Boon Thye Thomas Yeo
4662474
Biochem 218 Final Project

Using Information Theory to Reduce Complexities of
Neural Networks in Protein Secondary Structure
Prediction

1 Abstract

Neural networks are commonly used in protein secondary structure prediction. However,
neural networks tend to be very computationally expensive and time consuming because the
training algorithms have to determine the values of thousands of variables that define the
networks. In this paper, we suggest a simple information theoretic method of pre-processing
the training set before feeding it to a generic neural network, which should theoretically
reduce the complexities of the neural network significantly, thus saving valuable computa-
tional time. Due to insufficient time, we did not actually physically implement a neural
network with a pre-processing stage. Instead, we shall only demonstrate the feasibility of
our suggestion by pre-processing the family of leucine zippers and show that it achieves the
aim of obtaining improved inputs to the network. Hopefully, our future work will involve
implementing such a neural network with a pre-processing stage to determine the actual
improvement in computational time.

2 Introduction to Neural Networks and Structure Pre-
diction

The three-dimensional structure of a protein is very important to the function of a
protein. Changes in the shape of active sites (due to residue mutation) can result in functional
failure of the protein. Knowing the three-dimensional structure of a protein can help in the
design of agents (such as drugs) that target the protein. However, physical simulations have
not been successful in determining the tertiary structures from the primary sequences (Rost
& Sander, 1993). The prediction problem is simplified if we reduce the three-dimensional
problem to one dimension by assigning to each residue a secondary structure (Rost & Sander,
1993): helix («), strand () or loop (L).

The most successful secondary structure prediction methods exploit evolutionary
information from multiple alignment of sequences of protein families (Cuff & Barton, 2000).
Of the different prediction methods, neural network algorithms are found to be the most
accurate (Cuff & Barton, 2000). For example, the neural network algorithm developed by

Rost & Sander (1993) achieved an accuracy of above 70%!. Since then, various improvements
(such as the careful use of iterated PSI-BLAST) and circumstances (such as larger sequence
databases) have resulted in a rise of accuracy to around 80% (Cuff & Barton, 2000). Yet,
the fundamentals of neural net prediction algorithms have not really been changed. The
first step still involves creating a training set of proteins that have been multiple aligned?
and whose secondary structures are known. The neural network is then trained with this
training set. The accuracy of the trained network is then measured with a test set.

We shall now give a quick outline of the neural network algorithm Rost & Sander
used in their 1993 paper®. The neural network utilized has 3 levels as shown in figure 1.
The training set for the network is first multiple aligned. For each residue, the frequency of
occurrence, f;, 1 <1 < 20, of each of the 20 amino acids at that position is calculated. Since
we are interested in determining the secondary structure of each residue, each residue should
have its own Threshold Logic Unit (TLU) in the first level (figure 1). Consider a window of
w = 13 consecutive residues, with the center residue being the one whose secondary structure
we are interested in. The input to the TLU is an input vector of length, w = 13 (w = 7
in figure 1), consisting of a data vector from each of the residues in the window. The i*
element of each data vector is f;*. Hence each TLU takes in w x 21 real numbers. The
TLU has 3 output components corresponding to the secondary structures helix («), strand
(8) and loop (L). If the central residue has a helical structure, then our desired output is
(1,0,0) (although what we typically get is something like (0.54, 0.21, 0.25)). For the ;™
output component, the TLU takes the w x 21 real numbers, summed them together in a
linear, weighted fashion to give the real number, h;. The i*" output component is then given
by the sigmoid function, f;(h;) = ﬁ, where f3; is the slope of the sigmoid function.
Hence, for this TLU alone, we need to determine the values of w x 21 x 3 weights and 35}3.

L = 17 consecutive TLUs (figure 1 shows 5) now pipe their outputs to a basic cell
at the second level. Once again, the TLU of the residue of interest is at the center of the
input vector to the basic cell. The second level operates like the first except that this time
round, there are L x 3 x 3 weights (because there are L x 3 inputs and 3 outputs) and 3/’s
to be determined for each basic cell.

The gradient descent method is used to determine the variables in both level 1 and
level 2. Basically the aim is to minimize the error of the output. Remembering that the

!The different definitions of accuracy of protein structure prediction is well-elaborated in Ross & Sander,
1993. A widely accepted measure of accuracy is the three-state per-residue accuracy, @ (Cuff & Barton,
2000) also discussed in the same 1993 paper by Ross & Sander.

