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1. SUMMARY 2. PROBLEM

Problem: Contention in the memory controller can cause information Memory Controller Side Channel Attack Example
leakage from a victim to an attacker Victim’s and attacker’s memory requests contend with each other Attacker can use its own memory
delays to reveal a boolean secret

Our Solution: Shape the victim’s memory traffic into a secret-
independent pattern represented by an rDAG
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Evaluation: Compared to the state-of-the-art, DAGguise achieves Victim Secret1_ Time

better security, performance, and has a lower profiling cost One Access
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Formally 3. PREVIOUS SOLUTIONS
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Security N4 X J = Static Partitioning (e.g. Fixed Service): Traffic Shaping (e.g. Camouflage):

berformance X Y, / Time slots are divided amongst CPUs/security Shape memory requests to a secret-independent
domains in a round robin, no skip fashion timing distribution
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Generalization: Can be extended to other scheduler-based side Inter-Arrival Time
channels, ex: I
* SMT Port Contention Victirm

« Network on Chip Contention ¥y W
Secu re Attacker
Static partitioning, no leakage

4. OUR SOLUTION: DAGguise X Bad Performance 4 X Insecure ™

Ordering or bank information can reveal the secret

\ Poor bandwidth utilization! )

DAGguise: v Good Performance

Shape memory requests to a secret-independent Dynamic sharing of the memory controller
Directed Acyclic Request Graph (rDAG) X Expensive Profiling

Variable . \ Ideal shaping distribution depends on co-running applications /
ed Vertices
Fixe Memory requests with variable latency

5. SECURITY
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* Different victim request patterns are shaped to the same defense rDAG
 The shaper output is always the same, no matter the secret
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v’ Security
 Shaping to a secret-independent defense rDAG makes victim
request patterns indistinguishable (a) Victim's Request Patterns
Defense rDAGs are public and are the only thing an attacker can
recover
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(b) Shaping Victim's Request Patterns to the Same rDAG
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6. PERFORMANCE 7. PROFILING 8. GENERALIZATION

Example: rDAG Adaptivity Goal: A defense rDAG should closely encapsulate the Scheduler-based Side Channels:
* Shaper output can adapt to observed contention memory requirements of the victim  Requests from different security domains
* This allows for better bandwidth utilization enter a scheduler to access shared resources

Defense rDAG Low Profiling Cost Shape the request pattern before entering the

- Adapt! e * \Victim is profiled alone (since rDAGs can adapt to scheduler

(2) Victim’s Shaped Request Patterns oo output (- ——{_H——{ [ contention from co-running applications!)

Unerotected Roguest . L. Reduce search space by finding parameters for an rDAG Examples
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(b) Unprotected Program’s Request Patterns 2 Parameters: Number of parallel sequences
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 Unprotected SPEC benchmark(s) co-running alongside
DAGguise/Fixed Service protected application(s)
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* 12% Speedup on 8-CPU System compared to Fixed Service
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Example to Find Ideal Defense rDAGs
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