Steps to Excellence: Simple Inference with
Refined Scoring of Dependency Trees

Yuan Zhang, Tao Lei, Regina Barzilay,
Tommi Jaakkola, Amir Globerson

MIT, Hebrew University

Exact Inference vs. Expressive Scoring Function

Exact
R 4

Inference

Approximate

>

Scoring

e e > :
Limited Function Expressive

Exact Inference vs. Expressive Scoring Function

Exact Dynamic
A Programming

Inference

Approximate

>

Scoring

e e > :
Limited Function Expressive

Exact Inference vs. Expressive Scoring Function

Exact Dynamic
A Programming

Inference

Reranking
Approximate -
Scoring
Limited ---------7m oLl 0 TTTTTTTmomoooos » Expressive

Function

Exact Inference vs. Expressive Scoring Function

Exact Dynamic
A Programming
Dual
Decomposition

Inference

Reranking
Approximate -
Scoring
Limited ---------7m oLl 0 TTTTTTTmomoooos » Expressive

Function

Exact Inference vs. Expressive Scoring Function

Exact Dynamic
A Programming
Dual
Decomposition our
Approach
Inference
Reranking
Approximate -
o Scoring . _
Limited -- Function Expressive

e Search in full parse space
e Easily incorporate arbitrary features

Our Approach

* Method: a sampling-based dependency parser
— Decoding: climb to the optimum in small steps

— Proposal distributions:
» Gibbs
» Metropolis-Hastings
— Learning via SampleRank: satisfy constraints based on samples

Our Approach

* Method: a sampling-based dependency parser
— Decoding: climb to the optimum in small steps

— Proposal distributions:
» Gibbs
» Metropolis-Hastings
— Learning via SampleRank: satisfy constraints based on samples

Average UAS(%) on CoNLL
 Advantages:

89.5
— Achieve top parsing performance 89.2
89
— Readily extendable to joint prediction 88.7
tasks 885
88

Turbo Our Model

Sampling-Based Decoding Algorithm

* Generate a sequence of samples to climb towards the optimum
in small stochastic steps

0) .
Yy -- anyinitial tree
ROOT I eat apples

Sampling-Based Decoding Algorithm

* Generate a sequence of samples to climb towards the optimum
in small stochastic steps

y(o) -- any initial tree

% (1) q(-1x,y,T,0) : proposal distr.
ROOT I eat apples which governs the climb

l g 1x,y, T, 0)

ROOT I eat apples

Sampling-Based Decoding Algorithm

* Generate a sequence of samples to climb towards the optimum
in small stochastic steps

%A y any initial tree

ROOT I eat apples
% q(1x,y,T,0) : proposal distr. }

ROOT I eat apples which governs the climb

l g 1x,y, T, 0)

(") ~ argmax 6 f(x,y) (Geman, 1984)
y

ROOT I eat apples y

Proposal Distribution: Gibbs Sampling

 Change one edge each time
 Sample from a conditional distribution

p(y;1x,y_;,T,0)xexp(0- f(x,y;,y_;)/T)

Proposal Distribution: Gibbs Sampling

 Change one edge each time
 Sample from a conditional distribution

p(y;1x,y_;,T,0)xexp(0- f(x,y;,y_)IT)

temperature scaling

Proposal Distribution: Gibbs Sampling

 Change one edge each time
 Sample from a conditional distribution

p(y; 1%,y ;. T.0) % exp(0{f (., y Y T)

temperature scaling

» Arbitrary features in scoring function

Proposal Distribution: Gibbs Sampling

 Change one edge each time
 Sample from a conditional distribution

p(y; 1%,y ;. T.0) % exp(0{f (., y Y T)

temperature scaling

» Arbitrary features in scoring function

TN

ROOT I like dogs and cats

Proposal Distribution: Gibbs Sampling

 Change one edge each time
 Sample from a conditional distribution

p(y; 1%,y ;. T.0) % exp(0{f (., y Y T)

temperature scaling

» Arbitrary features in scoring function

TN

ROOT I like dogs a%d cats

“p=00" “{p=00"

Proposal Distribution: Gibbs Sampling

 Change one edge each time
 Sample from a conditional distribution

p(y; 1%,y ;. T.0) % exp(0{f (., y Y T)

temperature scaling

» Arbitrary features in scoring function

Ip=0.5}._
- ~
s ~
s ~
4 ~
s N
4 Q
4

ROOT I like dogs a%d cats
“p=00r" “{p=00["

