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Parsing Complexity

* High-order parsing is NP-hard (McDonald et al., 2006)
* Hypothesis: parsing is easy on average

 Many NP-hard problems are easy on average
— MAX-SAT (Resende et al., 1997)
— Set cover (Hochbaum, 1982)



Parsing Complexity

* High-order parsing is NP-hard (McDonald et al., 2006)
* Hypothesis: parsing is easy on average

 Many NP-hard problems are easy on average
— MAX-SAT (Resende et al., 1997)
— Set cover (Hochbaum, 1982)

We show
* Analysis on average parsing complexity
* Asimple inference algorithm based on the analysis
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Core ldea

e Climb to the optimal tree in a few small greedy steps

Randomized Hill-climbing

Fork=1to K

1) Randomly sample a dependency tree

2) Greedily improve the tree one edge at a time

3) Repeat (2) until converge

Select the tree with the highest score



Core ldea

e Climb to the optimal tree in a few small greedy steps

Randomized Hill-climbing

Fork=1to K

1) Randomly sample a dependency tree
2) Greedily improve the tree one edge at a time

3) Repeat (2) until converge

Select the tree with the highest score

That's it!
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It Works!

88.73%

89.44%

Parsing Performance on CoNLL Dataset
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Why Greedy Has a Chance to Work

ROOT

apple ][ today ]
3
y(T)

Reachability: transforming any tree to any other tree
* maintaining the structure a valid tree at any point

* using as few as d steps (d : head differences/hamming distance)
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Greedy Hill-climbing
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(T)

y increase S(x,y") y

Arbitrary features in the scoring function
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Challenge: Local Optimum
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Hill-climbing with Restarts

Random y(()) y(T)
(Zzalj:iizfr:) Hill-climbing

Overcome local optima via restarts
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Learning Algorithm

* Follow common max-margin framework

VyeT(x) Sxy)=zSC,y+ly-yl-§

= y isthe gold tree

* Adopt passive-aggressive online learning framework (Crammer et
al. 2006)

e Decode with our randomized greedy algorithm
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Search Space Complexity: First-order

=~ 2 billion trees

10 words

< 512 local optima
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Search Space Complexity: First-order

Theorem: For any first-order scoring function:
* there are at most 2" locally optimal trees

* this upper bound is tight
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Search Space Complexity: First-order

Theorem: For any first-order scoring function:
e there are at most 2"! locally optimal trees

* this upper bound is tight

2-1is still a lot, but it is the worst case

What about the average case?



Algorithm for Counting Local Optima

——
/I’OOZL’_\ 10 9
9 ZO\A\ /—30\

\ saw
John / \ 0 Mary
30

- —



Algorithm for Counting Local Optima

The method is based on Chu-Liu-Edmonds algorithm

root 10 9
20— — 30
? saw \
John / Mary
- 30 0

* Select the best heads independently



Algorithm for Counting Local Optima

* Contract the cycle and recursively count the local optima

» Any local optimum exactly reassigns one edge in the cycle



Empirical Results: First-order

How many local optima in real data?

# Optima on English Dataset

% sentences
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Empirical Results: First-order

How many local optima in real data?

# Optima on English Dataset
2000

% sentences

50%

70%

90%
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Empirical Results: First-order

Does the hill-climbing find the argmax?

Finding Global Optimum on English



Empirical Results: First-order

Does the hill-climbing find the argmax?

Finding Global Optimum on English

Len. <15 Len. > 15
100% 99.3%

Easy search space leads to successful decoding



Empirical Results: High-order

Does the hill-climbing find the argmax?

Comparison on English Given DD Cert.

Dual decomposition % Certificate
(Koo et al., 2010) 94.5%
Given a certificate Spb = Shc

by DD 99.8%
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Empirical Results: High-order

Does the hill-climbing find the argmax?

Overall Comparison on English

Spp = Shc
98.7%

Spp < Shc Spp > Shc
1.0% 0.3%



Experimental Setup

Datasets
= 14 languages in CoNLL 2006 & 2008 shared tasks

Features

= Up to 3'-order (three arcs) features used in MST/
Turbo parsers

= Global features used in re-ranking

Implementation

= Adaptive restarting strategy with K =300
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Baselines and Evaluation Measure

Baselines:

= Turbo Parser: Dual Decomposition with 3rd-order
features (Martins et al., 2013)

= Sampling-based Parser: MCMC sampling with global
features (Zhang et al., 2014)

Evaluation Measure:

= Unlabeled Attachment Score (UAS), without punctuations
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88.66%
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Comparing with Baselines

Global

Features

Turbo (DD) 88.73%

Our 3rd 88.66%

Sampling-based
(MCMC)

89.23%

Our Full 89.24%
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Impact of Initialization

88.0 88.1

Uniform Rnd-1st
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Impact of Restarts

85.4

N

88.1

No Restart

300 Restarts
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Convergence Property

Convergence Analysis on English

1 L
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# Restarts

* Score normalized by the highest score in 3000 restarts
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Trade-off between Speed and Performance

Decoding Speed on English
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Conclusion
* Analysis: we investigate average case complexity of parsing

* Algorithm: we introduce a simple randomized greedy
inference algorithm

Source code available at:
https://github.com/taolei87/RBGParser
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Thank You!