2While this set of proteins should belong to the same family, there should be as much divergence within
the family as possible (Przybylski & Rost, 2002). This expands the predictive power of the neural network
by preventing an overfit of the training set.

3http://gnosis.cx/publish/programming/neural networks.htm provides an excellent introduction to neu-
ral networks if the reader is not familiar with their use.

4While there are 20 amino acids, there is actually a f3; because we need to create a dummy amino acid for
residues at the terminals of the protein chains without neighbors on both sides. Refer to Rost and Sander,
1993, for a more detailed discussion.

first level: second level: third level: predicion
decision wirner take

profile generation nqﬂmda structure Strucfure to sirucfure Jury ;
from & moltiple in: profiles, im: auq:aulo{ﬁ'sl in: putput of [given hers
segqeence alignment oul: units for level, out: o, f, L different networks for the N at
(here: p-lactamase: 3hla) helix (w), srand (§) out: arithmetic position 4)

)] and loop(L) average for o B L
: bssp :ﬁ emﬁ:‘mpat Input Vector i

E.uE 1 K=75 H=25
EDARE X 545. D=2, A=2
FFFF
SRS
QKRG
LLLL
EEEE
KERK
KQEK
FFYF

~ Basic Cell

/g |£em o e

N og——i-o
I@ ¥

I
l
g ’}:Dll"’

EKER . 3 Averaging results of networks
' trained differently

R RARRRRRSR

s G HSE P E S mEnCD 2T RR

- TR T W
E
e

Figure 1: Neural Network used in Ross & Sander, 1993

output is a B3 vector, we define the error to be the sum of the square of difference between
each of the actual and desired output components. Since we have so many variables to
adjust, we can achieve an error of zero, but that would result in over-fitting. Hence, training
is considered complete when 70% accuracy is achieved for the training set for the first level
and 75% for the second level.

Finally, Rost & Sander varied the way levels 1 and 2 are trained, thus producing 8
or 9 different set of level 1 and 2 architectures with different junction weights and sigmoid
functions. The third level then combines the results of these architectures by averaging the
outputs of the second levels of the different architectures (figure 1 only show the averaging
of 4 architectures at the third level).

3 Data and Analysis

3.1 Reducing Complexities with Mutual Information

It is clear that training the neural network requires the determination of thousands
of variables, which is very computationally expensive. We can reduce the complexities of
the neural network by improving the input vector to each TLU in the first level and each
basic cell in the second level. By improving the input vector, we can decrease the size of the
window used (in both first and second level) and still maintain accuracy.

Figure 2: A Representation of an alpha helix. As can be seen, while amino acid D is closer
to C in the primary sequence, in 3-dimensional space, E is the one closer to C. Hence, we
would expect amino acid E to have stronger statistical correlation with C.

The problem with the implementation outlined in the previous section is that the
selection of the elements of the input vector is too arbitrary. The current method assumes
that the secondary structure of a residue is most affected by the amino acids closest to it
in the primary sequence. But, this is not necessarily true, because we are talking about an
entity in 3-dimensional space, not a 1-dimensional line. Therefore, the amino acids that affect
the secondary structure of a residue the most, should be those closest to it in 3-dimensional
space. It would seem then that we have a catch-22 situation because knowing the amino
acids closest to a residue would appear to require us to first know the 3-dimensional structure
of the protein.

However, we should be able to make use of the fact that the 3-dimensional structure
of a protein is important to the function of a protein. Changes in the structure of a protein
can render it non-functional in an organism, thus such mutation can be potentially fatal.
A mutation of a residue should affect the residues close to it in 3-dimensional space. If the
mutation happens to be a bad one, we should expect that the organism would not survive
unless there is a corresponding change in some close surrounding residues to mitigate the
bad mutation. Hence we should expect some sort of statistical correlation among residues
close together in 3-dimensional space (see figure 2 for illustration).

