DAGguise

Mitigating Memory Controller Side Channels

Peter W. Deutsch*, Yuheng Yang*, Thomas Bourgeat,
Jules Drean, Joel Emer, and Mengjia Yan

ASPLOS 2022 (Session 3A)

I)

CSAIL

I Microarchitectural Side-Channels

O

PN
S

Attacker Victim

-’

Shared Resource
Contention
Insecure!

O

@

Attacker Victim
Partitioned
Resource
Poor Performance!

[Key Defense Tradeoff: Security vs. Performance }

I DAGguise Key Idea

Directed Acyclic

-

Request Graph
(rDAG)
Victim l
) Memory
) Shaper
» Memory Controller
CPU 1

Attacker

_

DAGguise achieves:

v Formally-Verified Security
and
v/ Good Performance

~

)

Outline

* Memory Controller + Scheduler-based Side Channels

* Existing Approaches
* Static Partitioning
 Traffic Shaping

* DAGguise
* Directed Acyclic Request Graphs (rDAGs)

 Security + Performance Evaluation

* Generalizability

I Memory Controller Side Channels

Victim

—{ L1/12

Resource
Contention

\ 4

L1/L2

LLC

» Memory Controller

Attacker

[This is a class of “scheduler-based” side channels!]

sjueg INVYA

I Scheduler-Based Side Channels

We imtroduce the fin
tacka that keverage conll

This ix the extended vervion of a poper that appears in USENIX Secwrary 2021

Lord of the Ring(s): Side Channel Attacks on the
CPU On-Chip Ring Interconnect Are Practical

Riccardo Paccagnella

Licheng Luo

ARTIFACT
EVALUATED

(;?..ﬂ!! -

Chnstopher W. Fletcher

University of Hlinois at Urbana-Champaign

Bandwidth Utilization Side-Channel on ML

DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks

Peter Pessl, Daniel Gruss, Ciémentine Maurice, Michael Schwarz and Stefan Mangard

Gra: Universiry of Technolog

. Austria

There are tuo ctune_v!g unir::\:::m
. srebor oy, | Inference Accelerators Thes, oo SMoTherSpectre: Exploiting Speculative Execution

connect s fusctioning @
that can be learned by &
sotsy by nature and has
the Sevt challenge, we po

