Steps to Excellence: Simple Inference with
Refined Scoring of Dependency Trees

Yuan Zhang, Tao Lei, Regina Barzilay,
Tommi Jaakkola, Amir Globerson

MIT, Hebrew University



Exact Inference vs. Expressive Scoring Function

Exact
R 4

Inference

Approximate

>

Scoring

e e > :
Limited Function Expressive



Exact Inference vs. Expressive Scoring Function

Exact Dynamic
A Programming

Inference

Approximate

>

Scoring

e e > :
Limited Function Expressive



Exact Inference vs. Expressive Scoring Function

Exact Dynamic
A Programming

Inference

Reranking
Approximate -
Scoring
Limited ---------7m oLl 0 TTTTTTTmomoooos » Expressive

Function



Exact Inference vs. Expressive Scoring Function

Exact Dynamic
A Programming
Dual
Decomposition

Inference

Reranking
Approximate -
Scoring
Limited ---------7m oLl 0 TTTTTTTmomoooos » Expressive

Function



Exact Inference vs. Expressive Scoring Function

Exact Dynamic
A Programming
Dual
Decomposition our
Approach
Inference
Reranking
Approximate -
o Scoring . _
Limited -- Function Expressive

e Search in full parse space
e Easily incorporate arbitrary features



Our Approach
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— Proposal distributions:
» Gibbs
» Metropolis-Hastings
— Learning via SampleRank: satisfy constraints based on samples
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* Method: a sampling-based dependency parser
— Decoding: climb to the optimum in small steps

— Proposal distributions:
» Gibbs
» Metropolis-Hastings
— Learning via SampleRank: satisfy constraints based on samples

Average UAS(%) on CoNLL
 Advantages:

89.5
— Achieve top parsing performance 89.2
89
— Readily extendable to joint prediction 88.7
tasks 885
88

Turbo Our Model
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* Generate a sequence of samples to climb towards the optimum
in small stochastic steps

%A y any initial tree
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% q(1x,y,T,0) : proposal distr. }

ROOT I eat apples which governs the climb

l g 1x,y, T, 0)

(") ~ argmax 6 f(x,y) (Geman, 1984)
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Proposal Distribution: Gibbs Sampling

 Change one edge each time
 Sample from a conditional distribution

p(y; 1%,y ;. T,0) < exp(@{ f(x.y;,y_ )} T)

temperature scaling
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Proposal Distribution: Gibbs Sampling

 Change one edge each time
 Sample from a conditional distribution

p(y; 1%,y ;. T.0) % exp(0{f (., y Y T)

temperature scaling

» Arbitrary features in scoring function
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Proposal Distribution: Extended MH Sampling

 Change K edges each time



Proposal Distribution: Extended MH Sampling

 Change K edges each time

« Random Walk-based sampler (Wilson, 1996):

— Draw samples from the first-order distribution

* Acceptance probability with full scoring
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Random Walk-Based Sampler (Wilson 1996)

1: Initial tree 7' <— {ROOT '}
2: For each node not in the tree x, & T

3:  Random walk from X; until reach a node in T°
4:  Add path into the tree T <— T'U path
5: End for

ROOT I

new tree

* Extended MH performs better than Gibbs given constrained time

* Both reach the same result given enough time



Sampling-Based Learning Algorithm

* Generate a sequence of samples
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» Satisfy two types of constraints based on random samples
(SampleRank: Wick et al. 2011)



Sampling-Based Learning Algorithm

* Generate a sequence of samples

(0) __g(hy™) >y (') >y g(y®)) >y —...

Y

» Satisfy two types of constraints based on random samples
(SampleRank: Wick et al. 2011)

» More efficient than a standard structure learning algorithm
because full decoding is not required
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Constraints in Learning

1) Constraints between samples and the gold tree

s(x,9) - s(x, ") = Err(y'")

Score of the Score of H# errorsin
gold tree the sample  the sample

2) Constraints between neighboring samples

Markov chain: y(o) —> y(l) e[y(z) — y(3) — y(4) e
7
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sz Y is more accurate than y

)

s(x,y7)=s(x,y*) = Err(y®) = Err(y"™)

» None of the samples are necessarily the argmax



First- to Third-Order Features

e Similar features used in previous work

arc consecutive sibling grandparent
h m h m s 8 h m
head bigram tri-siblings grand-sibling
NN m NN
outer-sibling-grandchild inner-sibling-grandchild

h m gc s h S m  gc
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— POS tag consistency
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* Right branching, PP attachment, neighbors, valency, non-
projective arcs
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Joint Parsing and POS Correction

* Task:
Philips s a company /m
NNS VBZ DT NN Philips 1s a company

NNP VBZ DT NN

 Qur approach: simple extension of our parsing model

- Sample new heads Y;and POS tags tj simultaneously

p(y;.t;1x,y .t ;T,0)cexp@- f(x,y;,y_;.t;.t ;)/T)



Word:
POS tag:

Example

AN

ROOT 1
ROOT  PRON
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VB

apples
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Example

AN

Word: ROOT b eat apples
POStag: ROOT PRON VB NN

POS: NN — NNS
Head: I — eat

%

Word: ROOT I eat apples
POStag: ROOT PRON VB | NNS




Experimental Setup for Parsing

* Dataset
— CoNLL datasets with 14 languages

e Evaluation Metric
— UAS: Unlabeled Attachment Score

* Pruning

— Prune away unlikely candidate heads based on a first-order model
trained by the same method
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Comparison with Turbo: Impact of Feature Sets
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The Effect of Constraints in Learning

90.0 -

89.0

89.0 - 38.6

UAS(%)
00
0o
o

87.3

87.0 -

86.0 -
Gold Neighbor Both

* Gold: constraints between samples and gold trees
* Neighbor: constraints between neighboring samples



Impact of Different Proposal Distributions

Decoding Speed on Arabic
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Experimental Setup for Joint Prediction Task

* Arabic dataset in SPMRL 2013
— Train: gold and predicted POS tags, gold trees

— Test: predicted POS tags

e Evaluation Metric
— UAS: Unlabeled Attachment Score
— POS tagging accuracy

 POS tags candidate list

— Generate the POS candidate list for each word based on the confusion
matrix of the training set



Results on Joint Parsing and POS Correction
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Results on Joint Parsing and POS Correction

UAS(%) on SPMRL Arabic dataset
89.0 -

88.0 -

87.0 | ot e

86.0 | |
IMS-Single  w/o Correction w/ Correction



Conclusion

* Asimple sampling-based parser that handles arbitrary
features:
— OQutperform the state-of-the-art methods on the CoNLL dataset

* Asimple and effective extension for joint parsing and
corrective POS tagging

— Outperform the best single system on the Arabic dataset in SPMRL
2013

Source code available at:
http://groups.csail.mit.edu/rbg/code/global/acl2014
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