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Abstract

We propose a simple extension to the Least-Squares method
of projecting samples of an unknown spherical function
onto the spherical harmonics. Using Gram-Schmidt orthog-
onalization, our spherical transform (unlike previous algo-
rithms) guarantees that the inverse transform converges to
sample points without any assumption about sampling den-
sity or grid (such as the latitude-longitude grid), allowing us
to perform spherical convolution with non lat-lon samples.
Although we have not derived theoretical proofs, we will
demonstrate that our algorithm achieves low interpolation
errors on the uniformly random grid even when sampling
below the theoretical non-aliasing rate of the lat-lon grid.
While we will only consider real-valued spherical func-
tions, our method should be readily extensible to complex-
valued functions.

1 Introduction

We define spherical functions,L2(S2) to be the Hilbert
space of square integrable functions on the two dimensional
sphere,S2. In spherical coordinates, the usual inner product
on the sphere is given by:

〈f, h〉 =
∫ π

0

∫ 2π

0

f(θ, φ)h(θ, φ) sin θdφdθ

where by convention,0 ≤ θ ≤ π (measured down from the
z-axis) and0 ≤ φ < 2π measured counterclockwise off the
x-axis.

Spherical functions arise in many fields, such as shape
modeling in computer vision [2] and medical imaging [9],
computer graphics [7, 8], astrophysics [11] and geo-
physics [5]. The filtering of spherical functions is therefore
an active area of research.

However, even simple linear space-invariant filtering is
hard because it is not possible to discretize the surface of the
sphere evenly such that the neighborhood of each point is
the same. Therefore a popular method of performing spher-
ical convolution is to first project the discretized spherical
function and filter onto the span of spherical harmonics and
perform the convolution in the fourier domain via simple
multiplications.

The sampling theorem, convolution theorem and fast
spherical transform presented in Dricoll and Healy’s sem-
inal paper [4] provides theoretical guarantees for this ap-
proach. The sampling theorem ensures that the discretiza-
tion of the spherical functions is reversible (i.e. no aliasing),

and the fast spherical transform allows for fast computation.
Since then, there have been many improvements in creating
faster spherical transform algorithms [3, 1].

However, the sampling theorem only holds for sampling
on the lat-lon grid, which suffers from excessive sampling
near the poles. In practice, the bandwidth of our function
might not be known in advance, and so it is conceivably
better if we spread out our measurements over the sphere.

In addition to the convolution theorem mentioned above,
another reason for representing functions as a linear com-
bination of spherical harmonics is the uniform resolution
property of the spherical harmonics (see section 2) [4].

Our own motivation comes from the representation of
brain cortical surfaces as functions on spheres. Neurobiolo-
gists believe that most of our higher cognitive abilities orig-
inate from the cerebral cortex, and that neurological growth
or diseases significantly alter the structure of the cortex.
Currently, we are working with MRI-segmented cortical
surfaces that are mapped onto the topologically-equivalent
spherical surfaces. In this case, the sampling is clearly of a
more uniform nature than the lat-lon grid and the sampling
density is outside our control.

In this paper, we present a method of computing the har-
monic decomposition of a spherical function, not necessar-
ily sampled on the lat-lon grid. Our transform guarantees
that the inverse transform converges to the sample points.
We will demonstrate empirically that our algorithm per-
forms better than the usual Least-Squares method and fast
spherical transform on the lat-lon grid. On the uniformly
random grid, both our algorithm and Least-Squares achieve
low interpolation errors when sampling below the theoreti-
cal non-aliasing rate of the lat-lon grid.

This paper is organized as follows. Section 2 goes
through the basic definitions and properties of spherical har-
monics, while section 3 formulates the Least-Squares ap-
proximation to the harmonic decomposition problem. This
leads to the discussion of Gram-Schmidt orthogonalization
in section 4 and computational issues in section 5, followed
by experimental results and conclusions in section 6 and 7.