Proposal Distribution: Gibbs Sampling

 Change one edge each time
 Sample from a conditional distribution

p(y; 1%,y ;. T.0) % exp(0{f (., y Y T)

temperature scaling

» Arbitrary features in scoring function

_-1p=031__
/At AP=03}-0
ROOT I like dogs and cats

. ™
p=00[Tp

00"

Proposal Distribution: Gibbs Sampling

 Change one edge each time
 Sample from a conditional distribution

p(y; 1%,y ;. T,0) < exp(@{ f(x.y;,y_)} T)

temperature scaling

» Arbitrary features in scoring function

-p=03L.
/At AP=03}-0
ROOT I like dogs and cats
AN \\\ lm\\ /’/,
p=00r 1p=00

SS

~ -
~ -

~o -

S~ -

~ -~ -
“““ — e
.

Proposal Distribution: Gibbs Sampling

 Change one edge each time
 Sample from a conditional distribution

p(y; 1%,y ;. T.0) % exp(0{f (., y Y T)

temperature scaling

» Arbitrary features in scoring function

-1p=03}__
/A/ p =N\
ROOT I like dogs a%d cats
A “p=00r" “{p=00["

SS

~ -
~ -

~o -

S~ -

~ -~ -
“““ — L ——
.

Proposal Distribution: Gibbs Sampling

 Change one edge each time
 Sample from a conditional distribution

p(y; 1%,y ;. T.0) % exp(0{f (., y Y T)

temperature scaling

» Arbitrary features in scoring function

ROOT I like dogs and cats

Proposal Distribution: Extended MH Sampling

 Change K edges each time

Proposal Distribution: Extended MH Sampling

 Change K edges each time

« Random Walk-based sampler (Wilson, 1996):

— Draw samples from the first-order distribution

* Acceptance probability with full scoring

Random Walk-Based Sampler (Wilson 1996)

1: Initial tree T <— {ROOT}

2: For each node not in the tree x, & T

3: Random walk from X; until reach a node in T°
4: Add path into the tree T <— T'U path
5: End for

original tree

ROOT I

Random Walk-Based Sampler (Wilson 1996)

1: Initial tree T <— {ROOT?}

2: For each node not in the tree x, & T

3: Random walk from X; until reach a node in T°
4: Add path into the tree T <— T'U path
5: End for

original tree

PN

ROOT I like dogs and cats

Random Walk-Based Sampler (Wilson 1996)

1: Initial tree T <— {ROOT}

2: For each node not in the tree x, & T

3: Random walk from X; until reach a node in T°
4: Add path into the tree T <— T'U path

5: End for

walk path:

PN

ROOT I like dogs and cats

Random Walk-Based Sampler (Wilson 1996)

1: Initial tree T <— {ROOT}

2: For each node not in the tree x, & T

3: Random walk from X, until reach a node in T
4: Add path into the tree T <— T'U path

5: End for

walk path:

PN

ROOT I like dogs and cats

Random Walk-Based Sampler (Wilson 1996)

1: Initial tree T <— {ROOT}

2: For each node not in the tree x, & T

3: Random walk from X, until reach a node in T
4: Add path into the tree T <— T'U path

5: End for

walk path: I

PN

ROOT I like dogs and cats

Random Walk-Based Sampler (Wilson 1996)

1: Initial tree T <— {ROOT?}

2: For each node not in the tree x, & T

3: Random walk from X, until reach a node in T
4: Add path into the tree T <— T'U path
5: End for

walk path: 1 — like

IO~

ROOT I like dogs and cats

Random Walk-Based Sampler (Wilson 1996)

1: Initial tree T <— {ROOT?}

2: For each node not in the tree x, & T

3: Random walk from X, until reach a node in T
4: Add path into the tree T <— T'U path
5: End for

walk path: I — like = ROOT

ROOT I like dogs and cats

Random Walk-Based Sampler (Wilson 1996)

1: Initial tree T <— {ROOT?}

2: For each node not in the tree x, & T

3: Random walk from X; until reach a node in T°
4: Add path into the tree T <— T U path
5: End for

walk path: I — like = ROOT

ROOT I like dogs and cats

Random Walk-Based Sampler (Wilson 1996)

1: Initial tree T <— {ROOT}

2: For each node not in the tree x, & T

3: Random walk from X; until reach a node in T°
4: Add path into the tree T <— T'U path
5: End for

walk path: dogs

ROOT I like dogs and cats

Random Walk-Based Sampler (Wilson 1996)