Sarbartha Banerjee

The University of Texas at Austin The Uni

Shijia Wei
rsity of Texas at Austin

Prakash Ramrakhyani
ARM Research

crucial. While the
thon, shased Bardwy
ory bes, can beak s
sons. shared mems

through Port Contention

o the sophiticencd prot sarbartha@ utexas edu wei @ utexas.edu prakash. ramrakhyani @arm com ablod. Purthermore, Atri Bhattacharyya Alexandra Sandudescu * Matthias Neugschwandtner”
13
e nuag imercomect. W CPU. In this scitiag o
r n INM Reseanch - Zorkch INM Reseanch - Zunch
woee anert chasnc over Mohit Tiwari a slow cross-CPU o
of over 4 Mbps from : . The University of Texas at Austin known. In contrast, Alessandro Sormiotts Babak Falsafi' Mathias Payer’
poshrero | tiwari@austin.utexas.edu chimind s well INM Research - Zurich B EPTL
the second challenge, w BCTORS. PEOCCRON 3
pomerns of (NG COBMETRN ~ — — o beshd these amacks, O° Anil Kurmus "
We demonstrate ow alla] Abstract—Accelerators used for machine learnine (ML) infer- [T wd | [W& w1 1 address mappungs. o~ M Revranrh = Fusich
able EADSA and RSA 8 = cnce provide great perfi 1 -
e precise iming of ket O 1 confidential model in it 1 ABSTRAC
' attacks is critical in har Tl Speene Mol
G e (S practice. Data and memo U ek byper Session 10D: VulnDet 2 + Side Channels 2 €CS'18, October 15-19, 2018, Toronto, ON, Canada
1 &) to defend again 7y px
p ol
In this paper, we demot 2019 IEEE on Sec and Priv: . o
VA al e Symposkum urdy iy & weakmeses |
eral heterogencous. il "7 @ side-channel for leakit o ppcations. i
‘This side channel is inde 1 1 enla, wmy S & H
acsus computiog unltt] Port Contention for Fun and Profit P e atiachat Rendered Insecure: GPU Side Channel Attacks are Practical
fered beneli z even in the presence of da o
significant bene! can be monitored througl L
c - g s
""“dm‘wu:w“ d U Sontendion Tum s e Alkejandro Cabeera Aldaya®, Billy Bob Brumidey', Sobaib ul Hassan', Cesar Pereida Garcia’, Nicola Tuvern' ot iy, - | Hoda l\aghlbljo_u) bari . Ajaya N_eupane
vl 11 ~ <11 r - S niversity o altfornia, Riverside jmversity Hormia, Riverside
R el . ““Universidad Tecnologica de 1a Hahana (CUIAEL Habana, Cuba e | University of Caltfonta, Riversid University of Californis, Riverside
of -w:-hal-r":::‘d u::: 9, s VRampese Unfvessity, Tanpare, Fink A B | hnagh001@ucr.edu ajaya@ucredu
Througl Deep learning model
fects (e g., timing variati - d..,.m,.,“p«imsu,,,,w..‘ e ;::_Ww,,': Zhiyun Qian Nael Abu-Ghazaleh
"“l“"“l‘“ “""k‘:'““"“ I< inference accelerators it e SMT) sets, machine lcaming fechniques. por feverse engineering o’ o164, we ot University of California, Riverside University of California, Riverside
RS cate) Or fu; & Ny \~ (NPU)are being develop ave ot s for iéechannrd enabled attackers, WRE soch: : . - anatines. Pl zhiyung@cs.ucredu nael@cs.ucr.edu
;L“"("L :“' Z::" a7 academia [E(T_T] 16} thelr Inderently broader aftack warface that rxpeses mare per To demonstrate PoRTSsAsH it action. we present a com o the OpensiSi | ; 5
ol sng wfoma 7 G gem on-chip (SoC) | phywical core 5 icve cadio-ced Mk n 2 fealiword scotieg anackieg the — N and ag ABSTRACT 1 INTRODUCTION
ample. masy coche-bdd =~ [nference-as-a-service (tacks. In this wark, we explore SMT execution cagine sharing " = S5 OpeaSSLie < \ e .) ks e !
il 2 re IS-a-servic (v & uble \ . We 1o stacks of NIST P-384 curve during sigramsee pencration s a TLS sorver — . Graphics Processing Units (GPUs) are commonly integrated with Graphics Processing Units (GPUs) are integral components to most
ol > providers like Amazon ! evecution units B crewle & high-resdution timing ide-chansel compilod againd OpenSSL 1100 for crypto fuscuonality e, e plastert { computing devices to enhance the performance and capabilities modern computing devices, used to optimize the performance of
sographic keys) an ¢ % = on ML accelerators. Th duc to port contention. Inhervatly stealthy since 0 doo 800 (e Sy program measures the port contestion delay while & RIS of graphical workloads. In addition. they are increasingly being today s graphics and multi-media heavy workloads. They are also
webbeowsers [30.60.71 — ot trained models on ¢l dependd c the memory subsysiem Whe other cache o TUB oo R e o gnature goscration, o COSCONC integrated in data centers and clouds such that they can be used increasingly integrated on computing servers to accelerate a range
1 confidential user data 1l Kabs ;':‘:,,m' e ,:.:',. Hyper. m:?‘—:: creating 2 tming signal trace containing a nolsy soguence of s + Security am to accelerate data intensive workloads. Under a number of scenar- of applications from domains including sccurity. computer vision.
= data like disease classifi ‘ P il and douie Operations durieg scalar multipbcation. W - meaiures 10s the GPU can be shared between multiple applications at a fine comp I finance. bio-inf ics and many others [52). Both
- an endde-end attack thatl recovers 3 PS84 private key from mie Operaion: g scalar multiphcaty -
o — From the security pe an OpmSSl-powered TLS sorver wing 3 small msmber of thon process e signal using varioss lechoigues %0 ciean the /— - granularity allowing a spy application to monitor side channels and these classes of applications can operate on sensitive data (25, 31
>,< the cloud provider to | repeated TLS Sandibake attempes. Yarthermors, we sow thal gonal and redace cmors in the information extractad from cach ~ KEYWORI attempt to infer the behavior of the victim. For example. OpenGL 57] which can be ¢ d by security vulnerabilities in the
= parameters as well as t Sences dargoding shared Sheuriad, sl hulkds, sad SCX trace. We then pass this parsial key information 10 & recovery T adechaned and WebGL send workloads to the GPU at the granularity of a GPU stack