For completeness, we will mention that there are other
competing methods of spherical filtering. Among these
are adhoc techniques designed for particular filters, and
therefore not extensible to all filters. A notable exam-
ple is Swelden’s lifting scheme [10], which constructs sec-
ond generation wavelets capable of handling non-Euclidean
manifolds, such as the sphere [7], [8]. Spherical wavelets
utilizes the geodesic grid, which is obtained by projecting
the icosahedron onto the sphere and then continually sub-
dividing its faces into smaller triangles. The advantage of
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Figure 1: Low-order spherical harmonics. Only the real part
is plotted for complex-valued harmonics. (a)Y 0
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the value of the function. For example, in (a),Y 0
0 (θ, φ) is

actually a sphere and hence all surface points are equidistant
from the origin, and thus are of the same color.

starting with the icosahedron is that the resulting triangula-
tion has the least imbalance in area between its constituent
triangles [8]. Indeed, besides the lat-lon grid, the geodesic
grid is often the spherical grid of choice. It is for example
used in the iterative solution of partial differential equations
that simulate ocean dynamics [5]. However, as a sampling
grid, it suffers from the problem that we are unable to sam-
ple at intermediate number of points, as the number of ver-
tices jump sharply with each subdivision. At level 7, there
are already 163842 vertices.

2 Spherical Harmonics Preliminaries

For any integerl ≥ 0 and integer m,|m| ≤ l, the spherical
harmonic of degreel and orderm, Y m

l (θ, φ) takes the form
for m ≥ 0:

Y m
l (θ, φ) =

√
(2l + 1)(l −m)!

4π(l + m)!
Pm

l (cos θ)eimφ (1)

and form < 0:

Y m
l (θ, φ) = (−1)mY −m

l (θ, φ) (2)

wherePm
l (x) are the associated Legendre Polynomials:

Pm
l (x) =

(−1)m

2ll!
(1− x2)m/2 dm+l

dxm+l
(x2 − 1)l (3)

The spherical harmonics equations can be overwhelming at
first, so we display a few of the harmonics in figure 1.

The spherical harmonics,Y m
l (θ, φ) form an orthonormal

basis forL2(S2). Therefore, we can expand a function,f ∈
L2(S2) as

f =
∑

l≥0

∑

|m|≤l

f̂(l, m)Y m
l (θ, φ) (4)

where f̂(l,m) denotes the(l,m) harmonic coefficient,
equal to〈f, Y m

l 〉. Because of eq (4), approximating the har-
monics coefficients is equivalent to interpolating our sam-
ples.

We state the following theorems without proof [4, 3]:

Theorem 1 (Convolution Theorem [4]). For functions
f, h ∈ L2(S2), the transform of the convolution is a point-
wise product of the transforms:

̂(f ∗ h)(l,m) = 2π

√
4π

2l + 1
f̂(l,m)ĥ(l, 0)

Observe the asymmetry of the convolution theorem:ĥ(l, 0)
vs f̂(l, m). This comes from the definition of convolution
as a left-convolution (averaging left translations). There is a
similar theorem for right convolution (averaging right trans-
lations).

Another important thing to note about the convolution
theorem is that it is independent of the sampling. Hence, as
long as we can project our samples onto the span of spher-
ical harmonics accurately, we can perform convolution via
the fourier domain accurately, regardless of the sampling
grid.

Theorem 2 (Sampling Theorem [3]). Letf ∈ L2(S2) be
a bandlimited function of bandwithb, i.e. f̂(l, m) = 0 for
l ≥ b. Then:

f̂(l,m) =
√

2π

2b

2b−1∑

j=0

2b−1∑

k=0

a
(b)
j f(θj , φk)Y l

m(θj , φk)

for l < b and |m| ≤ l. Hereθj = π 2j+1
4B , φk = πk/b and

a
(b)
j are deterministic weights designed to compensate for

the oversampling at the poles.

Note that the proof only showed(2b)2 samples to be suf-
ficient (not necessary), although empirically our methods
cannot handle less than(2b)2 samples on the lat-lon grid
(see section 6.2). While the sampling theorem only ap-
plies to the lat-lon grid, for the sake of comparison, we will
still consider a function of bandwidthb to be undersampled
when less than(2b)2 samples are taken.