The use of the concept of mutual information can help us detect and quantify this
correlation. We can then let the input vector to the TLU be composed primarily of residues
with high correlation to the residue of interest. The input to the basic cell of the second
level should also come from TLUs of the highly correlated residues. This ensures that the

inputs have the most effects on the outputs of the TLU and basic cell of the residue of
interest (something Rost & Sander’s implementation of the neural network algorithm does
not guarantee). Therefore, it seems likely that smaller size windows will still achieve similar
accuracy. This would imply less variables resulting in a shorter runtime.

To verify and quantify this improvement, we would need to implement a neural
network with the pre-processing stage to pick the window. But unfortunately, we lack
the time to implement it. Instead, we will investigate the feasibility of the use of mutual
information to detect such correlations. An important question that arises is :“Are the
correlations actually significant and detectable?”.

While strong correlations have been shown to exist in various RNA and DNA studies®
between nucleotides, and are detectable by mutual informatic methods, we have not found
papers that support that similar methods would work for amino acids. Such correlations
are almost obvious, for example in tRNA studies, where adenine(A) tends to form hydrogen
bonds only with uracil(U) and guanine(G) only bind with cytosine(C). Hence in the study of
the cloverleaf secondary structure of tRNA, we would expect that Watson-Crick base pairs
are highly correlated. A mutation in one nucleotide will only likely be successful if and only
if there is an appropriate mutation in the corresponding nucleotide (if one exists). This has
been experimentally verified in the project by Segars (Segars, 2001). For proteins however,
there is no “corresponding amino acid”. In many cases, the 3-dimensional structure of a
protein is not severely affected by amino acid mutation. A small hydrophobic amino acid
should be replaceable by another small hydrophobic amino acid without appreciable effect
on the 3-dimensional or secondary structure of the protein (this is reflected by substitution
matrices such as Blosum or Pam). We might then expect that correlations between nearby
residues to be significantly less than that in the case of RNA or DNA. Would these corre-
lations then be detectable? From our experiment on the family of leucine zippers, it turns
out that correlations due to secondary structural effects are very strong and detectable. We
picked the family of leucine zippers because the family is already self-aligned because of the
periodic nature of the sequences, and because the secondary structure of the leucine zipper
family is already known (alpha helical structure).

3.2 A Brief Discussion of Mutual Information

Mutual information is a measure of the amount of information one random variable
contains about another random variable. It is the reduction in the uncertainty of one random
variable due to the knowledge of the other (Cover & Thomas, 1991). Mutual information
between 2 random variables is defined to be

](XS Y) = erA ZyEB p(:)s, y)loggpl(?g;@)

5For example, refer to the work done by Tom Schneider, or refer to the Biochem 218 Final Project by
Paul Segars, 2001 (see References).

Mutual information is measured in bits. Since we are trying to correlate two positions of a
family of proteins, X (or Y') would be the random variable whose value is that of the amino
acid at position u (or v) after multiple alignment (we can number the amino acids from 1
to 20). A and B refer to the set of values that can be assumed by the random variables X
and Y respectively. Thus A = B = {1,2...20, 21}, where 21 refers to a gap in the alignment,
while 1 to 20 refer to each of the amino acids.

There are a number of important facts we should take note of:
(1) I(X;Y) > 0, and equality holds if and only if X and Y are independent.
(2) Mutual information is symmetric, that is I(X;Y) = I(Y; X).
(3) I(X;Y) > I(U; V) implies that X gives more information about Y than U about V.

(4) Consider the random variables, X = 0 or 1 with equal probability, and Y = X. Also,
consider the random variables U = 0 with probability 1, and V' = U. In both cases, knowing
X determines Y, and knowing U determines V. However, I(X;Y') = 1 bit, while I(U; V) =0
bit. This is because to begin with, there is more uncertainty about Y than V. We know
that V' has to take the value of 1, but we only know that Y has to be the same as X, but
it could be 0 or 1 with equal probability. Hence, X reduces the uncertainty of ¥ more than
U reduces the uncertainty of V', even though Y and V' are totally dependent on X and U
respectively. Thus, we conclude that mutual information is not a measure of degree of de-
pendency between two variables (else I(X;Y) should equal I(U;V)), but rather how much
information one variable provides about another.