|

[T8). I20) show how ke
used to steal a victim's !
similar accuracy. An an

are cwentially Mentical, betor our channd han wide Rargel
Appdication

1 INTRODUCTION

phase. creating latmice problem instances whach aitmately
Vel the TLS server's ECDSA privase Ley
We extend our asalvsis 10 SGX, showing 1t Is possibie 1o

wrack wxcrod

o e e

frame, allowing an attacker to interleave the use of the GPU to

measure the side-cffects of the victim computation through perfor-

mance counters or other resource tracking APIs. We demonstrate

Although the security of GPUs is only starting to be explored.
several vulnerabilitics have already been demonstrated [46, 49, 55,
58. 63. 71. 74]. Most related to this paper. Luo et al. demonstrated a

I Timing Attack Example

Victim CPUO <

A\ 4

Memory Controller

Attacker CPU 1

v

PELLEN < 2n >
 AttackerAccess | | | }— -
Time=

Victim Secret 1
One Access

Time
Victim Secret 0
No Accesses

[The attacker uses its own latencies to leak information!]

Static Partitioning in Time

Use a Round Robin, No-Skip Arbitration Policy

Avoiding Information Leakage in the Memory Controller with Fixed Service Policies (Shafiee et al., Utah, ISCA 2015)

Slot Allocation Timeline

Security Security Security Security
Domain 0 Domain 1 Domain 2 Domain 3
0 2 3 1 3
—

-

v Secure
Static partitioning, no leakage

X Bad Performance
Poor bandwidth utilization!

~

I Traffic Shaping

Shaping Strategy: Delay victim’s existing requests and add fake requests

Fake Request

7777 .
7207

<n§n >

[
>

A 4

Time
Victim Secret O
No Accesses

Time
Victim Secret 1
One Access

[How do we do this for real applications without significant costs?]

I Camouflage’s Traffic Shaping Strategy

Shape memory requests to a secret-independent timing distribution

Victim Profiling
Application

Single Application

Frequency

Inter-Arrival Time

I

CPUO «—

Memory
Shaper

Memory
Controller

v Good Performance\

Dynamic sharing of the
memory controller

X Insecure

Ordering or bank information can
reveal the secret

X Expensive Profiling
Ideal shaping distribution

A

CPU 1

Increased Background
Bandwidth Usage

Camouflage: Memory Traffic Shaping to Mitigate Timing Attacks (Zhou et al., Princeton, HPCA 2017)

depends on co-running
applications

10

I DAGguise’s Traffic Shaping Strategy

Shape memory requests to a secret-independent
Directed Acyclic Request Graph (rDAG)

Victim

CPUO

CPU1

\
I
1
[
1
I
I

» Memory Controller

Vv Secure

v/ Good Performance

V' Profile Victim Alone

Attacker

11

Directed Acyclic Request Graphs

Vertices
Memory requests with variable latency

Edges
Dependencies between memory requests with fixed latency

Memory Controller

12

Why shape requests to an rDAG?

v’ Security

e Shaping to a secret-independent defense rDAG
makes victim request patterns indistinguishable

» Defense rDAGs are public and are the only thing an
attacker can recover

v’ Performance

* Allows for dynamic sharing of memory resources in
the memory controller

v’ Profiling Cost

* Does not require knowledge of co-located
applications

13

Simple Shaping Example

—> Timing Dependency B Memory Request [1 Queue Delay

Original rDAG .
.. 100 100 100 100 100
100 7100 /100 /100 o Original Requests -—’-—’-—’-—’-—’-*
-y
Secret? I 100 100 100 100
= B Delayed Reauests IS O3 I3 O3 >
200
S t1 > N (7]
ecre O U/ O > 70 Shaper Output -—>-—>- 150 > | 150 > >
Defense rDAG : 200 200 200
150 150 g ~ Original Requests [l -l SHl——E >
__________ N ,
' 2
g Delayed Requests | 200 00 S
) :
B Shaper Output | 150 150 150 150 o

Fake Request

The shaper output is always the same, no matter the secret!

