Steps to Excellence: Simple Inference with Refined Scoring of Dependency Trees

Yuan Zhang, Tao Lei, Regina Barzilay, Tommi Jaakkola, Amir Globerson

MIT, Hebrew University

- Search in full parse space
- Easily incorporate arbitrary features

Our Approach

- Method: a sampling-based dependency parser
 - Decoding: climb to the optimum in small steps
 - Proposal distributions:
 - > Gibbs
 - Metropolis-Hastings
 - Learning via SampleRank: satisfy constraints based on samples

Our Approach

- Method: a sampling-based dependency parser
 - Decoding: climb to the optimum in small steps
 - Proposal distributions:
 - Gibbs
 - Metropolis-Hastings
 - Learning via SampleRank: satisfy constraints based on samples
- Advantages:
 - Achieve top parsing performance
 - Readily extendable to joint prediction tasks

Sampling-Based Decoding Algorithm

Generate a sequence of samples to climb towards the optimum in small stochastic steps

Sampling-Based Decoding Algorithm

Generate a sequence of samples to climb towards the optimum in small stochastic steps

Sampling-Based Decoding Algorithm

Generate a sequence of samples to climb towards the optimum in small stochastic steps

- Change one edge each time
- Sample from a conditional distribution

$$p(y_j \mid x, y_{-j}, T, \theta) \propto \exp(\theta \cdot f(x, y_j, y_{-j}) / T)$$

- Change one edge each time
- Sample from a conditional distribution

$$p(y_j \mid x, y_{-j}, T, \theta) \propto \exp(\theta \cdot f(x, y_j, y_{-j}) / T)$$
 temperature scaling

- Change one edge each time
- Sample from a conditional distribution

$$p(y_j \mid x, y_{-j}, T, \theta) \propto \exp(\theta \left\{ f(x, y_j, y_{-j}) \middle/ T \right)$$

temperature scaling

- Change one edge each time
- Sample from a conditional distribution

$$p(y_j \mid x, y_{-j}, T, \theta) \propto \exp(\theta \left\{ f(x, y_j, y_{-j}) \mid T \right\}$$
temperature scaling

- Change one edge each time
- Sample from a conditional distribution

$$p(y_j \mid x, y_{-j}, T, \theta) \propto \exp(\theta \left\{ f(x, y_j, y_{-j}) \mid T \right\}$$
temperature scaling

- Change one edge each time
- Sample from a conditional distribution

$$p(y_j \mid x, y_{-j}, T, \theta) \propto \exp(\theta \left\{ f(x, y_j, y_{-j}) \mid T \right\}$$
temperature scaling

- Change one edge each time
- Sample from a conditional distribution

$$p(y_j \mid x, y_{-j}, T, \theta) \propto \exp(\theta \left\{ f(x, y_j, y_{-j}) \mid T \right\}$$
temperature scaling

- Change one edge each time
- Sample from a conditional distribution

$$p(y_j \mid x, y_{-j}, T, \theta) \propto \exp(\theta \left\{ f(x, y_j, y_{-j}) \mid T \right\}$$
temperature scaling

- Change one edge each time
- Sample from a conditional distribution

$$p(y_j \mid x, y_{-j}, T, \theta) \propto \exp(\theta \left(f(x, y_j, y_{-j}) \right) T)$$
temperature scaling

- Change one edge each time
- Sample from a conditional distribution

$$p(y_j \mid x, y_{-j}, T, \theta) \propto \exp(\theta \left\{ f(x, y_j, y_{-j}) \mid T \right\}$$
temperature scaling

Proposal Distribution: Extended MH Sampling

Change K edges each time

Proposal Distribution: Extended MH Sampling

- Change K edges each time
- Random Walk-based sampler (Wilson, 1996):
 - Draw samples from the first-order distribution
- Acceptance probability with full scoring

- 1: Initial tree $T \leftarrow \{ROOT\}$
- 2: For each node not in the tree $x_i \notin T$
- 3: Random walk from x_i until reach a node in T
- 4: Add path into the tree $T \leftarrow T \cup path$
- 5: End for

- 1: Initial tree $T \leftarrow \{ROOT\}$
- 2: For each node not in the tree $x_i \notin T$
- 3: Random walk from x_i until reach a node in T
- 4: Add path into the tree $T \leftarrow T \cup path$
- 5: End for

original tree

- 1: Initial tree $T \leftarrow \{ROOT\}$
- 2: For each node not in the tree $x_i \notin T$
- 3: Random walk from x_i until reach a node in T
- 4: Add path into the tree $T \leftarrow T \cup path$
- 5: End for

walk path:

