
DAGguise: Mitigating Memory Controller Side Channels
Peter W. Deutsch*, Yuheng Yang*, Thomas Bourgeat, Jules Drean,

Joel Emer, Mengjia Yan

1. SUMMARY

Problem: Contention in the memory controller can cause information 
leakage from a victim to an attacker

Our Solution: Shape the victim’s memory traffic into a secret-
independent pattern represented by an rDAG

Evaluation: Compared to the state-of-the-art, DAGguise achieves 
better security, performance, and has a lower profiling cost

Generalization: Can be extended to other scheduler-based side 
channels, ex:

• SMT Port Contention
• Network on Chip Contention
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2. PROBLEM

Memory Controller Side Channel
Victim’s and attacker’s memory requests contend with each other
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Security ✓ ✗ ✓

Performance ✗ ✓ ✓

Profiling Cost ✓ ✗ ✓
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3. PREVIOUS SOLUTIONS

Static Partitioning (e.g. Fixed Service):
Time slots are divided amongst CPUs/security 

domains in a round robin, no skip fashion

Traffic Shaping (e.g. Camouflage):
Shape memory requests to a secret-independent 

timing distribution
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✗ Insecure
Ordering or bank information can reveal the secret!

✓ Good Performance
Dynamic sharing of the memory controller

✗ Expensive Profiling
Ideal shaping distribution depends on co-running applications
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4. OUR SOLUTION: DAGguise

DAGguise:
Shape memory requests to a secret-independent 

Directed Acyclic Request Graph (rDAG)

✓ Security
• Shaping to a secret-independent defense rDAG makes victim 

request patterns indistinguishable
• Defense rDAGs are public and are the only thing an attacker can 

recover

✓ Performance
• Allows for dynamic sharing of memory resources in the memory 

controller

✓ Profiling Cost
• Does not require knowledge of co-located applications
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5. SECURITY

Simple Shaping Example
• Different victim request patterns are shaped to the same defense rDAG
• The shaper output is always the same, no matter the secret
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Formalize Using State Transitions

Verification with Rosette
• First k cycles: symbolic execution
• Arbitrary cycles: k-induction

Indistinguishability Property
Attacker’s response is independent from the 

victim’s request pattern

6. PERFORMANCE

Example: rDAG Adaptivity
• Shaper output can adapt to observed contention
• This allows for better bandwidth utilization

Evaluation
• Setup:

• gem5 Out-of-Order CPU & DRAMSim2
• 32KB L1i/d, 256kB L2, 1MB/core L3
• Unprotected SPEC benchmark(s) co-running alongside 

DAGguise/Fixed Service protected application(s)

• 12% Speedup on 8-CPU System compared to Fixed Service

Adapt!
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7. PROFILING

Goal: A defense rDAG should closely encapsulate the
memory requirements of the victim

Low Profiling Cost
• Victim is profiled alone (since rDAGs can adapt to 

contention from co-running applications!)
• Reduce search space by finding parameters for an rDAG

template
• 2 Parameters: Number of parallel sequences

Timing dependency latencies

Example to Find Ideal Defense rDAGs

0 100 200 300

Weight
(a)

0.4

0.6

0.8

N
o

rm
a

li
z
e

d
 I

P
C

0 100 200 300

Weight
(b)

0

2

4

6

8

A
v

g
. 

A
ll

o
c
a

te
d

B
a

n
d

w
id

th
 (

G
B

/s
)

0 2 4 6 8

Avg. Allocated Bandwidth (GB/s)
(c)

0.4

0.6

0.8

N
o

rm
a

li
z
e

d
 I

P
C

Number of

Parallel Sequences

1

2

4

8

Ideal 
rDAGs

0 100 200 300

Weight
(a)

0.4

0.6

0.8

N
o

rm
a

li
z
e

d
 I

P
C

0 100 200 300

Weight
(b)

0

2

4

6

8

A
v

g
. 

A
ll

o
c
a

te
d

B
a

n
d

w
id

th
 (

G
B

/s
)

0 2 4 6 8

Avg. Allocated Bandwidth (GB/s)
(c)

0.4

0.6

0.8

N
o

rm
a

li
z
e

d
 I

P
C

Number of

Parallel Sequences

1

2

4

8
0 100 200 300

Weight
(a)

0.4

0.6

0.8

N
o

rm
a

li
z
e

d
 I

P
C

0 100 200 300

Weight
(b)

0

2

4

6

8

A
v

g
. 

A
ll

o
c
a

te
d

B
a

n
d

w
id

th
 (

G
B

/s
)

0 2 4 6 8

Avg. Allocated Bandwidth (GB/s)
(c)

0.4

0.6

0.8

N
o

rm
a

li
z
e

d
 I

P
C

Number of

Parallel Sequences

1

2

4

8

0 100 200 300

Weight
(a)

0.4

0.6

0.8

N
o

rm
a

li
z
e

d
 I

P
C

0 100 200 300

Weight
(b)

0

2

4

6

8

A
v

g
. 

A
ll

o
c
a

te
d

B
a

n
d

w
id

th
 (

G
B

/s
)

0 2 4 6 8

Avg. Allocated Bandwidth (GB/s)
(c)

0.4

0.6

0.8

N
o

rm
a

li
z
e

d
 I

P
C

Number of

Parallel Sequences

1

2

4

8
0 100 200 300

Weight
(a)

0.4

0.6

0.8

N
o

rm
a

li
z
e

d
 I

P
C

0 100 200 300

Weight
(b)

0

2

4

6

8

A
v

g
. 

A
ll

o
c
a

te
d

B
a

n
d

w
id

th
 (

G
B

/s
)

0 2 4 6 8

Avg. Allocated Bandwidth (GB/s)
(c)

0.4

0.6

0.8

N
o

rm
a

li
z
e

d
 I

P
C

Number of

Parallel Sequences

1

2

4

8Number of Parallel Sequences

8. GENERALIZATION

Scheduler-based Side Channels:
• Requests from different security domains 

enter a scheduler to access shared resources
• Shape the request pattern before entering the 

scheduler

Examples
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(c) Memory Controller Contention
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✓ Secure
Static partitioning, no leakage

✗ Bad Performance
Poor bandwidth utilization!
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