Theorem 3 (Uniform Resolution [4]). Under a rotation,
each spherical harmonic of degreel is transformed into a
linear combination of only those harmonics of the same de-
gree.

Hence, the level of resolution of bandlimited functions ob-
tained through the truncation of the harmonics is uniform all
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over the sphere, thus providing an avenue of getting around
the inability to discretize the sphere evenly [1].

We will now establish some properties of real-valued
spherical functions. Consider a real-valued functionf and
definecm

l to be the projection coefficient of the functionf
onto the spherical harmonic of degreel and orderm. Since
cm
l = 〈f, Y m

l 〉, we have

c−m
l =

∫ π

0

∫ 2π

0

f(θ, φ)Y −m
l (θ, φ) sin θdφdθ

=
∫ π

0

∫ 2π

0

f(θ, φ)[(−1)mY m
l (θ, φ)] sin θdφdθ

= (−1)m

∫ π

0

∫ 2π

0

f(θ, φ)Y m
l (θ, φ) sin θdφdθ

= (−1)mcm
l (5)

where we used eq (2) andf(θ, φ) = f(θ, φ) sincef is real-
valued. Hence, when trying to find the spherical transform
coefficientscm

l , we only need to considerm ≥ 0. There-
fore, using the above, form > 0:

c−m
l Y −m

l + cm
l Y m

l = (−1)mcm
l (−1)mY m

l + cm
l Y m

l

= cm
l Y m

l + cm
l Y m

l

= 2Re{cm
l Y m

l }
= 2(am

l Rm
l + bm

l (−Im
l )) (6)

wherecm
l = am

l + ibm
l andRm

l , Im
l are the real and imagi-

nary parts ofY m
l . Note that form = 0, Y m

l is real, and
thereforec0

l must also be real in order forf to be real-
valued.

3 Least-Squares Approximation

While cm
l = 〈f, Y m

l 〉, in practice, we are unable to evaluate
the inner product because we only know the values off at
its sample points. Because the sampling theorem only holds
for lat-lon grid, we are unsure what to do for non lat-lon
samples. Suppose we samplef at (θi, φi), 1 ≤ i ≤ n, not
necessarily on the lat-lon grid, we could try to discretize the
integral [2]:

cm
l ≈ 4π

n

n−1∑

i=0

f(θi, φi)Y m
l (θi, φi)

Unfortunately, while the spherical harmonics are orthonor-
mal, their values evaluated at some set of parameter pairs
(θi, φi) will generally not form an orthonormal set of vec-
tors. However, what we really want is a spherical harmonic
series that passes near the sample points [2], based on the
assumption that a series that passes near the sample points
will be close to the original function everywhere.

Here, we deviate from the formulation of [2], adapting
their method to our problem at hand. Once again, letting
Rm

l , Im
l be the real and imaginary parts ofY m

l , we define

BT =




R0
0(θ1, φ1) R0

0(θ2, φ2) . . . R0
0(θn, φn)

R0
1(θ1, φ1) R0

1(θ2, φ2) . . . R0
1(θn, φn)

2R1
1(θ1, φ1) 2R1

1(θ2, φ2) . . . 2R1
1(θn, φn)

−2I1
1 (θ1, φ1) −2I1

1 (θ2, φ2) . . . −2I1
1 (θn, φn)

R0
2(θ1, φ1) R0

2(θ2, φ2) . . . R0
2(θn, φn)

...
...

...
...

−2I l
l (θ1, φ1) 2I l

l (θ2, φ2) . . . −2I l
l (θn, φn)




(7)
Hence,B is a n x l2 matrix containing the spherical har-
monics up to degreel, evaluated at our sample points (with
some scaling). Only the real part of order 0 harmonics are
included because order 0 harmonics are real. The factor2
and minuses are included here due to eq (6).

We denote the samples off by then x 1 vector ~f and
define~cT = [a0

0 a0
1 a1

1 b1
1 a0

2 . . . bl
l], wherecm

l = am
l +

ibm
l . Then our objective of finding a harmonic series that

passes near the sample points is equivalent to finding a~c
that minimizes the error vector~e, such that~f = B~c + ~e. If
we adopt thel2-norm as our measure of~e, then

~c = (BT B)−1BT ~f (8)

is the Least-Squares solution that minimizes our error mea-
sure.

