Pensieve: Microarchitectural Modeling for Security Evaluation

Yuheng Yang, Thomas Bourgeat, Stella Lau, Mengjia Yan

Problem: the Cat-and-Mouse Game

Problem: Weak Security Evaluation

"Piled Higher and Deeper" by Jorge Cham www.phdcomics.com

We need a principled, trustworthy security evaluation framework!

Pensieve's Contribution

Aligned with architectural design flow.

Defense Design Flow

Example: delay speculative requests

A modeling method should be:

- 1. Modular
- 2. Precise on describing timing behaviors
- 3. Represent a space of designs

Pensieve Modeling

#1 Decouple timing and functionality using the hand-shaking interface

Uninterpreted Function (UF)

- A UF represents space of functions with the same input/output types
 - Example: Bool UF (Bool, Bool)
- UF helps us
 - state "what" affects the output,
 - abstract away the details on "how" the input affects the output

Pensieve Modeling

#1 Decouple timing and functionality using the hand-shaking interface #2 Represent a space of timing behavior with uninterpreted functions

Pensieve uses **simple** models with **UF** to cover **space** of microarchitectures with **complex** timing behaviors

Pensieve Security Evaluation Framework

Pensieve finds **unknown** security vulnerabilities in GhostMinion, the latest speculative execution defense

GhostMinion

#1: Invisible Speculation

Spectre v1

if (false)
 ld sec //transmitter

Insecure Baseline

Intel RARE Workshop 2023

Invisible Speculation

L1

Rest of Memory System

Speculative Interference Attack

Younger speculative loads interfere with older bound-to-commit loads.

Many other contention structures: non-pipelined ALU, cache port, bank

contention, network-on-chip, etc.

```
y = ..... //delay

ld y // transmitter

if (false)

ld sec // interfere
```


GhostMinion

#1: Invisible Speculation

#2: Prioritize Older Instructions through Timestamps

So Far ...

Pensieve Found A New Attack Variant

Speculative load is older this time!

→ Speculative load can interfere with bound-to-commit load

New Attack on GhostMinion Summary

speculative interference attack

y =

ld y // transmitter

if (false)

Younger ld sec // interfere 3

new attack variant

if (true)

ld y // transmitter 2

else

ld sec // interfere 1

Takeaway: Manual evaluation can easily be unsound, we need Pensieve, a trustworthy evaluation tool

Checking Time and Scalability

- Microarchitecture Setup
 - 5 types of instructions
 - 4-entry register file
 - 4-entry data memory
 - 16-entry instruction memory
 - 8-entry ROB
 - GhostMinion defense
- Problem: Checking time increases exponentially as the number of simulated cycles increases
- Future work: Combine Penseive with more powerful formal verification backend

Pensieve Summary

- Pensieve provides a modeling principle that **aligns** with architecture design flow, and **links** computer architects to accessible formal-methods tools.
- Pensieve finds unknown security vulnerabilities in GhostMinion