- 1: Initial tree $T \leftarrow \{ROOT\}$
- 2: For each node not in the tree $x_i \notin T$
- 3: Random walk from x_i until reach a node in T
- 4: Add path into the tree $T \leftarrow T \cup path$
- 5: End for

walk path:

- 1: Initial tree $T \leftarrow \{ROOT\}$
- 2: For each node not in the tree $x_i \notin T$
- 3: Random walk from x_i until reach a node in T
- 4: Add path into the tree $T \leftarrow T \cup path$
- 5: End for

walk path: I

- 1: Initial tree $T \leftarrow \{ROOT\}$
- 2: For each node not in the tree $x_i \notin T$
- 3: Random walk from x_i until reach a node in T
- 4: Add path into the tree $T \leftarrow T \cup path$
- 5: End for

walk path: $I \rightarrow like$

- 1: Initial tree $T \leftarrow \{ROOT\}$
- 2: For each node not in the tree $x_i \notin T$
- 3: Random walk from x_i until reach a node in T
- 4: Add path into the tree $T \leftarrow T \cup path$
- 5: End for

walk path: $I \rightarrow like \rightarrow ROOT$

- 1: Initial tree $T \leftarrow \{ROOT\}$
- 2: For each node not in the tree $x_i \notin T$
- 3: Random walk from x_i until reach a node in T
- 4: Add path into the tree $T \leftarrow T \cup path$
- 5: End for

walk path: $I \rightarrow like \rightarrow ROOT$

- 1: Initial tree $T \leftarrow \{ROOT\}$
- 2: For each node not in the tree $x_i \notin T$
- 3: Random walk from x_i until reach a node in T
- 4: Add path into the tree $T \leftarrow T \cup path$
- 5: End for

walk path: dogs

- 1: Initial tree $T \leftarrow \{ROOT\}$
- 2: For each node not in the tree $x_i \notin T$
- 3: Random walk from x_i until reach a node in T
- 4: Add path into the tree $T \leftarrow T \cup path$
- 5: End for

walk path: $dogs \rightarrow and$

- 1: Initial tree $T \leftarrow \{ROOT\}$
- 2: For each node not in the tree $x_i \notin T$
- 3: Random walk from x_i until reach a node in T
- 4: Add path into the tree $T \leftarrow T \cup path$
- 5: End for

walk path: $dogs \rightarrow and \rightarrow like$

- 1: Initial tree $T \leftarrow \{ROOT\}$
- 2: For each node not in the tree $x_i \notin T$
- 3: Random walk from x_i until reach a node in T
- 4: Add path into the tree $T \leftarrow T \cup path$
- 5: End for

walk path: $dogs \rightarrow and \rightarrow like$

- 1: Initial tree $T \leftarrow \{ROOT\}$
- 2: For each node not in the tree $x_i \notin T$
- 3: Random walk from x_i until reach a node in T
- 4: Add path into the tree $T \leftarrow T \cup path$
- 5: End for

walk path: $cats \rightarrow and$

- 1: Initial tree $T \leftarrow \{ROOT\}$
- 2: For each node not in the tree $x_i \notin T$
- 3: Random walk from x_i until reach a node in T
- 4: Add path into the tree $T \leftarrow T \cup path$
- 5: End for

walk path: $cats \rightarrow and$

- 1: Initial tree $T \leftarrow \{ROOT\}$
- 2: For each node not in the tree $x_i \notin T$
- 3: Random walk from x_i until reach a node in T
- 4: Add path into the tree $T \leftarrow T \cup path$
- 5: End for

walk path: $cats \rightarrow and$

- 1: Initial tree $T \leftarrow \{ROOT\}$
- 2: For each node not in the tree $x_i \notin T$
- 3: Random walk from x_i until reach a node in T
- 4: Add path into the tree $T \leftarrow T \cup path$
- 5: End for

new tree

- 1: Initial tree $T \leftarrow \{ROOT\}$
- 2: For each node not in the tree $x_i \notin T$
- 3: Random walk from x_i until reach a node in T
- 4: Add path into the tree $T \leftarrow T \cup path$
- 5: End for

new tree

- Extended MH performs better than Gibbs given constrained time
- Both reach the same result given enough time

Sampling-Based Learning Algorithm

Generate a sequence of samples

$$y^{(0)} \xrightarrow{q(\cdot|y^{(0)})} y^{(1)} \xrightarrow{q(\cdot|y^{(1)})} y^{(2)} \xrightarrow{q(\cdot|y^{(2)})} y^{(3)} \xrightarrow{} \cdots$$

➤ Satisfy two types of constraints based on random samples (SampleRank: Wick et al. 2011)