Hence, to project our sampled function onto the spherical
harmonics up to degreel, we form then x l2 matrix,B and
estimate the coefficients using eq (8). In practice, we can
increase the degreel progressively, until a pre-determined
accuracy is achieved.

The problem with the Least-Squares method is thatBT B
might not be invertible even whenl2 < n or l2 < b, where
b is the bandwidth of our function. WhileBT B seems to
be mostly invertible for uniformly random sampling (see
section 6), there is no theoretical guarantees. In fact, when
sampling on the lat-lon grid, the columns of B are often not
linearly independent, when we have< (2b)2 samples.

4 Gram-Schmidt Orthogonalization

Notice that in the Least-Squares approximation, as we pro-
gressively increase the degree of the spherical harmonics to
improve our approximation, the number of columns ofB
increases but not the rows. Hence, to avoid having to worry
about linear independence ofB’s columns, we can perform
Gram-Schmidt orthogonalization. Since Gram-Schmidt or-
thogonalization is done in an iterative fashion, it is just right
for the progressive addition of columns toB. The columns
of B that are already in the span of previous columns are
discarded.

Formally, we let{~v1, ~v2, ~v3, . . .} denote the columns of
B. Our aim is to produce an orthogonal sets of vectorsW =
{~w1, ~w2, ~w3, . . .} spanning the column space of B, giving
priorities to the earlier columns (lower harmonics). We do
this iteratively:

~w1 = ~v1

~w2 = ~v2 − 〈~v2, ~w1〉
〈~w1, ~w1〉 ~w1

3



~w3 = ~v3 − 〈~v3, ~w1〉
〈~w1, ~w1〉 ~w1 − 〈~v3, ~w2〉

〈~w2, ~w2〉 ~w2

~w4 = ~v4 − 〈~v4, ~w1〉
〈~w1, ~w1〉 ~w1 − 〈~v4, ~w2〉

〈~w2, ~w2〉 ~w2 − 〈~v4, ~w3〉
〈~w3, ~w3〉 ~w3

...
... (9)

Note that if~vi lies in the span of the previous~vj ’s, then
~wi = ~0 and we should discard it. In practice, we discard~wi

if its norm is below a certain threshold. It is easy to verify
that the~wi’s are by construction orthogonal. The projection
of ~f on the span ofW is therefore given by~f =

∑
i ai ~wi =∑

i
〈~f,~wi〉
〈~wi, ~wi〉 ~wi. We can summarize our algorithm as follows:

1. SetW = {} (the empty set),l = −1 and residual
vector4~f = ~f .

2. Evaluate|4 ~f | = 〈4~f,4~f〉
〈~f,~f〉 , the normalized residual er-

ror. Normalization by〈~f, ~f〉 is neccessary to eliminate
scaling effects.

3. While (| 4 ~f | > threshold),

(a) Setl = l + 1.

(b) Use Gram-Schmidt orthogonalization to check if
the sampled harmonics of degreel is in the span
of W

(c) Add only the set of new orthogonal vectors,4W
(if any) toW .

(d) Set4~f = 4~f −∑
i∈4W

〈~f,~wi〉
〈~wi, ~wi〉 ~wi and record

〈~f,~wi〉
〈~wi, ~wi〉 .

(e) Evaluate| 4 ~f |

In our experiments, threshold of| 4 ~f | is set to10−10.
Observe that our algorithm has only computed the pro-

jection coefficients of~f on W, but what we really want are
the corresponding projection coefficients of~f on the inde-
pendent spherical harmonics. In theory, these can be re-
covered from the projection coefficients of~f on W and the
projection coefficients of~vi’s on ~wi’s obtained from the or-
thogonalization process.