(5)Obviously, we do not know the actual marginal and joint probability distribution, but
we can estimate p(z,y) and p(x) of a family of proteins empirically by the following equa-
tions:

~ __ # of sequences with amino acid x at position u and amino acid y at position v
p(l’,y) ~ p<x’y) - total # of sequences
and
~ __ # of sequences with amino acid x at position u
p([[‘) ~ p(l’) - total # of sequences

(6)Lastly, even though two positions X and Y might be independent and I(X;Y) = 0,
since we have to estimate the joint and marginal distribution, it is therefore not likely the
estimated mutual information is going to be zero. This is especially so in our case as we
have less than 100 sequences to analyze.

3.3 Data and Methods

For our experimentation, we obtained the family of leucine zippers from Swiss-Prot,
because of its reliability (we also tried the Protein Data Bank (PDB) but did not find
many leucine zippers). The leucine zipper sequences are known to have a regular repetition
of leucine at every 7% position (although in some cases, we found that leucine had been
replaced with isoleucine or even tyrosine), and have an alpha helical structure. We found
that about half the leucine zippers had 4 leucines spaced apart (22 amino acids long), while
the other half had 5 such leucines (29 amino acids long). Because we would have a very
small family if we only choose either group, we simply throw away the last 7 amino acids of
the group of leucine zippers with 5 equally-spaced leucines. We also threw away sequences
of odd length because of deletions (such as 21 amino acids long), as we were unable to align
them properly. There were only about 4 of these, so it did not adversely affect the size of our
family. In total, we have 62 leucine zippers (see Appendix 1 for the amino acid sequences of
the family of leucine zippers).

With the family self-aligned, we then estimated the marginal probability distribution
of amino acids of each position (all 22 of them), as well as the joint probability distribution of
amino acids for every pair of positions. We then produced the 22 x 22 matrix, M, whose (i, j)
entry is the mutual information between position i and position j. Since mutual information
is symmetrical, we only had to fill in the upper triangular portion of M.

Because mutual information does not directly gives us the degree of dependency
between 2 positions of a sequence, but also takes into account the marginal distribution of
each position (refer to fact #4 in previous subsection), it means that if a pair of positions
has a higher I(X;Y") than I(U;V), that does not necessarily imply that Y is more depen-
dent on X than V is on U. Thus, we should estimate the randomized mutual information,
I(X;Y), given that X and Y are independent, and subtract this “background noise” from
our experimental mutual information M. We had already previously estimated the marginal
amino acid probability distribution of each of the 22 positions. We now randomly generated
1000 sets of 62 proteins, each of length 22, such that the amino acid at each position was
generated independently using the estimated marginal probability distribution for that po-
sition. For each set of proteins, we calculated the 2-dimensional mutual information matrix,
N;. Thus N is a 3-dimensional matrix with dimensions 22 x 22 x 1000. Using N we produced
the 22 x 22 matrices, EN (and stdN), whose (7, j) entries are the mean (and standard de-
viation) of randomized mutual information between position i and j assuming the positions
are independent. We then produced the normalized mutual information matrix (NormM),
whose (i, j) entry is given by:

o M (i,7)—EN (1,5
NormM(i,j) = W

Thus NormM (i, 7) tells us how significant M (7, j) actually is. Given M (i,j) = 3 bits, we

7

1 2
12345676901 2343567%9012

Max Deviation from the Mean for a Given Position

(a) 5 10 15 20
(b Pasition i

Figure 3: (a)Gray Scale Image of Normalized Mutual Information. (b)Plot of the Maximum
Deviation from the Mean for Position i.

have no idea whether this is significant, or whether this can occur by random chance when
i and j are independent (see fact #6 from previous subsection).

3.4 Results and Discussion

The matrix NormM is shown in Appendix 2. In figure 3a, we display NormM as
a gray-scale image. For values less than or equal to zero, we set the color to black. Bright
pixels correspond to positions with significant correlation. Indeed, if we define maxl; =
max{NormM (i, j),¥j # i} (which is the maximum normalized correlation obtained for a
position i), then maxl; are all at least 4 deviations above the mean except when i = 1 and
i =15 (see figure 3b).

