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Our Approach: Joint Model with Randomized Greedy
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Randomized Greedy in Dependency Parsing

* Key idea: greedy hill-climbing with random restarts
* Highly effective inference procedure
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Randomized Greedy for Joint Prediction

Dependency Accuracy on Arabic (SPMRL 2013)
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Advantages:
— No constraints on the scoring function
— Easy language adaptation
— Easy parallelization



Core Idea

e Climb to the optimal assignment for (s,%,¥) in a few small
greedy steps

Randomized Hill-climbing

Fork=1to K

1) Sample segmentation s, POS tags t and
a dependency tree y

2) Greedily improve the POS tags and the tree
3) Repeat (2) until converge

Select the assignment with the highest score
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Sample Segmentation and POS Tag

w/PRT
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(And official source was ...)

Sample from first-order distribution
p(s)cexp{O- f(s)}, p(r) xexpil- f(s,1)}
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Sample Tree
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Sample using a random walk-based algorithm (Wilson, 1996)
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Improve POS Tag

/_\
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Update each POS to maximize the full scoring function
ti,j < argtmaX{H ) f(S,ti,j,l‘_(i,j),y)}
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Improve POS Tag
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Improve Tree

AN
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Update each dependency to maximize the full scoring function
y,; < argmax{0- f Es,t, ViV j)})}

Yij
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Hill-climbing with Restarts

Random / (S’tvy) ———————————————

initialization

» Overcome local optima via restarts
» Parallelize each run during hill-climbing
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Learning Algorithm

* Follow common max-margin framework

0 f(x,5,1,9)=0" f(x,s,t,y)+ Err(s,t,y)- &

. §,f,)7 are gold values of segmentation, POS tags and dependencies

* Adopt passive-aggressive online learning framework (Crammer et
al. 2006)

e Decode with our randomized greedy algorithm
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Generating Lattice Structure: Arabic

Use MADA to generate top-k morphological analyses

Convert analyses to equivalent lattice

4 Word Emlyp: )
Emly/NOUN + p/NSUFF
Emly/AD]J + p/NSUFF
EmI/NOUN + y/NSUFF + p/PRON
o /
w p/NSUFF
O Emly/ADJ

/PRON
Eml/NOUN >( ) -

\ y/NSUFF
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Generating Lattice Structure: Chinese

e Use Stanford word segmenter to generate top-k segmentation

e Convert segmentation to equivalent lattice
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Experimental Setup

Datasets
— Chinese Penn Treebank 5.0 (CTB5)
— Modern Standard Arabic (MSA): the SPMRL 2013 dataset

— Mixed Arabic dataset
* Training: MSA
* Testing: Classical Arabic
* Different vocabulary but similar grammar

Evaluation Metric

— F-score for segmentation, POS tagging and dependency parsing
— TedEval (Tsarfaty et al. 2012) for the SPMRL dataset
* Ajoint evaluation of segmentation and parsing quality

20



Baselines

State-of-the-art
— The SPMRL 2013 dataset: pipeline system (Bjorkelund et al. 2013)
— CTB5: transition-based model (Zhang et al. 2014)

Pipeline variants of our model

— Predicted POS tags and segmentations by the same systems that we
use to generate candidates
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Features

* Segmentation
— Morphemes/words scores, character-based features

* POS tagging

— Up to 5-gram features, character-based features

 Dependency parsing
— Up to 3rd-order (three arcs) features used in standard parsing

» Note: scoring function combines all features and capture cross-task
interaction
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Comparison to State-of-the-art Systems

Dependency F-Score
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SPMRL: pipeline model (Bjorkelund et al. 2013)
CTB5: transition-based model (Zhang et al. 2014)
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Comparison to State-of-the-art Models

TedEval Score on the SPMRL Dataset
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e 27% error reduction on the TedEval score



Joint vs. Pipeline Model

POS Tagging F-Score

0 —
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e 38% error reduction on the SPMRL dataset
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Impact on Seen and OOV Words

POS F-score Absolute Improvement (Joint vs. Pipeline)
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Randomized Greedy in Dependency Parsing

* Key idea: greedy hill-climbing with random restarts
* Highly effective inference procedure
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Scalable for more complex joint inference?
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Convergence Properties: Dependency Parsing
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Joint Model vs. Dependency Parsing
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Joint Model vs. Dependency Parsing
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Conclusion

Randomized greedy algorithm scales up for joint prediction
tasks

Our model outperforms the state-of-the-art systems and its
pipeline variant on both Arabic and Chinese

Source code available at:
https://github.com/yuanzh/SegParser
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Thank Youl!
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