Greed is Good if Randomized: New Inference
for Dependency Parsing

Yuan Zhang
CSAIL, MIT

Joint work with Tao Lei,
Regina Barzilay, and Tommi Jaakkola

III.
| 1

Inference vs. Scoring

Exact A

Inference

Approximate

>
Scoring

Limited --------------- Functon =~~~ T » Expressive

Inference vs. Scoring

Exact A Minimum
f Spanning Tree

Inference

Approximate

>

Scoring
Limited --------------- Functon =~~~ T » Expressive

Inference vs. Scoring

Exact A Minimum
f Spanning Tree

Inference

Reranking
Approximate >
Scoring
Limited --------------- Functon =~~~ T » Expressive

* Reranking: incorporate arbitrary features

Inference vs. Scoring

Exact A Minimum
f Spanning Tree
Dual
Decomposition

Inference

Reranking
Approximate >
Scoring
Limited --------------- Functon =~~~ T » Expressive

* Reranking: incorporate arbitrary features
* Dual Decomposition: search in full space

Parsing Complexity

* High-order parsing is NP-hard (McDonald et al., 2006)
* Hypothesis: parsing is easy on average

 Many NP-hard problems are easy on average
— MAX-SAT (Resende et al., 1997)
— Set cover (Hochbaum, 1982)

Parsing Complexity

* High-order parsing is NP-hard (McDonald et al., 2006)
* Hypothesis: parsing is easy on average

 Many NP-hard problems are easy on average
— MAX-SAT (Resende et al., 1997)
— Set cover (Hochbaum, 1982)

We show
* Analysis on average parsing complexity
* Asimple inference algorithm based on the analysis

Our Approach

Exact A Minimum
f Spanning Tree
Dual
Decomposition

Inference

Approximate

Our
Approach

Reranking

Scoring
lelted ________________ Function

* Reranking: incorporate arbitrary features

* Dual Decomposition: search in full space

>

----- » Expressive

Core ldea

e Climb to the optimal tree in a few small greedy steps

Randomized Hill-climbing

Fork=1to K

1) Randomly sample a dependency tree

2) Greedily improve the tree one edge at a time

3) Repeat (2) until converge

Select the tree with the highest score

Core ldea

e Climb to the optimal tree in a few small greedy steps

Randomized Hill-climbing

Fork=1to K

1) Randomly sample a dependency tree
2) Greedily improve the tree one edge at a time

3) Repeat (2) until converge

Select the tree with the highest score

That's it!

Dual
Decomposition

Our Full

It Works!

88.73%

89.44%

Parsing Performance on CoNLL Dataset

11

Example

“| ate an apple today”

12

]

Example

ROOT

| apple |

“| ate an apple today”

Initial tree

13

Example

Initial tree
ROOT

| apple |
il

“| ate an apple today”

larget tree
ROOT

apple] [today]
.

Example

Initial tree
ROOT

| apple |
il

“| ate an apple today”

larget tree
ROOT

apple] [today]
-

Example

ROOT

| apple |

.

“| ate an apple today”

larget tree

ROOT

apple] [today]

16

Example

ROOT

“| ate an apple today”

ROOT

/[apple] [today]

an

larget tree

17

Example

é;atq

“| ate an apple today”

ROOT

ROOT

/[apple] [today]

an

larget tree

18

ate

=

“| ate an apple today”

larget tree
ROOT

ate \'

apple] [today]

19

ate

Example

ROOT

“| ate an apple today”

larget tree
ROOT

ate \'

apple] [today]

20

“| ate an apple today”

ROOT

larget tree

21

“| ate an apple today”

ROOT

larget tree

22

“| ate an apple today”

ROOT

larget tree

23

Example

apple] [today]

“| ate an apple today”

ROOT

larget tree

24

Example

ROOT

appleJ[todayJ

“| ate an apple today”

ROOT

apmeJ[todayJ

larget tree

25

Why Greedy Has a Chance to Work

ROOT

apple][today]
3
y(T)

Reachability: transforming any tree to any other tree
* maintaining the structure a valid tree at any point

* using as few as d steps (d : head differences/hamming distance)

Greedy Hill-climbing

ROOT

apple][today]

(T)

y increase S(x,y") y

Greedy Hill-climbing

ROOT

...... apple][today]

(T)

y increase S(x,y") y

Arbitrary features in the scoring function

28

Challenge: Local Optimum

ROOT

...... apple][today]