Since the leucine zipper family has a periodic structure, alpha helix (refer to figure
2), this periodicity should be included in the normalized mutual information matrix, if the
matrix really does reflect the 3-dimensional structure of the protein. Given a residue at
position ¢, and 7 > 7, as we increase j, the distance in 3-dimensional space between residues
1 and j should increase then decrease, then increase and then decrease, and so on. Hence
ideally we hope to see some sort of a decaying sinusoidal with a period of about 7 if we
make a plot of normalized mutual information against 7. In figure 4, we made a plot of
normalized mutual information between position 1 and position j, 2 < j < 22 and between
2 and position j, 3 < j < 22 (basically, the horizontal, non-zero entries of NormM). In
the top graph, we see a peak at 7, 14, and 20. In the bottom graph, we see a peak at 10,
16 and 21. Thus, from the plots, we notice that there exists some sort of cyclical process,

2 \ T T T T T T T T T B
' 3
1l N, ‘;';'-. f‘\ 1 j=1
\\ / lﬂ", . / H\ Sy I
Mutual N N oAl S
|nf0I‘m (# 0 1 | ("l.--”' L e Lo T N
o 2 4 3 a3 10 12 14 16 18 20 22
deviation
E F /,'h"‘ T T T T T T T T —
fromthe | ¢ ~ A
", \
4+ \ ST [A T
mean) . / \ / ~_/ i=2
— ; n, ™. J \
2 L ., ‘f; '\\
e ., l|,
1]]]] 1 \«.n' 1 1 1
4 B a3 10 12 14 16 18 20 22

Position

Figure 4: Top: Graph of normalized mutual information between residues 1 and j, 2 < j <
22. Bottom: Graph of normalized mutual information between residues 2 and j, 3 < 7 < 22

whose period varies roughly from 5 to 7. Notice also that the peaks appear to be decaying.
However, if we observe the rows of NormM (Appendix 2), not all the rows appear to conform
to the image of a decaying sinusoid.

Since not every row clearly exhibit a period of around 7, it is hard to determine
whether or not periodicity is reflected in the normalized mutual information matrix. If it is
noise that is hiding the periodicity, we should be able to get rid of the noise by doing some
sort of averaging. We first formed the matrix P’ = NormM + NormM?", where NormM7"
is the transpose of NormM. Thus P’(i,j) is the normalized mutual information between
position 7 and position j of the leucine zipper family. Note that the diagonal entries of P’ is
zero. We then derived the 22 x 21 matrix, P from P’, by removing the diagonal of zeroes.
Thus, if 7 < 4, P(i,7) is the normalized mutual information between position ¢ and the
(i — 7)™ residue left of position 4, and if j >4, P(i, j) is the normalized mutual information

between position i and the (j — i + 1) residue right of position 7°.

Since row ¢ of matrix P represents normalized mutual information between position
i and other positions in the sequence, it does not really make sense to simply add the rows
of the matrix P, because the j column is not the normalized mutual information between
residues that are spaced equally apart. However, we do want to do some form of averaging.
Therefore we decided to use the concept of the discrete fourier transform (DFT). For an
input vector & of length N, DFT(Z) = & is also a vector of length N where:

6The reader might want to draw out the matrix P’ and P in order to visualize the situation when the
diagonal of zeros is removed.

1 T T T - -
O5R N N /A
y=cos2'pi't!T) .| / \ /

N5+

DFTiy)

| =S I e
T
T m—
I

Figure 5: Top: Graph of function y = cos(27t/7), sampled at integer values of ¢. Note that
y has a period of 7. Bottom: DFT of y excluding the first element of the DFT (the first
element simply reflects the average value of y). Hence a period of 7 is shown up as a peak
at the third point (excluding the first point) of a 22-points DFT.

—2njnk

i(n) = YL, (k) e ¥

Take note of the following facts:
(1)In our case, while & is a real vector, Z is likely to be complex.

(2)For a real vector Z, only the first half of & gives information about the periodicity of Z.
The second half of z is simply the complex conjugate of the first half. Thus if we plot the
graph of the magnitude of z, it will be symmetrical about the half-way point.

The DFT of a vector detects periodicity in the vector”. This is illustrated in Figure
5. The top graph is the sampled function of the cosine function with a period of 7. The
DFT of this periodic function is then plotted on the bottom graph (excluding the first or
average term of). A visible peak is seen at the third point of the DFT. Notice that the
graph is symmetrical about the half-way point as mentioned previously.