However, the inversion process can be quite messy to
program and so in practice, we keep track of the indepen-
dency between the sampled spherical harmonics during the
orthogonalization process. When we complete the algo-
rithm from above, we assemble the set of independent sam-
pled harmonics and perform a least-squares projection of~f
on that set. The coefficients of the dependent harmonics are
set to 0. Note that the coefficients obtained this way will
be exactly the same as those obtained by the inversion pro-
cess and will in fact avoid numerical issues associated with
a progressively tinier residual vector,4~f .

5 Evaluating the Harmonics

To evaluate the spherical harmonics, we make use of the
three-term recurrence forPm

l (x), the associated Legendre

Polynomials [1]:

xPm
l = αm

l Pm
l−1 + αm

l+1P
m
l+1 (10)

where,

αm
l =

√
(l −m)(l + m)
(2l − 1)(2l + 1)

(11)

and hence to calculatePm
l (x), we begin withPm

m−1(x) = 0
and

Pm
m (x) = (−1)m (1− x2)

m
2

2mm!

√
2m + 1

2
(2m)! (12)

and use the recurrence eq. (10) to obtain

Pm
m+1 =

1
αm

m+1

(xPm
m − αm

mPm
m−1) (13)

and repeat till we achieve the desiredPm
l (x).

Care must be taken to evaluate the constant
1

2mm!

√
2m+1

2 (2m)!. If 2m, m! or (2m)! is evaluated
directly, the floating-point range can be easily exceeded
even with moderate values of m. To avoid overflow, we

begin with
√

2m+1
2 , and multiply a factor from the de-

nominator when the constant is greater than 1 and multiply
a factor from the numerator when the constant is less
than 1. When all the factors from either the numerator or
denominator have been used up, we multiply the remaining
factors [1].

6 Experiments

In this section, we compare the performance of the Gram-
Schmidt projection, the Least-Squares approximation and
the Fast Spherical Transform on both the lat-lon grid and
the uniformly random grid. For the fast spherical trans-
form, we actually utilize the non-speedup version, S2kit [6]
because the fast spherical transform package, Spharmon-
icKit [6] only handles powers-of-2 bandwidths. However,
this is fine since they both use the sampling theorem and we
are only testing for accuracy not speed.

The uniformly random grid is defined as follows. Given
an inputN , we sample(2N)2 random points uniformly
around the sphere. This can be implemented as follows: For
each sample, we generate the coordinate(θ, φ) by sampling
φ uniformly in the range[0, 2π] andθ from the probability
density distribution1

2sin θ, 0 ≤ θ ≤ π. The “sin” serves
to compensate for the smaller area near the poles and plays
an analogous role to thesin factor arising from integration
on the sphere.

We generate two random real-valued bandlimited func-
tions,f (bandwidth 20) andg (bandwidth 5), by setting the
real and imaginary parts of the spherical harmonic coeffi-
cients uniformly in the range[−1, 1], for m ≥ 0. This de-
termines the coefficients of negative order harmonics since
cm
l = c−m

l (−1)m (see eq. 2) for real-valued functions.
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6.1 Toy Example

As a sanity check, we samplef on the lat-lon grid using
(2 ∗ 20)2 = 1600 samples, and apply Least-Squares,
Gram-Schmidt and S2kit transforms to the samples. We
then compare the coefficients obtained by the transforms
with the original known coefficients. The results are
summarized in the following table:

Max Absolute Difference
Least-Squares 4.0523e-15

Gram-Schmidt 4.0523e-15
S2Kit 2.5077e-14

We repeat this with1600 uniformly random samples,
but without S2kit since it only handles lat-lon samples:

Max Absolute Difference
Least-Squares 3.6637e-15

Gram-Schmidt 3.7894e-15

As expected, our algorithms work well with(2b)2 sam-
ples. Note that in the second table, Least-Squares and
Gram-Schmidt should have the same errors except that we
generate the 1600 randomly uniform samples on the fly, and
so the algorithms were running on different set of samples.