(T)

y increase S(x,y") y

global optimum

local optimum
O
score S /\/ \\

treey

29

Hill-climbing with Restarts

ROOT

apple][today]

treey

Overcome local optima via restarts

Hill-climbing with Restarts

Random y(()) y(T)
(Zzalj:iizfr:) Hill-climbing

Overcome local optima via restarts

Learning Algorithm

* Follow common max-margin framework

VyeT(x) Sxy)=zSC,y+ly-yl-§

= y isthe gold tree

Learning Algorithm

* Follow common max-margin framework

VyeT(x) Sxy)=zSC,y+ly-yl-§

= y isthe gold tree

* Adopt passive-aggressive online learning framework (Crammer et
al. 2006)

e Decode with our randomized greedy algorithm

Analysis

First-order

Analysis

Theoretical

v

Empirical

v

35

First-order

High-order

Analysis

Theoretical

v

Empirical

v
v

36

First-order

Analysis

Theoretical

v

37

Search Space Complexity: First-order

10 words

Search Space Complexity: First-order

=~ 2 billion trees

10 words

39

Search Space Complexity: First-order

=~ 2 billion trees

10 words

< 512 local optima

40

Search Space Complexity: First-order

Theorem: For any first-order scoring function:
* there are at most 2" locally optimal trees

* this upper bound is tight

Search Space Complexity: First-order

Theorem: For any first-order scoring function:
* there are at most 2" locally optimal trees

* this upper bound is tight

2-1is still a lot, but it is the worst case

Search Space Complexity: First-order

Theorem: For any first-order scoring function:
e there are at most 2"! locally optimal trees

* this upper bound is tight

2-1is still a lot, but it is the worst case

What about the average case?

Algorithm for Counting Local Optima

——
/I’OOZL’_\ 10 9
9 ZO\A\ /—30\

\ saw
John / \ 0 Mary
30

- —

Algorithm for Counting Local Optima

The method is based on Chu-Liu-Edmonds algorithm

root 10 9
20— — 30
? saw \
John / Mary
- 30 0

* Select the best heads independently

Algorithm for Counting Local Optima

* Contract the cycle and recursively count the local optima

» Any local optimum exactly reassigns one edge in the cycle

Empirical Results: First-order

How many local optima in real data?

Optima on English Dataset

% sentences

47

Empirical Results: First-order

How many local optima in real data?

Optima on English Dataset

21

% sentences 50%

48

Empirical Results: First-order

How many local optima in real data?

Optima on English Dataset

% sentences 50% 70%

49

Empirical Results: First-order

How many local optima in real data?

Optima on English Dataset
2000

% sentences

50%

70%

90%

50

Empirical Results: First-order

Does the hill-climbing find the argmax?

Finding Global Optimum on English

Empirical Results: First-order

Does the hill-climbing find the argmax?

Finding Global Optimum on English

Len. <15 Len. > 15
100% 99.3%

Easy search space leads to successful decoding

Empirical Results: High-order

Does the hill-climbing find the argmax?

Comparison on English Given DD Cert.

Dual decomposition % Certificate
(Koo et al., 2010) 94.5%
Given a certificate Spb = Shc

by DD 99.8%

Empirical Results: High-order

Does the hill-climbing find the argmax?

Overall Comparison on English

Empirical Results: High-order

Does the hill-climbing find the argmax?

Overall Comparison on English

Spp = Shc
98.7%

Empirical Results: High-order

Does the hill-climbing find the argmax?

Overall Comparison on English

Spp = Shc
98.7%

Spp < Shc Spp > Shc
1.0% 0.3%

Experimental Setup

Datasets
= 14 languages in CoNLL 2006 & 2008 shared tasks

Features

= Up to 3'-order (three arcs) features used in MST/
Turbo parsers

= Global features used in re-ranking

Implementation

= Adaptive restarting strategy with K =300

57

Baselines and Evaluation Measure

Baselines:

= Turbo Parser: Dual Decomposition with 3rd-order
features (Martins et al., 2013)

= Sampling-based Parser: MCMC sampling with global
features (Zhang et al., 2014)

Evaluation Measure:

= Unlabeled Attachment Score (UAS), without punctuations

58

Turbo (DD)

Our 3rd

Comparing with Baselines

88.73%

88.66%

59

Comparing with Baselines

Turbo (DD) 88.73%

Our 3rd 88.66%

Sampling-based
(MCMC)

89.23%

Our Full 89.24%

60

Comparing with Baselines

Global

Features

Turbo (DD) 88.73%

Our 3rd 88.66%

Sampling-based
(MCMC)

89.23%

Our Full 89.24%

61

Impact of Initialization

88.0 88.1

Uniform Rnd-1st

62

Impact of Restarts

85.4

N

88.1

No Restart

300 Restarts

63

Convergence Property

Convergence Analysis on English

1 L
» 0-998| |
o
A
0.996! |
— Len < 15
0.994 —— Len> 15 -
0 100 200 300 400 500

Restarts

* Score normalized by the highest score in 3000 restarts

64

Trade-off between Speed and Performance

Decoding Speed on English

94
92! X 1
%) X
<C I
-) .
901 ; —— 3rd-order Model ||
' - - - Full Model
88 5 4 6 8 10
Sec/Tok x 107>
> Slow

Conclusion
* Analysis: we investigate average case complexity of parsing

* Algorithm: we introduce a simple randomized greedy
inference algorithm

Source code available at:
https://github.com/taolei87/RBGParser

66

Thank You!

