Randomized Greedy Inference for Joint Segmentation, Tagging and Parsing

Yuan Zhang, Chengtao Li, Regina Barzilay, Kareem Darwish

MIT, QCRI

Error Propagation in Pipeline Models

Dependency Accuracy on Arabic (SPMRL 2013)

Our Approach: Joint Model with Randomized Greedy

Dependency Accuracy on Arabic (SPMRL 2013)

- Key idea: greedy hill-climbing with random restarts
- Highly effective inference procedure

- Key idea: greedy hill-climbing with random restarts
- Highly effective inference procedure

- Key idea: greedy hill-climbing with random restarts
- Highly effective inference procedure

Finding Global Optimum on English

Len. ≤ 15	Len. > 15
100%	99.3%

- Key idea: greedy hill-climbing with random restarts
- Highly effective inference procedure

Analysis: parsing is easy on average

Optima on English Dataset

- Key idea: greedy hill-climbing with random restarts
- Highly effective inference procedure

Analysis: parsing is easy on average

Optima on English Dataset

Scalable for more complex joint inference?

2000

90%

Randomized Greedy for Joint Prediction

Dependency Accuracy on Arabic (SPMRL 2013)

Advantages:

- No constraints on the scoring function
- Easy language adaptation
- Easy parallelization

Core Idea

• Climb to the optimal assignment for (s,t,y) in a few small greedy steps

Randomized Hill-climbing

For k = 1 to K

- 1) Sample segmentation s, POS tags t and a dependency tree y
- 2) Greedily improve the POS tags and the tree
- 3) Repeat (2) until converge

Select the assignment with the highest score

Sample Segmentation and POS Tag

• Sample from first-order distribution $p(s) \propto \exp\{\theta \cdot f(s)\}, p(t) \propto \exp\{\theta \cdot f(s,t)\}$

Sample Tree

Sample using a random walk-based algorithm (Wilson, 1996)

Improve POS Tag

Update each POS to maximize the full scoring function

$$t_{i,j} \leftarrow \underset{t_{i,j}}{\operatorname{argmax}} \{\theta \cdot f(s, t_{i,j}, t_{-(i,j)}, y)\}$$

Improve POS Tag

Update each POS to maximize the full scoring function

$$t_{i,j} \leftarrow \underset{t_{i,j}}{\operatorname{argmax}} \{\theta \cdot f(s, t_{i,j}, t_{-(i,j)}, y)\}$$

Improve Tree

Update each dependency to maximize the full scoring function

$$y_{i,j} \leftarrow \underset{y_{i,j}}{\operatorname{argmax}} \{\theta \cdot f(s,t,y_{i,j},y_{-(i,j)})\}$$

Hill-climbing with Restarts

- Overcome local optima via restarts
- Parallelize each run during hill-climbing

Learning Algorithm

Follow common max-margin framework

$$\theta \cdot f(x,\hat{s},\hat{t},\hat{y}) \ge \theta \cdot f(x,s,t,y) + Err(s,t,y) - \xi$$

- $\hat{s}, \hat{t}, \hat{y}$ are gold values of segmentation, POS tags and dependencies
- Adopt passive-aggressive online learning framework (Crammer et al. 2006)
- Decode with our randomized greedy algorithm

Generating Lattice Structure: Arabic

- Use MADA to generate top-k morphological analyses
- Convert analyses to equivalent lattice

Generating Lattice Structure: Chinese

- Use Stanford word segmenter to generate top-k segmentation
- Convert segmentation to equivalent lattice

Experimental Setup

Datasets

- Chinese Penn Treebank 5.0 (CTB5)
- Modern Standard Arabic (MSA): the SPMRL 2013 dataset
- Mixed Arabic dataset
 - Training: MSA
 - Testing: Classical Arabic
 - Different vocabulary but similar grammar

Evaluation Metric

- F-score for segmentation, POS tagging and dependency parsing
- TedEval (Tsarfaty et al. 2012) for the SPMRL dataset
 - A joint evaluation of segmentation and parsing quality

Baselines

- State-of-the-art
 - The SPMRL 2013 dataset: pipeline system (Björkelund et al. 2013)
 - CTB5: transition-based model (Zhang et al. 2014)

- Pipeline variants of our model
 - Predicted POS tags and segmentations by the same systems that we use to generate candidates

Features

- Segmentation
 - Morphemes/words scores, character-based features
- POS tagging
 - Up to 5-gram features, character-based features
- Dependency parsing
 - Up to 3rd-order (three arcs) features used in standard parsing

Note: scoring function combines all features and capture cross-task interaction

Comparison to State-of-the-art Systems

Dependency F-Score

- SPMRL: pipeline model (Björkelund et al. 2013)
- CTB5: transition-based model (Zhang et al. 2014)

Comparison to State-of-the-art Models

TedEval Score on the SPMRL Dataset

27% error reduction on the TedEval score

Joint vs. Pipeline Model

POS Tagging F-Score

• 38% error reduction on the SPMRL dataset

Impact on Seen and OOV Words

POS F-score Absolute Improvement (Joint vs. Pipeline)

- Key idea: greedy hill-climbing with random restarts
- Highly effective inference procedure

Analysis: parsing is easy on average

Optima on English Dataset

Scalable for more complex joint inference?

27

2000

90%

Convergence Properties: Dependency Parsing

Convergence Properties: Dependency Parsing

Joint Model vs. Dependency Parsing

Both tasks exhibit similar convergence

Joint Model vs. Dependency Parsing

Both tasks exhibit similar convergence

Conclusion

Randomized greedy algorithm scales up for joint prediction tasks

 Our model outperforms the state-of-the-art systems and its pipeline variant on both Arabic and Chinese

Source code available at:

https://github.com/yuanzh/SegParser

Thank You!