6.2 Undersampling on the Lat-Lon Grid

Next, we undersamplef on the lat-lon grid with vary-
ing number of samples, and apply Least-Squares, Gram-
Schmidt and S2kit transforms. This time, the transform
coefficients are definitely different from the original coeffi-
cients, and so to measure interpolation errors between sam-
ple points, we reconstruct our function,̃f from our trans-
form coefficients using eq (4). We then compare the values

of f̃ andf at 10000 uniformly random points. Denoting~̃
f

and ~f as the sample vectors, we define the normalized dif-

ference between~̃f and ~f to be ||~̃f − ~f ||/||~f ||, where the
norm || · || is taken to be the usual inner product norm,√
〈·, ·〉. We can interpret the normalized difference to be

the test error because it measures how well the coefficients
we found generalize to unseen sample points. We summa-
rize the results in figure 2.

From the figure, notice that the normalized difference
(test error) of the Gram-Schmidt is in general lower than
Least-Squares and S2kit. We can also conclude from the
figure that Gram-Schmidt suffers from overfitting, since test
error is a lot higher than training error (almost 0). Indeed,
in the case of 100 samples (Gram-Schmidt suffers from the
worst test error), setting the threshold for|4 ~f | to be0.5 in-
stead of10−10 increases the training error to0.3393, while
decreasing the test error to1.2284 (not shown in figure).

An important observation is that although Gram-Schmidt
manages to beat Least-Squares and S2kit, in general, the
results are still considerably weaker than the almost-zero
errors obtained in the previous section, when there’s suffi-
cient sampling. We shall see in the next section that on the
uniformly random grid, we can achieve low errors despite
undersampling.
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Figure 2: Performing Spherical Transform on the Under-
sampled Lat-Lon Grid: Training (Normalized Residual)
Error and Test (Normalized Difference) Error of Least-
Squares, Gram-Schmidt and S2kit.

6.3 Undersampling on the Uniformly Ran-
dom Grid

In this section, we undersamplef using the uniformly ran-
dom grid with varying number of samples. Once again we
use normalized difference to measure our generalization er-
ror. The results are shown in figure 3.

From the figure, we find that as long as we have at
least 400 samples, both Least-Squares and Gram-Schmidt
yield almost 0 error. Interestingly, once we have less than
400 samples, the errors simply blow up. Indeed, when
we compare the experimental errors between 399 and 400
samples, we notice a big jump in error. This is summarized
in the table below:

Number of Samples 400 399

Least-Squares||~̃f − ~f ||/||~f || 2.2057e-08 8.8130

Gram-Schmidt||~̃f − ~f ||/||~f || 1.7346e-11 159.5883

To ensure that our results are not dependent on the error
measure, we try a different error measure. We define the

maximum normalized absolute difference between~̃
f and

~f to bemax(abs(
~̃
f−~f)

abs(~f)
). It basically measures the largest

percentage error in the approximation. The following table
summarizes the result:

Number of Samples 400 399
Least-Squares 1.2619e-04 1.62535e+04

Gram-Schmidt 1.1150e-07 8.6322e+05

We do not think that it is a coincidence that400 = 202,
where 20 is the bandwidth of our sampled function,f . It
might be that for a bandlimited spherical function of band-
width b that is uniformly sampled, the “Nyquist” rate might
be b2, rather than(2b)2 on the lat-lon grid. Also observe
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Figure 3: Performing Spherical Transform on Under-
sampled Uniformly Random Grid: Training (Normalized
Residual) Error and Test (Normalized Difference) Error of
Least-Squares and Gram-Schmidt.

that 202 corresponds to the degree of freedom we have in
determining our harmonic coefficients (where we consider
a single complex coefficient to contain2 degrees of free-
dom).

One might wonder why Least-Squares has similar per-
formance to Gram-Schmidt on the randomly uniform grid,
but not on the lat-lon grid. The problem is that for the lat-
lon grid,BT B (see eq. 8) is often non-invertible even when
there are fewer columns than there are samples.