We now return to the analysis of the matrix P. We took the DF'T" of each row of P
giving the matrix DFT P (Note that this is now a complex-valued matrix). We then took the
magnitude of each element of DFT P (resulting in a real-valued matrix), before summing up
the rows®, giving us the real-valued vector avgDFT of length 21. We then plotted avgDFT

"For more information about Discrete Fourier Transform, any undergraduate digital signal processing
textbook should cover the topic in details.
8The reason why we took the magnitude of DFTP before summing up the rows, was because we had

10

180 | /I | | | | | | | f‘ 4
160+ | \ 4
DFT 140 + / I\] \“l 4
120 ' / 4‘\ ,,x"ﬁ\ f\ ‘f \\ {I \ |

Figure 6: Graph of avgDFT, excluding the first term of the avgDFT.

(see Figure 6), once again excluding the first term of avg DF'T, and a peak appeared at the
position we hoped for.

The two smaller peaks before the half-way point could either be because of noise, or
they could be the higher harmonics of the system because we should not be having a perfect
sinusoid anyway (we were assuming that we might have some sort of a decaying sinusoid).
Consider the DFT of a decaying sinusoid (figure 7, on the next page). Once again, there is
a peak at the third point of the DFT (excluding the first term). However, in this case, the
peak dies off slowly on both sides. But there are no extra peaks before the half-way point.
Thus the decaying sinusoidal model does not adequately explain the two extra peaks in the
DF'T of the leucine zipper family. That can be grounds for further studies.

4 Conclusion

We set out to improve the inputs to generic neural networks used in secondary
structure prediction. Our idea was to input residues correlated to the residue of interest
into the TLUs and basic cells of the neural network instead of simply using residues closest
to the residue of interest in the primary sequence. We showed that normalized mutual
information was effective in picking out correlated residues in the family of leucine zippers.
A big proportion of the correlations we found was at least a few standard deviations above
the estimated mean of the mutual information of random generated sequences. Such degree
of correlation is too significant to be ignored. We also used the discrete fourier transform to

postulated the rows of P were shifted version of a sinusoid with the same period. In the frequency domain,
this would correspond to a phase shift of the complex numbers in each row of the DFT. Simply summing
up the rows of DFTP might cause the complex numbers to cancel each other out, resulting in a smaller
peak at the third point of the DFT which we hope to see.

11

05 'T\ T T T e T

y=cos2'pitT)* ol

!
r N),

re){p(-().1t)D

OFTl) [/

£ { |

1 L. i .
]

Figure 7: Top: Graph of decaying sinusoid, y.

excluding the first term.

Bottom: Graph of DFT(y), once again

verify that the normalized mutual information matrix reflected the periodic structure of the
leucine zippers. Of course, the ultimate verification of our methods would be to use the PD B
database to verify that the normalized mutual information does pick out residues closest to
each other in 3-dimensional space. But unfortunately, most of our sequences used in our
analysis are not found in the PDB database. Thus, we could not provide any statistics on
the accuracy of our methods. The next step in our work would be to actually create a neural
network with a pre-processing stage, and actually verify and quantify the improvements we

made.

During our investigation of the leucine zippers family, we also discovered interesting
higher periodic orders other than the one we expected. Observe that in figure 6 the positions
of the smaller peaks (position 6, 9) correspond to exact multiples of the position of the big
peak (position 3). An interesting study would be to analyze the significance of these higher

harmonics.

5 Acknowledgements

Lastly, I would like to thank Professor Brutlag for the constructive suggestions and guidance

he provided through email.

12

6 References

Blais A, Mertz D. An introduction to neural networks.
http://gnosis.cx/publish /programming /neural networks.htm

Cover TM, Thomas JA. Elements of Information Theory. A Wiley-Interscience Publication.
New York, 1991.

Cuff JA, Barton GJ. Application of multiple sequence alignment profiles to improve protein
secondary structure prediction. Proteins 2000 Aug 15;40(3) : 502 — 11.

Rost B, Sander C. Prediction of protein secondary structure at better than 70% accuracy. J
Mol Biol 1993 Jul 20;232(2) : 584 — 99.

Przybylski D, Rost B. Alignments grow, secondary structure prediction improves. Proteins
2002 Feb 1;46(2) : 197 — 205.

Segars P. Quantitative Analysis of tRNA Sequences Using Information Theory. Biochem
218 Final Project, 2001.