1: Initial tree T <— {ROOT}

2: For each node not in the tree x, & T

3: Random walk from X, until reach a node in T
4: Add path into the tree T <— T'U path
5: End for

walk path: dogs — and

O T

ROOT I like dogs and cats

Random Walk-Based Sampler (Wilson 1996)

1: Initial tree T <— {ROOT}

2: For each node not in the tree x, & T

3: Random walk from X, until reach a node in T
4: Add path into the tree T <— T'U path
5: End for

walk path: dogs — and — like

Wts

ROOT I

Random Walk-Based Sampler (Wilson 1996)

1: Initial tree T <— {ROOT}

2: For each node not in the tree x, & T

3: Random walk from X; until reach a node in T°
4: Add path into the tree T <— T U path
5: End for

walk path: dogs — and — like

Wts

ROOT I

Random Walk-Based Sampler (Wilson 1996)

1: Initial tree T <— {ROOT}

2: For each node not in the tree x, & T

3: Random walk from X; until reach a node in T°
4: Add path into the tree T <— T'U path
5: End for

walk path: cats — and

ROOT I

Random Walk-Based Sampler (Wilson 1996)

1: Initial tree T <— {ROOT}

2: For each node not in the tree x, & T

3: Random walk from X, until reach a node in T
4: Add path into the tree T <— T'U path
5: End for

walk path: cats — and

ROOT I

Random Walk-Based Sampler (Wilson 1996)

1: Initial tree T <— {ROOT}

2: For each node not in the tree x, & T

3: Random walk from X; until reach a node in T°
4: Add path into the tree T <— T U path
5: End for

walk path: cats — and

ROOT I

Random Walk-Based Sampler (Wilson 1996)

1: Initial tree T <— {ROOT}

2: For each node not in the tree x, & T

3: Random walk from X; until reach a node in T°
4: Add path into the tree T <— T'U path
5: End for

new tree

ROOT I

Random Walk-Based Sampler (Wilson 1996)

1: Initial tree 7' <— {ROOT '}
2: For each node not in the tree x, & T

3: Random walk from X; until reach a node in T°
4: Add path into the tree T <— T'U path
5: End for

ROOT I

new tree

* Extended MH performs better than Gibbs given constrained time

* Both reach the same result given enough time

Sampling-Based Learning Algorithm

* Generate a sequence of samples

(1)) (2))

0) gy

y >y(1)

q(ly >)7(2) q(ly

>y(3)%---

» Satisfy two types of constraints based on random samples
(SampleRank: Wick et al. 2011)

Sampling-Based Learning Algorithm

* Generate a sequence of samples

(0) __g(hy™) >y (') >y g(y®)) >y —...

Y

» Satisfy two types of constraints based on random samples
(SampleRank: Wick et al. 2011)

» More efficient than a standard structure learning algorithm
because full decoding is not required

Constraints in Learning

1) Constraints between samples and the gold tree

s(x,9) - s(x, ") = Err(y'")

Score of the Score of H# errorsin
gold tree the sample the sample

Constraints in Learning

1) Constraints between samples and the gold tree

s(x,9) - s(x, ") = Err(y'")

Score of the Score of H# errorsin
gold tree the sample the sample

2) Constraints between neighboring samples

Markov chain: y(o) —> y(l) e[y(z) — y(3) — y(4) e
7
. 3) . (2

Llf Y is more accurate than y

)

s(x,y) = s(x,y?) = Err(y®) - Err(y"?)

Constraints in Learning

1) Constraints between samples and the gold tree

s(x,9) - s(x, ") = Err(y'")

Score of the Score of H# errorsin
gold tree the sample the sample

2) Constraints between neighboring samples

Markov chain: y(o) —> y(l) e[y(z) — y(3) — y(4) e
7
. 3) . (2

sz Y is more accurate than y

)

s(x,y7)=s(x,y*) = Err(y®) = Err(y"™)

» None of the samples are necessarily the argmax

First- to Third-Order Features

e Similar features used in previous work

arc consecutive sibling grandparent
h m h m s 8 h m
head bigram tri-siblings grand-sibling
NN m NN
outer-sibling-grandchild inner-sibling-grandchild

h m gc s h S m gc

Global Features

* Conjuncts consistency
— POS tag consistency

NN yF N K

NOUN and NOUN NOUN and VERB

Global Features

* Conjuncts consistency
— POS tag consistency

NN N K

NOUN and NOUN NOUN and VERB

— Span length consistency

SN YO VIR

NOUN and NOUN NOUN and NQUN

/\

Global Features

* Conjuncts consistency
— POS tag consistency

NN YR VR 4

NOUN and NOUN NOUN and VERB

— Span length consistency

SN IRV =4

NOUN and NOUN NOUN and NQUN

/\

* Right branching, PP attachment, neighbors, valency, non-
projective arcs

Joint Parsing and POS Correction

* Task:
Philips s a company y(’\\\//////;::::z§\
NNS VBZ DT NN Philips 1s a company

