DAGguise: Mitigating Memory Controller Side Channels
Y

Peter W. Deutsch*, Yuheng Yang*, Thomas Bourgeat, Jules Drean, Illil- %
Joel Emer, Mengjia Yan

1. SUMMARY 2. PROBLEM

Problem: Contention in the memory controller can cause information Memory Controller Side Channel Attack Example
leakage from a victim to an attacker Victim’s and attacker’s memory requests contend with each other Attacker can use its own memory
delays to reveal a boolean secret

Our Solution: Shape the victim’s memory traffic into a secret-
independent pattern represented by an rDAG

Resource
Contention

Victim
CPU Shaper

»
»

Victim Secret0 Time
No Accesses

s)jueg INVYA

» Memory Controller Attacker |]
Attacker | CPU L1/12

Request < 2 n >
CPU

1 E——

Evaluation: Compared to the state-of-the-art, DAGguise achieves Victim Secret1_ Time

better security, performance, and has a lower profiling cost One Access

Previous Solutions

Formally 3. PREVIOUS SOLUTIONS

Fixed Service | Camouflage | DAGguise Verified

Security N4 X J = Static Partitioning (e.g. Fixed Service): Traffic Shaping (e.g. Camouflage):

berformance X Y, / Time slots are divided amongst CPUs/security Shape memory requests to a secret-independent
domains in a round robin, no skip fashion timing distribution

Profiling Cost \/ X \/ Profile Without

Co-located Apps - = __
PP [lr 1 Time SIotJ

Application ili
12% Speedup ‘ R ‘ Profiling

Frequency

Co-Located
Applications

Generalization: Can be extended to other scheduler-based side Inter-Arrival Time
channels, ex: I
* SMT Port Contention Victirm

« Network on Chip Contention ¥y W
Secu re Attacker
Static partitioning, no leakage

4. OUR SOLUTION: DAGguise X Bad Performance 4 X Insecure ™

Ordering or bank information can reveal the secret

\ Poor bandwidth utilization!)

DAGguise: v Good Performance

Shape memory requests to a secret-independent Dynamic sharing of the memory controller
Directed Acyclic Request Graph (rDAG) X Expensive Profiling

Variable . \ Ideal shaping distribution depends on co-running applications /
ed Vertices
Fixe Memory requests with variable latency

5. SECURITY

W Edges
34 Dependencies between memory] .
requests with fixed latency Slmple Shapmg Example

* Different victim request patterns are shaped to the same defense rDAG
 The shaper output is always the same, no matter the secret

Victim) - . Orlginal rDAG Orlglnal RequeStS 109 199 190 199 199 o —> Timing Dependency

CPU '

Delayed Requests [~>L - T M- >C - ST M > WSS vemory Request
' [1 Queue Delay

Shaper Output [—2°>5% -5 - 5C

100 100
Secret 0

Secret 0

Memory Controller

Attacker
CPU

Secret 1

= 200 200 200
Original Requests [ill—— 1l ——l—

Delayed Requests =" "> R

Shaper Output [N 150 g 150 gy 150 puy 150 g

Defense rDAG

150

v’ Security
 Shaping to a secret-independent defense rDAG makes victim
request patterns indistinguishable (a) Victim's Request Patterns
Defense rDAGs are public and are the only thing an attacker can
recover

Secret 1

(b) Shaping Victim's Request Patterns to the Same rDAG

Indistinguishability Property Formalize Using State Transitions
Attacker’s response is independent from the P(So,n) := V Reqr,,Reqy., ¥V Reqp,

v Performance .
. . . V|Ct|m S request pattern . RespTw,Respr
* Allows for dynamic sharing of memory resources in the memory if Sp > S, and Sp

Req, . ,Reqp., Req’Tm ;Req .
controller

/ /
RespTw ,Resp R
\

4

/

Victim’s Request rDAG then Resp,, = Resp/Rx

Shaper Victim’s Response

v’ Profiling Cost Memory | | Verification with Rosette
Attacker’s Request Controll Attacker’s Response . i _ : :
* Does not require knowledge of co-located applications onroTer ,I;IrtS)Ftk CVC|GS| SVFTI\<§0|(;C e:ecutmn
 Arbitrary cycles: k-induction

6. PERFORMANCE 7. PROFILING 8. GENERALIZATION

Example: rDAG Adaptivity Goal: A defense rDAG should closely encapsulate the Scheduler-based Side Channels:
* Shaper output can adapt to observed contention memory requirements of the victim Requests from different security domains
* This allows for better bandwidth utilization enter a scheduler to access shared resources

Defense rDAG Low Profiling Cost Shape the request pattern before entering the

- Adapt! e * \Victim is profiled alone (since rDAGs can adapt to scheduler

(2) Victim’s Shaped Request Patterns oo output (- ——{_H——{ [contention from co-running applications!)

Unerotected Roguest . L. Reduce search space by finding parameters for an rDAG Examples

L J L J
e RS

C . Phase 1 Phase 2 templa te
(c) Memory Controller Contention

(b) Unprotected Program’s Request Patterns 2 Parameters: Number of parallel sequences

Timing dependency latencies E— R
Eva I uation 100 100 100 Pipe_line Thread

Request Vertex

* Setu P: 100, . 100 . 100, 200@ 200 200 200 200 with Bank ID k l u-;ps l
. X Timing Dependency
¢ gem5 OUt‘Of'Order CPU & DRAMS|m2 100, (:) 100, <:>1oo, 200@ 200 e 200 G 200 200 —> \ith Latency x

e 32KB L1i/d, 256kB L2, 1MB/core L3 o, ()5)

 Unprotected SPEC benchmark(s) co-running alongside
DAGguise/Fixed Service protected application(s)

SMT Contention

Scheduler

(a) 4 Parallel Sequences (b) 2 Parallel Sequences Resource
Contention

* 12% Speedup on 8-CPU System compared to Fixed Service

[IFS-BTAEDAGguise N DocDist ZZIDNA[C_1SPEC

Example to Find Ideal Defense rDAGs

\ Network on Chip Contention
[Number of Parallel Sequences X 1 + 2 e 4 % 8)
g |

Attacker Victim

Router
Accesses Accesses

o

o)
o

1

Normalized IPC

©
D
Normalized IPC

(@)
(o))
Avg. Allocated
Bandwidth (GB/s)
D

N
1

Average Normalized IPC

o

Resource

Avg. Allocated Bandwidth (GB/s) Contention
(c)

