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Outline

* Memory Controller + Scheduler-based Side Channels

* Existing Approaches
* Static Partitioning
 Traffic Shaping

* DAGguise
* Directed Acyclic Request Graphs (rDAGs)

 Security + Performance Evaluation

* Generalizability



I Memory Controller Side Channels
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I Scheduler-Based Side Channels
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frame, allowing an attacker to interleave the use of the GPU to

measure the side-cffects of the victim computation through perfor-

mance counters or other resource tracking APIs. We demonstrate

Although the security of GPUs is only starting to be explored.
several vulnerabilitics have already been demonstrated [46, 49, 55,
58. 63. 71. 74]. Most related to this paper. Luo et al. demonstrated a




I Timing Attack Example
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[ The attacker uses its own latencies to leak information! ]




Static Partitioning in Time

Use a Round Robin, No-Skip Arbitration Policy

Avoiding Information Leakage in the Memory Controller with Fixed Service Policies (Shafiee et al., Utah, ISCA 2015)

Slot Allocation Timeline

Security Security Security Security
Domain 0 Domain 1 Domain 2 Domain 3
0 2 3 1 3
—

-

v Secure
Static partitioning, no leakage

X Bad Performance
Poor bandwidth utilization!
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I Traffic Shaping

Shaping Strategy: Delay victim’s existing requests and add fake requests

Fake Request
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[ How do we do this for real applications without significant costs? ]




I Camouflage’s Traffic Shaping Strategy

Shape memory requests to a secret-independent timing distribution

Victim Profiling
Application

Single Application

Frequency

Inter-Arrival Time

I

CPUO «—

Memory
Shaper

Memory
Controller

v Good Performance\

Dynamic sharing of the
memory controller

X Insecure

Ordering or bank information can
reveal the secret

X Expensive Profiling
Ideal shaping distribution

A

CPU 1

Increased Background
Bandwidth Usage

Camouflage: Memory Traffic Shaping to Mitigate Timing Attacks (Zhou et al., Princeton, HPCA 2017)

depends on co-running
applications
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I DAGguise’s Traffic Shaping Strategy

Shape memory requests to a secret-independent
Directed Acyclic Request Graph (rDAG)
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Directed Acyclic Request Graphs

Vertices
Memory requests with variable latency

Edges
Dependencies between memory requests with fixed latency

Memory Controller
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Why shape requests to an rDAG?

v’ Security

e Shaping to a secret-independent defense rDAG
makes victim request patterns indistinguishable

» Defense rDAGs are public and are the only thing an
attacker can recover

v’ Performance

* Allows for dynamic sharing of memory resources in
the memory controller

v’ Profiling Cost

* Does not require knowledge of co-located
applications

13



Simple Shaping Example

—> Timing Dependency B Memory Request [ 1 Queue Delay
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The shaper output is always the same, no matter the secret!
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Indistinguishability Property

Victim’s Request =====»| rDAG Shaper 1

Victim’s Response
Memory Controller
Attacker’s Response

Attacker’s Request

{The attacker’s observations should be independent from victim’s request pattern J
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Indistinguishability Property

 Attacker’s observation is independent from victim’s request pattern

* Given an attacker’s request pattern, the attacker has an identical observation
when contending with ANY victim’s request pattern

* This holds for ANY attacker’s request pattern

Attacker’s Observations when Contending with Victim

Attacker Request Patterns

X

Attacker’s Response Pattern X

16



Formalization & Verification

* Formalize the indistinguishability property using state transitions

P(Sp,n) := V Reqp,,Reqr,., V Reqp,

. Respr,,Respp Resp7, ,Resp’s
if S < - 5 S, and S ¢ - - 5!
ReqToc 7Requ Req,/l_,w aRequ

then Resp,, = Resp’,

* Verification with Rosette:
* First k cycles: symbolic execution
* Arbitrary cycles: k-induction
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rDAG Adaptivity

Original rDAG _
ramnatt Re-Profile
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. - f . - J —> Timing Dependency [ Memory Request [ ] Queue Delay

Phase 1 Phase 2 (c) Contention between Victim and Unprotected Program on Memory Controller

(b) Unprotected Program’s Request Patterns

rDAG’s adaptivity allows for better bandwidth utilization!
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I Offline Profiling Step

* Not for security, any secret-independent G °
rDAG ensures security

:

* Low profiling cost

 Victim is profiled alone e X e

e Reduce search space by finding parameters for
an rDAG template

%

4-Parallel rDAG Template
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Experimental Setup

e Simulator: gem5 and DRAMSim2

* Architectural Specifications:
e 2 and 8 out-of-order CPU cores
e 32KB L1i/d, 256kB L2, 1MB/core L3

* Evaluated Configurations:
* DAGguise
* Fixed Service (Bank Triple Alternation)
* Baseline

* Evaluated Applications:

* Unprotected SPEC benchmark(s) co-running alongside DAGguise protected
application(s)
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Average Normalized IPC

Experimental Results

Static Traffic
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DAGguise’s improves
performance for both
protected and unprotected
applications!

J

DAGguise achieves a 12% performance improvement over Fixed Service in

an 8-CPU system
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DAGguise Generalization
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More in the Paper

* Implementation details of DAGguise shaper

* Formal security verification using symbolic execution and k-induction
* Detailed rDAG offline profiling process

* More performance and area overhead evaluation

* Generalizations to other scheduler-based side channels (e.g. port
contention)
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Conclusion

* DAGguise
. _ Defense
* A memory traffic shaper which: rDAG

* Completely eliminates data leakage Q<8>Q—>O

* Allows for dynamic contention

: : . Victim l
* Requires only simple profiling ol Memory |,
Sh
* rDAGSs aper | Memory
* A general and adaptive request Controller
representation CPU1 |«
* A formal model of correctness using Attacker

Rosette

* A generalized scheduler-based attack
mitigation framework
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