Schneider T. Molecular Information Theory and the Theory of Molecular Machines.
http://www.lecb.nciferf.gov/ toms/

13

7 Appendices

7.1 Appendix 1: Family of Leucine Zippers

Z: refer to a gap in the alignment and appears in leucine zippers
of length 22 or 15.

[e N s S ' v O o o o Y o Y o Y Y oY) Y AN O Y Y s Y e s e s N Y e s e
CFE """ eXXOom@mI XX IXNO"NMmorsrmnmm=2=2n-Adm0mmmEm-HaHo0ommmmeo
T ORI HXNRIIII I I IMDMOroORNR=ZoorrQXX"xTJTaoaoa "2 MMO0m<
<~ < OO QU X" MmO X"NIJIooEmEEmEmooEmEEE xR 2O XNO |
Z=Z2ao0aoaraoa<<aOa<s<aoH<SHSergIdz=asz=sH<< aoaoaneasgH=
b=~ e B e I > T e I o B v B e I e I I > R @ B = v N i I v B @ B> = — i wo B e [e [e = v B ep B e T> SR> SR> S 5 B i B — > N> N v
Z =2 nmTmTHnH=22 XN ffFmnMmommmnm<s@Dd "I N<<SMOEHMODRNROsSsAH=2o
[e e e e e e e e e e e e o o o < e e e A e e e e e e o o o o o e
H A A AmeExXXXAAAAdAOd<< oA nnobOdmndyoo< X XOEOMOME®nEXAHE
T XNUOUOMxNoOoOxnNnmomom@mnm=a2Mmnoresm=2nno xS XnNn == e
EREODO@ODMmDmoAAmmoOmEODMERE NSO NOMmM>PTINmMNo=2 NN N<S-ooxo
TN =222 TmakRaEasaEssagraaesRaeaegaEaassSs R mEas=E2=2=2=22 X H
Z2 =20 T NHUOUOT I I I =2nNn<NaOaAXNXNUOUO@DM@DM@HOoOoom@mm@EMm®E=o@ X MmN
HH+H X X< TNoODEEHoOoOAATooooXNNEDDEDBDMHNOAIRTR
| e e e o e e o o o = N e e e R N S v e e o Y e O o o Y Y o Y)) e
HHOOXMXoOXNMTooor@MNMOMMHmOIMMHWLMAAWNPEINIIINOHPOA
nn"NNoxXxnNnXXXXXXXNT=HnaQM=203IJdnoD IEEm>=nmon e =
> - MmO MHmoOoO=E2EmOEnNDEHHRDEHIEHD "D odm=2=2s XNddom@mAA e N
Nttt HES2<<S<@®EBeENZE<SHAHPHEPETNECEEEIHIBEEDRDHSSE B =2 X
DO DO XNroOoOUOUOUH N> rrNHP>rPUOOXN>PpUO>rn=2=0DD0000@0 49X 2> 1m™
DO UMmUoUmnwnmOom@Omm@OEONC-I=Z2orrrer oA nnnninmbE AR oOx
[e e e e e e s e O N T o o Y o Y o Y Y Y D Y Y Y Y Y Y Y s s e e e e e
N NNNNN< NNNNNNNPPNMEONNXTIINIO>=r =X JINJIT NN
NNNNNN®= ENNNNNNNAXXNHNNZ=ZOZ=>PP I I NN N=2=2NMHNN
N NNNNNITDTUONNNNNNNMONONNCETOE QOO EHEFEMBMEN.ONN
N NNNNNZ=ZZ=Z=NNNNNNNXXNZ=ZNNTTITT==2=2HHH®X-<<NGS<NN
N NNNNNXUONNNNNNNMEONAXNNNI"N"NOQMOMmMooooo =N >N N
N NNNNNXXXNNNNNNNXN=EINNONO@OmOLLnL<K<~<ITONONIN
N NNNNNFCOCNNNNNNNCNPEPNNHCPEEPECECE OB N NN

