
DAGguise: Mitigating Memory Controller Side Channels
Peter W. Deutsch*, Yuheng Yang*, Thomas Bourgeat, Jules Drean,

Joel Emer, Mengjia Yan

1. SUMMARY

Problem: Contention in the memory controller can cause information 
leakage from a victim to an attacker

Our Solution: Shape the victim’s memory traffic into a secret-
independent pattern represented by an rDAG

Evaluation: Compared to the state-of-the-art, DAGguise achieves 
better security, performance, and has a lower profiling cost

Generalization: Can be extended to other scheduler-based side 
channels, ex:

• SMT Port Contention
• Network on Chip Contention

Victim
CPU

Attacker 
CPU

Memory 
Shaper

Memory Controller

rDAG

12% Speedup

2. PROBLEM

Memory Controller Side Channel
Victim’s and attacker’s memory requests contend with each other

Victim
CPU

Attacker 
CPU

L1/L2

L1/L2

0
Memory

Controller
N

D
R

A
M

 B
an

ks

...

LLC

LLC

Request

Previous Solutions

Fixed Service Camouflage DAGguise

Security ✓ ✗ ✓

Performance ✗ ✓ ✓

Profiling Cost ✓ ✗ ✓

Formally 
Verified

Profile Without
Co-located Apps

Request
Request

Request

Resource 
Contention

Attack Example
Attacker can use its own memory 

delays to reveal a boolean secret

Victim Access

TimeVictim Secret 0
No Accesses

Attacker Access

n

TimeVictim Secret 1
One Access

2n

Victim Access

Attacker Access

3. PREVIOUS SOLUTIONS

Static Partitioning (e.g. Fixed Service):
Time slots are divided amongst CPUs/security 

domains in a round robin, no skip fashion

Traffic Shaping (e.g. Camouflage):
Shape memory requests to a secret-independent 

timing distribution

Fr
e

q
u

e
n

cy

Inter-Arrival Time

✗ Insecure
Ordering or bank information can reveal the secret!

✓ Good Performance
Dynamic sharing of the memory controller

✗ Expensive Profiling
Ideal shaping distribution depends on co-running applications

CPU 0

CPU 1

Memory 
Controller

Victim

Attacker

Memory 
Shaper

Profiling
Victim 

Application

4. OUR SOLUTION: DAGguise

DAGguise:
Shape memory requests to a secret-independent 

Directed Acyclic Request Graph (rDAG)

✓ Security
• Shaping to a secret-independent defense rDAG makes victim 

request patterns indistinguishable
• Defense rDAGs are public and are the only thing an attacker can 

recover

✓ Performance
• Allows for dynamic sharing of memory resources in the memory 

controller

✓ Profiling Cost
• Does not require knowledge of co-located applications

Time

V0

V1

V2

V3 V4

W01

W02

W13

W23

W34

Variable

Fixed

Victim
CPU

Attacker 
CPU

Memory 
Shaper

Memory Controller

Vertices
Memory requests with variable latency

Edges
Dependencies between memory 

requests with fixed latency

5. SECURITY

Simple Shaping Example
• Different victim request patterns are shaped to the same defense rDAG
• The shaper output is always the same, no matter the secret

Victim’s Request

Attacker’s Request

Victim’s Response

Attacker’s Response

rDAG
Shaper

Memory 
Controller

Formalize Using State Transitions

Verification with Rosette
• First k cycles: symbolic execution
• Arbitrary cycles: k-induction

Indistinguishability Property
Attacker’s response is independent from the 

victim’s request pattern

6. PERFORMANCE

Example: rDAG Adaptivity
• Shaper output can adapt to observed contention
• This allows for better bandwidth utilization

Evaluation
• Setup:

• gem5 Out-of-Order CPU & DRAMSim2
• 32KB L1i/d, 256kB L2, 1MB/core L3
• Unprotected SPEC benchmark(s) co-running alongside 

DAGguise/Fixed Service protected application(s)

• 12% Speedup on 8-CPU System compared to Fixed Service

Adapt!

blender

cactu
BSSN

cam
4

deepsjeng

exchange2

fo
to

nik3d
lbm

leela
nab

nam
d

povra
y

ro
m

s
wrf

x264 xz

geom
ean

0.0

0.2

0.4

0.6

0.8

1.0

A
v

e
ra

g
e

 N
o

rm
a

li
z
e

d
 I

P
C

FS-BTA DAGguise DocDist DNA SPEC

7. PROFILING

Goal: A defense rDAG should closely encapsulate the
memory requirements of the victim

Low Profiling Cost
• Victim is profiled alone (since rDAGs can adapt to 

contention from co-running applications!)
• Reduce search space by finding parameters for an rDAG

template
• 2 Parameters: Number of parallel sequences

Timing dependency latencies

Example to Find Ideal Defense rDAGs

0 100 200 300

Weight
(a)

0.4

0.6

0.8

N
o

rm
a

li
z
e

d
 I

P
C

0 100 200 300

Weight
(b)

0

2

4

6

8

A
v

g
. 

