Glimpse

Continuous, Real-Time Object Recognition on Mobile Devices

Tiffany Chen

Lenin Ravindranath
Shuo Deng
Victor Bahl
Hari Balakrishnan

Continuous, Real-Time Recognition Apps

Driver Assistance

Face Recognition

Augmented Reality Shopping

Augmented Reality Tourist App

Today: Picture-Based Object Recognition

Today: Picture-Based Object Recognition

Today: Picture-Based Object Recognition

Video-Based Object Recognition

Video-Based Object Recognition

Glimpse

 Continuous, real-time object recognition on mobile devices in a video stream

Glimpse

- Continuous, real-time object recognition on mobile devices in a video stream
- Continuously identify and locate objects in each frame

- Computationally expensive and memory-intensive
 - Server is 700x faster than Google Glass
 - Scalability
- We need to offload the recognition pipeline to servers

Client-Server Architecture

Client-Server Architecture

Challenges

1. End-to-end latency lowers object recognition accuracy

Client-Server Architecture

Challenges

- 1. End-to-end latency lowers object recognition accuracy
- 2. Bandwidth and battery efficiency

1. Active Cache combats eze latency and regains accuracy

- 1. Active Cache combats e2e latency and regains accuracy
- 2. Trigger Frame reduces bandwidth usage

- 1. Active Cache combats eze latency and regains accuracy
- 2. Trigger Frame reduces bandwidth usage

1. Active Cache combats e2e latency and regains accuracy

End-to-End Latency Lowers Accuracy

Expected

In reality...

End-to-End Latency Lowers Accuracy

Is it possible to combat latency and regain accuracy?

Object tracking on the client to re-locate the object

Frame 0

Frame 12 (delay = 360 ms)

Object tracking on the client to re-locate the object

Frame 0

Frame 12 (delay = 360 ms)

- Object tracking on the client to re-locate the object
- Fails to work when object displacement is large

- Object tracking on the client to re-locate the object
- Fails to work when object displacement is large

Frame 0

Frame 30 (delay= 1 sec)

Adaptive Frame Selection

Given *n_cached* frames, select *s_selected* frames so that we can catch up without sacrificing tracking performance

Given **n_cached** frames, select **s_selected** frames so that we can catch up without sacrificing tracking performance

- How many frames to select?
- Which frames to select?

Given **n_cached** frames, select **s_selected** frames so that we can catch up without sacrificing tracking performance

- 1. How many frames to select?
 - **s_selected:** active cache processing time vs. tracking accuracy

Given **n_cached** frames, select **s_selected** frames so that we can catch up without sacrificing tracking performance

1. How many frames to select?

- **s_selected:** active cache processing time vs. tracking accuracy
- *s_selected* depends on
 - a. The end-to-end delay -- n_cached
 - b. The exec time of tracking on the client-- tracking_time

Given *n_cached* frames, select *s_selected* frames so that we can catch up without sacrificing tracking performance

1. How many frames to select?

- **s_selected:** active cache processing time vs. tracking accuracy
- *s_selected* depends on
 - a. The end-to-end delay -- n_cached
 - b. The exec time of tracking on the client-- tracking_time
- Simulate n_cached, tracking_time, and s_selected, and pick the s_selected that maximizes the accuracy

Given **n_cached** frames, select **s_selected** frames so that we can catch up without sacrificing tracking performance

- 2. Given *s_selected*, which frames to select?
 - Temporal redundancy between frames

Given **n_cached** frames, select **s_selected** frames so that we can catch up without sacrificing tracking performance

2. Given *s_selected*, which frames to select?

- Temporal redundancy between frames
- Use frame differencing to quantify movement and select frames to capture as much movement as possible

Active Cache Achieves Higher Accuracy

Before Active Cache

After Active Cache

- Active Cache can be applied to any objects
- Active Cache can be used to hide any end-to-end delay

Glimpse Architecture

- 1. Active Cache combats e2e latency and regains accuracy
- 2. Trigger Frame reduces bandwidth usage

• Strategically send certain trigger frames to the server

- Strategically send certain trigger frames to the server
- 1. Measuring scene changes

- Strategically send certain trigger frames to the server
- 1. Measuring scene changes
- 2. Detecting tracking failure
- The standard deviation of distance of all tracked points between two frames

- Strategically send certain trigger frames to the server
- 1. Measuring scene changes
- 2. Detecting tracking failure
- Limiting the number of frames in-flight

- Object recognition pipelines
 - 1. Face recognition
 - 2. Road sign recognition

Object recognition pipelines

- 1. Face recognition
- 2. Road sign recognition

Datasets

1. Face Dataset:

- 26 videos recorded with a smartphone
- 30 minutes, 54K frames, and 36K faces
- Scenarios: shopping with friends and waiting at a subway station

2. Road Sign Dataset:

- 4 walking videos recorded using Google Glass from YouTube
- 35 minutes, 63K frames, and 5K road signs

Evaluation Metrics

- Intersection over union (IOU) to measure localization accuracy

$$IOU_i = \frac{area |O_i \cap G_i|}{area |O_i \cup G_i|}$$

Oi: bounding box of the detected object i Gi: bounding box of object i's ground truth

- Correct if <u>IOU > 50%</u> and the <u>label matches</u> ground truth

Evaluation Metrics

- Precision

of objects correctly labeled and located total # of objects detected

- Recall

of objects correctly labeled and located total # of objects in the ground truth

Network conditions

- Wi-Fi, Verizon's LTE, and AT&T's LTE network

Results Outline

- 1. Face recognition
- 2. Road sign recognition
- 3. Face recognition with hardware-assisted face detection

Active Cache Achieves High Accuracy

- Face dataset
- Wi-Fi (End-to-end delay: 430 ms)

Active Cache Achieves High Accuracy

- Face dataset
- Wi-Fi (End-to-end delay: 430 ms)

Trigger Frame Reduces Bandwidth Usage without Sacrificing Accuracy

- Face dataset
- Wi-Fi (End-to-end delay: 430 ms)

Trigger Frame Reduces Bandwidth Usage without Sacrificing Accuracy

- Face dataset
- Wi-Fi (End-to-end delay: 430 ms)

Trigger Frame Consistently Reduces Bandwidth Usage

Face Dataset (Wi-Fi)

Glimpse Achieves Higher Accuracy and Lower Bandwidth Usage

- Road sign dataset
- Wi-Fi (End-to-end delay: 520 ms)

Hardware-Assisted Object Detection

- Mobile devices are now equipped with object detection hardware
- Is Glimpse still helpful?

Glimpse Improves Accuracy even with Detection Hardware on Devices

- Face dataset (Wi-Fi)
- Face detection in hardware

Glimpse

- Glimpse enables continuous, real time object recognition on mobile devices
- Glimpse achieves high recognition accuracy by maintaining an *active cache* of frames on the client
- Glimpse reduces bandwidth consumption by strategically sending only certain *trigger frames*

Active Cache and Trigger Frame are Generic

- Latency caused performance degradation and excessive resource usage are fundamental problems to object recognition
- Active Cache can hide any end-to-end latency
- Trigger Frame can reduces resource consumed