[u—
N

[e o N o o o o N e e o e o e e o s o = = e A
OX XX mHm XXX mHmmeoorfrrnn<gsm@mMm@bmmEmAHO=Mmeoomo
oOomMmnmEHMmOmD o@D =Q=20nnnAHeE e dnNnnnAHnoo= >

moomTDnoM@mI<< - QEH@RDEDERN®NO N OMIME>=
IHHXHH=S2<=Z=2<sS << uLWntrrtoxIcCtoHHARHSXSI
X N =a2dJdJAmonommmnm@me e DmERsmnOn=@Do;D0omAam
QMmoo uOmeE< X Noo0oo0HdrErHIIITHETAAXNMENUONO>=
[e o o o o o e o e A e A ST T S v e o o Y o N s e
OHHPEPEPIMMmINoOOOOQnNnnNXXe e H3d XA >=>HOo
MmO ommdAHHoomMmMm®©IC == X0NUOMoO oM
MmN Nod3I@HmEHmEHEmEHEHEB=2AAHNeEoOoOOMN>DP I IHOMEOIM

a2 =2=2=2000 " 1=2HP 03 O3HHDPEZ=S= <O
onnmMmeErr 42N HMmm|EM0O0OXxX0o0oHnME XX ME>=0nMm>e
Do oD rErrON<<N@ODEODEODOHDO > IdomonniET nNno X
[s o o o N o o o < N e e o e o e e o o e e - A
IMMOHNEMON<SXIAHPE>=ONOMMNnNooIC "<=20mx xRN
o000 NXxXPTHUOOQQOQHHUORRIID=2XXXOEoXR
MmN XTI XNHHXXTOEHE>EXP>MHNToOoMmIMmT
H=Z2=2+H=Z2=2NH=2=< < < <U000H<S<STPFQ=2H<gSBHE <
Mm=z=unaoaaQaN=Zomer=r=Mdmneres QmnQMd@DoD oo n=
MmN I omm<~< QX IdMHmoOo="4H>=r> 00
[o o o o i N I = 0 B e R e I T e e e 5 oA N e e
NNNNNNN=Z=NNNNNXXXNNNUONIWNIMENININ
NNNNNNNI®WDNNNNNMNENNNINAHNAAHNI®NN
N NNNNNNMENNNNNZ=Z=NNNAHNPFNENXNIN
N NNNNNNTTNNNNNOONNNPEFN=ZNZ=ZNS<NIN
N N NNNNNPFNNNNN®TTINNNENHAHNXNIMEDNIDN
N NNNNNNONNNNNGOQQONNN<SNAHNLREN®=NIN
N NNNNNNFNNNNNFEFNNNZENNRENRENIN

15

7.2 Appendix 2: NormM

Only showing the top upper triangle, and truncating the values to

1 decimal place.

2.21.30.40.50.41.5-0.30.20.70.1-0.20.31.4-0.40.50.10.40.0 0.90.8-0.5

1.3
1

0.74.6 4.53.93.4 2.35.3

1.6 3.7 5.04.2 4.4 3.9 2.1
0.83.563.22.9 3.04.33.0 0.23.44.41.84.6 3.14.8

4.7 6.1 3.5 2.8 2.7

.5

4.94.7 4.3 4.1

1.7
1

1.6 5.1 3.14.2 4.56.14.7 0.44.6 4.94.85.6 4.0 4.9

6.0 5.5 4.7

.6

5.0 4.3 2.3 4.03.33.5 6.13.72.7 0.54.14.43.64.4 4.14.8

3.5 2.73.03.44.3 4.13.33.0 0.43.53.03.03.6 2.34.0 3.0

1.1 3.13.02.72.4 2.23.6 0.5

0.32.42.23.9 3.93.43.4

2.11.32.2 2.91.10.5 0.30.42.63.32.7 0.72.3 4.1

1.2

2.42.7 4.03.65.7 0.33.34.83.22.0 2.74.4

1.73.12.8 0.564.84.73.11.4 2.14.8 2.0

2.0

3.03.563.0 0.52.63.23.02.5 0.94.0 2.2

1.1 3.74.44.35.5 2.43.8 2.2

3.4 2.6

3.4 0.34.03.83.71.7 3.23.6 2.0

1.0

0.4 0.50.00.4-0.60.1-0.1

0.6 4.5 4.4 2.3 3.0 3.94.2

.7
.7

1
1

3.4 2.53.4 2.8

3.3 2.563.6 2.8 3.1

2.1 4.0

2.9 3.1

.9
.0

1
1

2.1 4.0

3.5

2.6

16

