 11.3 (CIP). Let CIP (Conditional Inde-
pendence Partitions) be a collection of partitions
{(S, πS(ε2 + (|V | + 2)ε1) : |S| ≥ k} found with
the algorithm just stated. Then QA will make at most
O(|V |k+5) queries toFP̃ ,S , and so with probability at

least1− |V |k+5δ1:

1. ∀(S, πS) ∈ CIP , πS refines anyε2 partition of
(VS , S, P).

2. Conversely, if you take any(S, πS) ∈ CIP , and
unionπS ’s components into a partition{A,B} such
thatπS refines it, then{A,B} is an |V |3(ε2 + 3ε1)-
partition for (VS , S, P).

12 Partitions to Graphical Model

We first need to define compatibility:

Definition 12.1 (Compatibility). We say that a partic-
ular triangulated Markov network,G is compatible with
CIP if for everys ∈ S (the set of minimal separators of
G) with corresponding partition,{V A

s , V B
s } there exists

(s, πs) ∈ CIP which refines it.

For example, in figure 1(b),{5} is a minimal separator
whose corresponding partition is{(1, 2, 3, 4), (6, 7)},
if CIP contains ({5}, {(1, 2, 3, 4), (6, 7)}) or
({5}, {(1, 2), (3, 4), (6, 7)}) and so on, we are satis-
fied. We then have to check the other minimal separators
of the graph of interest.

Putting everything together, we remind the readers of
theorem 2.3 and how it’s key to the problem NB is solv-
ing. From theorem 2.3, the projection error of project-
ing Ptrue onto a graphical model,G ∈ Gk, is given by∑

s∈S IP (Vs1;Vs2|s), whereS is the set of minimal sep-
arators ofG. SupposeG is compatible withCIP , we can
then make the following observations:

1. For a given graphical model, there cannot be more
minimal separators than there are vertices, hence
|S| < |V |. The maximum number of minimal sepa-
rators is actually|V | − 2 which occurs when there’s
a Markov chain of vertices.

2. Furthermore, sinceG is compatible withCIP , this
means that∀s ∈ S with corresponding partition
{V A

s , V B
s }, ∃ (s, πs) ∈ CIP which refines it, and

this implies by theorem 11.3, thatIP (V A
s , V B

s |s) ≤
|V |3(ε2 + 3ε1).

3. Combining the first two points, it means that if
we can find aG that is compatible withCIP , we
have achieved a projection error (KL-divergence)
≤ |V |4(ε2 + 3ε1) (with probability at least1 −
|V |k+5δ1). Thus by settingδ1, ε1, ε2 appropriately,

10

we can ensure an error≤ ε with probability at least
1− δ.

Finding the graph that is compatible withCIP in poly-
nomial time involves a deterministic dynamic program-
ming algorithm. Essentially, we consider increasingly
large sets of vertices, and check if they form a compati-
ble graph. A vertex set has a compatible graph if it can
be split into two components, both of which have com-
patible graphs. The algorithm terminates when it finds a
partitioning where each component of the partition has a
compatible graph, and thus the final graph can be recur-
sively built using the memoized subgraphs. We omit the
grungy details here (as the algorithm and proof do not rely
on randomization or randomized techniques) and refer the
reader to [5] for the full exposition.

13 Conclusion

In this paper we studied the problem of learning the struc-
ture of a Markov network. We studied two papers that
considered the same restricted class of such networks,
bounded treewidth models. These models allow us to re-
strict the number of dependencies between vertices, to al-
low for fast operations and less overfitting. Karger and
Srebro’s work focused on finding the “best” such model
given some arbitrary observation data, and demonstrated
an algorithm that is able to come to within a constant fac-
tor of the best model. Narasimhan and Bilmes looked
at a related problem of “recovering” a bounded treewidth
model from observation data that is assumed to have been
generated from such a model. They proved that if we are
allowed to sample a polynomial number of times from
the true model, we could construct an arbitrarily good
approximation to the true model with high confidence.
NB’s analysis applies only when the observations are ac-
tual samples from a bounded treewidth distribution; if the
true distribution is not of that type, the algorithm may not
return an answer. KS does not assume control over the
way the observations were sampled, and will find the best
bounded treewidth model regardless of the true underly-
ing distribution of the data. However, it only makes a
guarantee of the “goodness” of the resulting model with
respect to the maximum likelihood bounded treewidth
model—whether this maximum likelihood model is close
to the true underlying distribution, or even the empirical
distribution induced by the observations, is uncertain.