A
ll

o
c
a

te
d

B
a

n
d

w
id

th
 (

G
B

/s
)

0 2 4 6 8

Avg. Allocated Bandwidth (GB/s)
(c)

0.4

0.6

0.8

N
o

rm
a

li
z
e

d
 I

P
C

Number of

Parallel Sequences

1

2

4

8

Ideal 
rDAGs

0 100 200 300

Weight
(a)

0.4

0.6

0.8

N
o

rm
a

li
z
e

d
 I

P
C

0 100 200 300

Weight
(b)

0

2

4

6

8

A
v

g
. 

A
ll

o
c
a

te
d

B
a

n
d

w
id

th
 (

G
B

/s
)

0 2 4 6 8

Avg. Allocated Bandwidth (GB/s)
(c)

0.4

0.6

0.8

N
o

rm
a

li
z
e

d
 I

P
C

Number of

Parallel Sequences

1

2

4

8
0 100 200 300

Weight
(a)

0.4

0.6

0.8

N
o

rm
a

li
z
e

d
 I

P
C

0 100 200 300

Weight
(b)

0

2

4

6

8

A
v

g
. 

A
ll

o
c
a

te
d

B
a

n
d

w
id

th
 (

G
B

/s
)

0 2 4 6 8

Avg. Allocated Bandwidth (GB/s)
(c)

0.4

0.6

0.8

N
o

rm
a

li
z
e

d
 I

P
C

Number of

Parallel Sequences

1

2

4

8

0 100 200 300

Weight
(a)

0.4

0.6

0.8

N
o

rm
a

li
z
e

d
 I

P
C

0 100 200 300

Weight
(b)

0

2

4

6

8

A
v

g
. 

A
ll

o
c
a

te
d

B
a

n
d

w
id

th
 (

G
B

/s
)

0 2 4 6 8

Avg. Allocated Bandwidth (GB/s)
(c)

0.4

0.6

0.8

N
o

rm
a

li
z
e

d
 I

P
C

Number of

Parallel Sequences

1

2

4

8
0 100 200 300

Weight
(a)

0.4

0.6

0.8

N
o

rm
a

li
z
e

d
 I

P
C

0 100 200 300

Weight
(b)

0

2

4

6

8

A
v

g
. 

A
ll

o
c
a

te
d

B
a

n
d

w
id

th
 (

G
B

/s
)

0 2 4 6 8

Avg. Allocated Bandwidth (GB/s)
(c)

0.4

0.6

0.8

N
o

rm
a

li
z
e

d
 I

P
C

Number of

Parallel Sequences

1

2

4

8Number of Parallel Sequences

8. GENERALIZATION

Scheduler-based Side Channels:
• Requests from different security domains 

enter a scheduler to access shared resources
• Shape the request pattern before entering the 

scheduler

Examples

Victim 
Thread

Attacker 
Thread

Scheduler

Decode
Pipeline

μ-ops

Port 0 Port 1 Port 5 Port 7

SMT Contention

Network on Chip Contention

Attacker 
Accesses

Victim 
Accesses

Router

Resource 
Contention

Resource 
Contention

(a) Victim’s Shaped Request Patterns

(b) Unprotected Program’s Request Patterns
(c) Memory Controller Contention

100100 100

100100 100

100100 100

100100 100

200 200 200 200200

200 200 200 200200

x Timing Dependency

with Latency x

Request Vertex

with Bank ID k
k

1 5

2 6

3 7

4 8

(a) 4 Parallel Sequences

1 3 5 7

2 4 6 8

(b) 2 Parallel Sequences

… … … …

100100 100

100100 100

100100 100

100100 100

200 200 200 200200

200 200 200 200200

x Timing Dependency

with Latency x

Request Vertex

with Bank ID k
k

1 5

2 6

3 7

4 8

(a) 4 Parallel Sequences

1 3 5 7

2 4 6 8

(b) 2 Parallel Sequences

… … … …

100100 100

100100 100

100100 100

100100 100

200 200 200 200200

200 200 200 200200

x Timing Dependency

with Latency x

Request Vertex

with Bank ID k
k

1 5

2 6

3 7

4 8

(a) 4 Parallel Sequences

1 3 5 7

2 4 6 8

(b) 2 Parallel Sequences

… … … …

✓ Secure
Static partitioning, no leakage

✗ Bad Performance
Poor bandwidth utilization!

Time

Victim Access

Attacker Access

Time Slot

Co-Located
Applications