Sampling-Based Learning Algorithm

Generate a sequence of samples

$$y^{(0)} \xrightarrow{q(\cdot|y^{(0)})} y^{(1)} \xrightarrow{q(\cdot|y^{(1)})} y^{(2)} \xrightarrow{q(\cdot|y^{(2)})} y^{(3)} \xrightarrow{} \cdots$$

- > Satisfy two types of constraints based on random samples (SampleRank: Wick et al. 2011)
- ➤ More efficient than a standard structure learning algorithm because full decoding is not required

Constraints in Learning

1) Constraints between samples and the gold tree

$$s(x, \hat{y}) - s(x, y^{(t)}) \ge Err(y^{(t)})$$

Score of the Score of # errors in gold tree the sample the sample

Constraints in Learning

1) Constraints between samples and the gold tree

$$s(x, \hat{y}) - s(x, y^{(t)}) \ge Err(y^{(t)})$$

Score of the Score of # errors in gold tree the sample the sample

2) Constraints between neighboring samples

Markov chain:
$$y^{(0)} \rightarrow y^{(1)} \rightarrow y^{(2)} \rightarrow y^{(3)} \rightarrow y^{(4)} \cdots$$

if $y^{(3)}$ is more accurate than $y^{(2)}$

$$s(x, y^{(3)}) - s(x, y^{(2)}) \ge Err(y^{(2)}) - Err(y^{(3)})$$

Constraints in Learning

1) Constraints between samples and the gold tree

$$s(x, \hat{y}) - s(x, y^{(t)}) \ge Err(y^{(t)})$$

Score of the Score of # errors in gold tree the sample the sample

2) Constraints between neighboring samples

Markov chain:
$$y^{(0)} \rightarrow y^{(1)} \rightarrow y^{(2)} \rightarrow y^{(3)} \rightarrow y^{(4)} \cdots$$

if $y^{(3)}$ is more accurate than $y^{(2)}$

$$s(x, y^{(3)}) - s(x, y^{(2)}) \ge Err(y^{(2)}) - Err(y^{(3)})$$

None of the samples are necessarily the argmax

First- to Third-Order Features

Similar features used in previous work

outer-sibling-grandchild

inner-sibling-grandchild

Global Features

- Conjuncts consistency
 - POS tag consistency

Global Features

- Conjuncts consistency
 - POS tag consistency

Span length consistency

Global Features

- Conjuncts consistency
 - POS tag consistency

Span length consistency

 Right branching, PP attachment, neighbors, valency, nonprojective arcs

Joint Parsing and POS Correction

• Task:

Joint Parsing and POS Correction

Task:

- Our approach: simple extension of our parsing model
 - Sample new heads y_j and POS tags t_j simultaneously

$$p(y_j, t_j | x, y_{-j}, t_{-j}T, \theta) \propto \exp(\theta \cdot f(x, y_j, y_{-j}, t_j, t_{-j}) / T)$$

Example

Example

Experimental Setup for Parsing

- Dataset
 - CoNLL datasets with 14 languages
- Evaluation Metric
 - UAS: Unlabeled Attachment Score
- Pruning
 - Prune away unlikely candidate heads based on a first-order model trained by the same method

Results on CoNLL Dataset

Results on CoNLL Dataset

Results on CoNLL Dataset

Comparison with Turbo: Impact of Feature Sets

The Effect of Constraints in Learning

- Gold: constraints between samples and gold trees
- Neighbor: constraints between neighboring samples

Impact of Different Proposal Distributions

- We decode in different speed by controlling converge iterations
- Both methods achieve the same result given enough time
- Extended MH sampler performs better given constrained time

Impact of Different Proposal Distributions

- We decode in different speed by controlling converge iterations
- Both methods achieve the same result given enough time
- Extended MH sampler performs better given constrained time

Impact of Different Proposal Distributions

- We decode in different speed by controlling converge iterations
- Both methods achieve the same result given enough time
- Extended MH sampler performs better given constrained time

Experimental Setup for Joint Prediction Task

- Arabic dataset in SPMRL 2013
 - Train: gold and predicted POS tags, gold trees
 - Test: predicted POS tags
- Evaluation Metric
 - UAS: Unlabeled Attachment Score
 - POS tagging accuracy
- POS tags candidate list
 - Generate the POS candidate list for each word based on the confusion matrix of the training set

Results on Joint Parsing and POS Correction

Results on Joint Parsing and POS Correction

Conclusion

- A simple sampling-based parser that handles arbitrary features:
 - Outperform the state-of-the-art methods on the CoNLL dataset
- A simple and effective extension for joint parsing and corrective POS tagging
 - Outperform the best single system on the Arabic dataset in SPMRL
 2013

Source code available at:

http://groups.csail.mit.edu/rbg/code/global/acl2014

Thank You!