NNP VBZ DT NN

Joint Parsing and POS Correction

* Task:
Philips s a company /m
NNS VBZ DT NN Philips 1s a company

NNP VBZ DT NN

 Qur approach: simple extension of our parsing model

- Sample new heads Y;and POS tags tj simultaneously

p(y;.t;1x,y .t ;T,0)cexp@- f(x,y;,y_;.t;.t ;)/T)

Word:
POS tag:

Example

AN

ROOT 1
ROOT PRON

eat
VB

apples
NN

Example

AN

Word: ROOT b eat apples
POStag: ROOT PRON VB NN

POS: NN — NNS
Head: I — eat

%

Word: ROOT I eat apples
POStag: ROOT PRON VB | NNS

Experimental Setup for Parsing

* Dataset
— CoNLL datasets with 14 languages

e Evaluation Metric
— UAS: Unlabeled Attachment Score

* Pruning

— Prune away unlikely candidate heads based on a first-order model
trained by the same method

Results on CoNLL Dataset

89.2

88.7

87.9

Reranking Turbo Our Model

Results on CoNLL Dataset

87.9

Reranking Turbo Our Model

Results on CoNLL Dataset

Reranking Turbo Our Model

Comparison with Turbo: Impact of Feature Sets

89.5 -

89.2

89.0 -

88.8
88.7

UAS(%)

88.0 -

Turbo Our Modelw/ Our Model w/
Turbo Feat. Full Feat.

The Effect of Constraints in Learning

90.0 -

89.0

89.0 - 38.6

UAS(%)
00
0o
o

87.3

87.0 -

86.0 -
Gold Neighbor Both

* Gold: constraints between samples and gold trees
* Neighbor: constraints between neighboring samples

Impact of Different Proposal Distributions

Decoding Speed on Arabic

2.658% 10
2.656 .
(O]
S 2.654+ i
(@)
N
2.652} _]
—— Gibbs
2 651 — Extended MH | |
0 0.05 0.1 0.15 0.2

Seconds per token

* We decode in different speed by controlling converge iterations
 Both methods achieve the same result given enough time
e Extended MH sampler performs better given constrained time

Impact of Different Proposal Distributions

Decoding Speed on Arabic

2.658% 19
D 656 - B —— :
o
S 2.654 i
O
B
2.652" _ :
. — Gibbs
2 651 — Extended MH | |
0 0.05 0.1 0.15 0.2

Seconds per token

* We decode in different speed by controlling converge iterations
 Both methods achieve the same result given enough time
e Extended MH sampler performs better given constrained time

Impact of Different Proposal Distributions

Decoding Speed on Arabic

2.658%19
2 656} B —— :
()
S 2.654+ i
(@)
o
2 652} _ |
! , —— Gibbs
2 65} —— Extended MH |
0 0.05 0.1 0.15 0.2

Seconds per token

* We decode in different speed by controlling converge iterations
 Both methods achieve the same result given enough time
e Extended MH sampler performs better given constrained time

Experimental Setup for Joint Prediction Task

* Arabic dataset in SPMRL 2013
— Train: gold and predicted POS tags, gold trees

— Test: predicted POS tags

e Evaluation Metric
— UAS: Unlabeled Attachment Score
— POS tagging accuracy

 POS tags candidate list

— Generate the POS candidate list for each word based on the confusion
matrix of the training set

Results on Joint Parsing and POS Correction

POS Accuracy on SPMRL Arabic dataset
98.0

97.0 - 96.8

96.0 -
Predicted Correction

Results on Joint Parsing and POS Correction

UAS(%) on SPMRL Arabic dataset
89.0 -

88.0 -

87.0 | ot e

86.0 | |
IMS-Single w/o Correction w/ Correction

Conclusion

* Asimple sampling-based parser that handles arbitrary
features:
— OQutperform the state-of-the-art methods on the CoNLL dataset

* Asimple and effective extension for joint parsing and
corrective POS tagging

— Outperform the best single system on the Arabic dataset in SPMRL
2013

Source code available at:
http://groups.csail.mit.edu/rbg/code/global/acl2014

Thank Youl!