14

Indistinguishability Property

Victim’s Request =====»| rDAG Shaper 1

Victim’s Response
Memory Controller
Attacker’s Response

Attacker’s Request

{The attacker’s observations should be independent from victim’s request pattern J

15

Indistinguishability Property

 Attacker’s observation is independent from victim’s request pattern

* Given an attacker’s request pattern, the attacker has an identical observation
when contending with ANY victim’s request pattern

* This holds for ANY attacker’s request pattern

Attacker’s Observations when Contending with Victim

Attacker Request Patterns

X

Attacker’s Response Pattern X

16

Formalization & Verification

* Formalize the indistinguishability property using state transitions

P(Sp,n) := V Reqp,,Reqr,., V Reqp,

. Respr,,Respp Resp7, ,Resp’s
if S < - 5 S, and S ¢ - - 5!
ReqToc 7Requ Req,/l_,w aRequ

then Resp,, = Resp’,

* Verification with Rosette:
* First k cycles: symbolic execution
* Arbitrary cycles: k-induction

17

rDAG Adaptivity

Original rDAG _
ramnatt Re-Profile
100 /7\100_/~\100_/~\100 Camouflage: -
Secret 0 ey

200 /e 200
Secret 1 Q > ;O,
A

Static Partition:

Defense rDAG
Adapt!
150 150 o N o290 > 325 ,
. shaper Output [- >
(a) Victim’s Request Patterns |
Unprotected Requests |:- > Il T T T
L J L J
hj hj
300 300 /N NS TEREN Phase 1 Phase 2
. - f . - J —> Timing Dependency [Memory Request [] Queue Delay

Phase 1 Phase 2 (c) Contention between Victim and Unprotected Program on Memory Controller

(b) Unprotected Program’s Request Patterns

rDAG’s adaptivity allows for better bandwidth utilization!

18

I Offline Profiling Step

* Not for security, any secret-independent G °
rDAG ensures security

:

* Low profiling cost

 Victim is profiled alone e X e

e Reduce search space by finding parameters for
an rDAG template

%

4-Parallel rDAG Template

19

Experimental Setup

e Simulator: gem5 and DRAMSim2

* Architectural Specifications:
e 2 and 8 out-of-order CPU cores
e 32KB L1i/d, 256kB L2, 1MB/core L3

* Evaluated Configurations:
* DAGguise
* Fixed Service (Bank Triple Alternation)
* Baseline

* Evaluated Applications:

* Unprotected SPEC benchmark(s) co-running alongside DAGguise protected
application(s)

20

Average Normalized IPC

Experimental Results

Static Traffic
Partitioning Shaping

[IFS I DAGquise ESIDocDist ZZADNA CISPEC

1:0 -

HFRANEEEE
A A

=
i
o
=
Vi
Z
2
=

-

_

DAGguise’s improves
performance for both
protected and unprotected
applications!

J

DAGguise achieves a 12% performance improvement over Fixed Service in

an 8-CPU system

21

DAGguise Generalization

Network on Chip Contention

SMT Contention
Victim . Decode | Attacker
Thread Pipeline Thread
]
L 4
Scheduler

Pcrt 1 Port 5
Resource
Contention

Attacker
Accesses

|

I S

Router
A

Resource
Contention

Victim
Accesses

22

More in the Paper

* Implementation details of DAGguise shaper

* Formal security verification using symbolic execution and k-induction
* Detailed rDAG offline profiling process

* More performance and area overhead evaluation

* Generalizations to other scheduler-based side channels (e.g. port
contention)

23

Conclusion

* DAGguise
. _ Defense
* A memory traffic shaper which: rDAG

* Completely eliminates data leakage Q<8>Q—>O

* Allows for dynamic contention

: : . Victim l
* Requires only simple profiling ol Memory |,
Sh
* rDAGSs aper | Memory
* A general and adaptive request Controller
representation CPU1 |«
* A formal model of correctness using Attacker

Rosette

* A generalized scheduler-based attack
mitigation framework

24

DAGguise

Mitigating Memory Controller Side Channels

Peter W. Deutsch Yuheng Yang
pwd@mit.edu yuhengy@mit.edu
Thomas Bourgeat Jules Drean Joel S. Emer Mengjia Yan
bthom@mit.edu drean@mit.edu jsemer@mit.edu mengjiay@mit.edu

I)

CSAIL

mailto:Pwd@mit.edu
mailto:Pwd@mit.edu
mailto:bthom@mit.edu
mailto:drean@mit.edu
mailto:jsemer@mit.edu
mailto:jsemer@mit.edu