There is an abundance of future work possible for both
papers. For KS, the current approximation factor, though
constant with respect ton, is very explosive with respect
to k. There are multiple conceivable ways to try to re-
duce this factor. First, we could try to tighten the current
analyses for both windmill cover and integrality gap. In-
deed, work by Liang and Srebro has tried to empirically

close the windmill cover gap [4]. Second, we could try
to find a structure that captures more of the weight of the
hyperforest than windmill farms currently do, while still
having a reasonable integrality gap when it comes to the
relaxed linear program. One of our original project ideas
was along this direction—we studied what we called a
(k, d)-hydra swarm1, a generalization of windmill farms
that allows each constituent tree to have depthd, and hy-
peredges (compared to a windmill farm) are taken to be
paths of lengthk + 1 in the hydra. Presumably a(k, d)-
hydra swarm ford > k should cover a larger portion of
the hypergraph at the cost of a larger integrality gap. (For
example, a(1, n)-hydra swarm can cover the entirety of a
graph of treewidth one—it is simply the tree itself.) Third,
we could forego the intermediary structure entirely and
try to devise an approximation to the maximum hyperfor-
est directly, such as by an ILP. We (unsuccessfully) tried
this route as well, though the resulting ILP formulations
we found were invariably too large and complex.

For NB, the most obvious future work would be to gen-
eralize their techniques to classes of Markov networks be-
yond bounded treewidth models. As we did not explore
the NB paper until much later in our project cycle, we
have not yet considered this problem.

References

[1] Hans L. Bodlaender. A tourist guide through
treewidth.Acta Cybernetica, pages 1–21, 1993.

[2] Thomas M. Cover and Joy A. Thomas.Elements of
Information Theory. Wiley-Interscience, 1991.

[3] David Karger and Nathan Srebro. Learning markov
networks: Maximum bounded tree-width graphs. In
Proceedings of ACM-SIAM Symposium on Discrete
Algorithms, pages 392–401, 2001.

[4] Percy Liang and Nathan Srebro. How much
of a hypertree can be captured by wind-
mills? Technical report, Massachusetts In-
stitute of Technology, 2003. Available at
http://people.csail.mit.edu/nati/HyperTrees/.

[5] Mukund Narasimhan and Jeff Bilmes. Pac-learning
bounded treewidth graphical models. InProceedings

1The Lernaean Hydra of Greek mythology was a fearsome many-
headed creature defeated by Heracles. Arguably, the many strongly con-
nected paths emanating from the root of this structure resemble the long
necks and heads of the hydra, though at the present we have not success-
fully emulated Heracles in defeating the hydra and unlocking its hydra
cover and integrality gap secrets. However, Heracles did not have to
battle an entireswarmof hydras, unlike the valiant Chen and Yeo, who
both in the process sustained severe injuries, especially to their research
organs.

11

of the 20th conference on Uncertainty in Artificial In-
telligence, pages 410–417, 2004.

[6] M. Queyranne. Minimizing symmetric submodular
functions.Math. Programming, pages 3–12, 1998.

[7] Nathan Srebro. Maximum likelihood markov net-
works: An algorithmic approach. Master’s thesis,
Massachusetts Institute of Technology, 2000.

[8] Jonathon S. Yedidia, William T. Freeman, and Yair
Weiss. Understanding beilef propogation and its gen-
eralizations. InProceedings of International Joint
Conference on Artificial Intelligence, 2001.

12