6.4 Convolution: Undersampling on the Lat-
Lon Grid

In this experiment, we convolve our random bandlimited
function,f with our random filter,g of bandwidth 5 to ob-
tain h, i.e. f ∗ g = h. We assume that we have sufficient
resources to represent the filter, so we will use its true har-
monic coefficients. The approximation comes from estimat-
ing f ’s coefficients, using Least-Squares, Gram-Schmidt
and S2kit with varying number of samples. We then use
the convolution theorem to obtaiñh, our approximation of
h. Once again, we measure our interpolation error by com-
paring h and̃h at 10000 uniformly random points using nor-
malized difference as our error measure. Note that we can
calculateh exactly since we generatedf andg and so can
apply the convolution theorem directly.

We summarize our results in figure 4. Both S2kit
and Gram-Schmidt have almost zero errors up till 576
((2(12))2) samples. While it is not shown in the figure, the
accuracy deteriorates rapidly when we use< 576 samples.
On the other hand, Least Squares perform badly the moment
we undersamplef (less than 1800 samples). However, no-
tice that despite this, all three methods have significantly
lower errors in figure 4 compared with figure 2. A possible
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Figure 4: Performing Convolution on the Undersampled
Lat-Lon Grid: Training (Normalized Residual) Error and
Test (Normalized Difference) Error of Least-Squares and
Gram-Schmidt. Note that the black line lies exactly on the
blue line, so you can’t see the blue line.

explanation is this: because our filter is of bandwidth 5, it
acts as a low pass filter and remove the higher harmonics of
f by multiplying them with zero. This tends to reduce the
errors because the higher frequencies are less reliable due
to undersampling.

What is surprising however, is that while all three meth-
ods have approximately the same errors when estimating the
spherical harmonics coefficients on the undersampled lat-
lon grid (see figure 2), S2kit and Gram-Schmidt perform so
much better than Least-Squares when performing convolu-
tion.

6.5 Convolution: Undersampling on the Uni-
formly Random Grid

We repeat the convolution experiment from the previous
section, but this time using the uniformly random grid.
From section 6.3, we expect our convolution to be accu-
rate when we have at least 400 samples, since Least-Squares
and Gram-Schmidt Spherical Transforms are accurate over
that range. Figure 5 shows the result of our convolution ex-
periment, and our predictions are indeed correct. However,
unlike the lat-lon grid, we do not get any boost in accuracy
due to the low-pass filter. Despite this, we note that the uni-
formly random grid still performs better, requiring only 400
samples compared with 576 samples on the lat-lon grid.

6.6 Final Toy Example

We will end our experimental section with a final toy exam-
ple. Figure 6a shows a spherical image with a noisy protru-
sion (whose harmonic coefficients we know), and figure 6b
shows a spherical filter with a smooth symmetric bump on
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Figure 5: Performing Convolution on the Undersampled
Uniformly Random Grid: Training (Normalized Residual)
Error and Test (Normalized Difference) Error of Least-
Squares and Gram-Schmidt.

the North Pole (whose harmonic coefficients we also know).
Both the image and filter have bandwidths of 64. Convolv-
ing our image with the filter should ideally yield an output
that has a maximum at the bump (see figure 6c). In our ex-
periment, we sample our filter and image at642 uniformly
random points (instead of the required(2(64))2 points on
the lat-lon grid). The result is shown in figure 6d. The
maximum normalized absolute difference between the ideal
output and our result over 40000 uniformly random points
is 1.9416e− 08.

7 Conclusions and Future Work

In this paper, we proposed and experimented with an exten-
sion to the Least-Squares method of projecting samples of
an unknown spherical function onto the span of spherical
harmonics. The use of Gram-Schmidt orthogonalization is
motivated by the fact that while Least-Square aims to find a
spherical harmonic decomposition that passes near the sam-
ple points, there’s no guarantee that the columns ofB (refer
to eq. 7) will be independent even when there are more
rows than columns inB (i.e. more samples than the degree
of freedom we have in the harmonic coefficients). Hence
BT B could become non-invertible before we could attain
a good fit. Indeed, as shown in section 6.2, the columns of
B quickly became dependent when sampling on the lat-lon
grid, resulting in poor training and test error. On the other
hand, Gram-Schmidt was able to fit the samples completely,
although there were obvious signs of overfitting.

We like to comment on the discarding of dependent
spherical harmonics in the Gram-Schmidt orthogonaliza-
tion process. Since these (sampled) spherical harmonics
already lie in the span of previously sampled harmonics,
adding them will not yield a better approximation to the

sampled points. By throwing them away, we are in fact fa-
voring the harmonics we process earlier, i.e. the lower-order
harmonics. Hence, our algorithm has an implicit preference
for smooth (lower-order) harmonics that explain our sample
points.

We also demonstrated that we needed less samples for
the randomly uniform grid compared with the lat-lon grid.
Empirically, we found that a function of bandwidthb re-
quiredb2 samples on the uniformly random grid compared
with (2b)2 samples on the lat-lon grid.

Finally, our experiments on convolution (section 6.4 and
6.5) showed that if we filtered a function of bandwidthb
with a filter of lower bandwidth, we might require less than
(2b)2 samples on the lat-lon grid in order to get accurate
results. This was not true for the uniformly random grid, al-
though overall, the uniformly random grid still performed
better. Such a property is less surprising if one consid-
ers a 1-D signal. Remember that sampling a 1-D signal is
equivalent to replicating the fourier transform of the signal
periodically in the fourier domain. As sampling becomes
more sparse, these replicas come closer and closer together.
When the replicas overlap, we have aliasing. Since overlaps
first occur in the higher frequencies, it means that aliasing
effects tend to first show up in the higher frequency bands.
Applying a low-pass filter will eliminate the problematic
higher frequency bands.

The advantage of Least-Squares and Gram-Schmidt is
that they handle the case of non lat-lon sampling. How-
ever the fast spherical transform is simply much faster
(O(nlog2n)), wheren is the number of samples. In com-
parison, our algorithm is at leastO(n3) (due to matrix inver-
sion) assuming we use just enough samples to prevent alias-
ing. The less sampling we require on the uniformly random
grid only comes up as an algorithmic constant. A possible
alternative might be to perform a one-time decomposition
of our image using Least-Squares or Gram-Schmidt. Then
for any filter or cascade of filters we would like to apply to
our image, we can perform fast spherical transform to ob-
tain the filters’ coefficients assuming we know the analytic
expression of the filters.

There are a lot more work to be done:

1. We would like to test our algorithm on other grids and
investigate their sampling threshold.

2. We would like to investigate a more theoretical basis
of sampling limits on a non lat-lon grid, besides the
intuitive reason that the lat-lon grid wastes too many
samples near the poles. A possible source of inspira-
tion could come from non-uniform sampling of 1-D
signals. It is known that if non-uniform sampling is
done correctly, the nyquist rate can be violated for 1-D
signals.

3. While projecting our image onto the span of spherical
harmonics provides a convenient way of performing
convolution, we are still unable to handle non-linear
filters. There are many useful (even simple) non-linear
filters in image processing (such as the median filter)
that cannot be implemented via convolution. For such
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Figure 6: (a) Spherical function, Bandwidth = 64, with a noisy protrusion. (b) Spherical Filter, Bandwidth = 64, with
smooth symmetric bump on the North Pole. (c) Ideal Output. (d) Output found by estimating harmonic coefficients using
Gram-Schmidt over642 samples over the uniformly random grid.

filters, we probably have to employ brute force meth-
ods, such as projecting our spherical function onto the
plane and doing image processing there. Since the
sphere and plane are geometrically and topologically
different, we will need to warp our image and filter ap-
propriately. We will also need to interpolate the pixels
of the 2D-grid, introducing possibly interpolation er-
rors. It will be interesting to compare the accuracy of
the brute force method with our algorithm applied to
linear filtering.

4. We have not considered the case when our samples
are noisy. For example, we would not expect our seg-
mented cortical surfaces to be free of noise. Hence we
would probably not want to fit our data samples com-
pletely. This is related to the overfitting problem that
Gram-Schmidt suffers from. However, for real data,
we actually do not know the underlying function, so
it will be hard to test for overfitting. Perhaps we can
use techniques such as leave-one-out cross-validation,
although that will slow down our algorithms even fur-
ther.
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