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Neural Networks in Low-resource Scenario 

!2

Can NN do better on small training sets?
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NN SVM

Training data: 200 instances 
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Human Rationales can Help

1. Zaidan et al., Using annotator rationales to improve machine learning for text categorization, NAACL 2007.
2. Zhang et al., Rationale-augmented convolutional neural networks for text classification, EMNLP 2016. !3

• Rationales are useful for training SVMs 1 

• Limited benefits for neural models 2

(           ,   )
Input

Supervised Training 
with Rationales

a nice and clean hotel to stay for business and 
leisure . but the location is not good if you 
need public transport . […] i never tried .

a nice and clean hotel to stay for business and 
leisure . but the location is not good if you 
need public transport . […] i never tried .

☹

☹

Conventional 
Supervised Training

Label



Rationales and Attention are Closely Linked
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a nice and clean hotel to stay for 
business and leisure . but the 
location is not good if you need 
public transport . […] i never tried .

Rationales

Both highlight important words from the input.

Task: hotel location Task: hotel location

a nice and clean hotel to stay for 
business and leisure . but the 
location is not good if you need 
public transport . […] i never tried .
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Attention in Low-resource Scenario
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Difficult to learn where to focus

Can we use human rationales to directly supervise attention?

a nice and clean hotel to stay for 
business and leisure . but the 
location is not good if you need 
public transport . […] i never tried .

0.21

0.00

0.11

Attention (#data 14K)

a nice and clean hotel to stay for 
business and leisure . but the 
location is not good if you need 
public transport . […] i never tried .

Attention (#data 200)
0.70

0.00

0.35
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NN SVM Rationales

Human Rationales as Attention Supervision: 
A Naive Approach

Training objective 

• Prediction error (as before)


• Distance between learned 
attention and human rationales.


Can we do better?



Difference between Rationales and Attention
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• Attention is a soft distribution over the input 

• Attention depends on the model architecture 

• Rationales are subjectively annotated

a nice and clean hotel to stay for 
business and leisure . but the 
location is not good if you need 
public transport . […] i never tried .

Rationales

Task: hotel location Task: hotel location

a nice and clean hotel to stay for 
business and leisure . but the 
location is not good if you need 
public transport . […] i never tried .

0.21

0.00

0.11

Attention (#data 14K)



Learning with Oracle Attention
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14k examples

200 examples

Oracle attention learned from 14k examples
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Oracle attention learned 
from 14k examples

200 training examples

Learning with Oracle Attention

+
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Oracle attention learned 
from 14k examples

200 training examples

Learning with Oracle Attention

+
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SVM Rationales Oracle 
attention

38% error reduction!

Goal: translate rationales into a 
proxy for oracle attention.



Rationale to Attention (R2A)
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Observations: 

• Attention concentrates on rationales.


• Attention highlights adjectives and nouns.


• Attention down weighs functional words

R2A

a nice and clean hotel to stay for business 
and leisure . but the location is not good if 
you need public transport . […] i never tried .

a nice and clean hotel to stay for business 
and leisure . but the location is not good if 
you need public transport . […] i never tried .



Rationale to Attention (R2A)

!12

Target Task
poured a deep brown color with little head 
that dissipated pretty quickly , aroma is of 
sweet maltiness with chocolate and 
caramel notes . […] sessioned .

poured a deep brown color with little head 
that dissipated pretty quickly , aroma is of 
sweet maltiness with chocolate and caramel 
notes . […] sessioned .

R2A

a nice and clean hotel to stay for business 
and leisure . but the location is not good if 
you need public transport . […] i never tried .

a nice and clean hotel to stay for business 
and leisure . but the location is not good if 
you need public transport . […] i never tried .

Source Tasks

Transfer

Hypothesis: the mapping R2A is transferrable across tasks.



Step 1:  
Train R2A on source tasks.


Step 2: 
        Use R2A to generate attention for the target task.


Step 3: 
Train a target classifier with R2A-generated attention.
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R2A as Attention Supervision



Step 1:  
Train R2A on source tasks.


Step 2: 
        Use R2A to generate attention for the target task.


Step 3: 
Train a target classifier with R2A-generated attention.
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R2A as Attention Supervision



Step 1:  
Train R2A on source tasks.


Step 2: 
        Use R2A to generate attention for the target task.


Step 3: 
Train a target classifier with R2A-generated attention.
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R2A as Attention Supervision



Where do rationales come from?
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3. Lei et al., Rationalizing neural predictions. EMNLP 2016.

Target task: rationales are annotated by human

• 2x annotation cost 1


Source tasks: rationales are generated automatically 3

0.05 z

Generator gen(x)

this beer pours ridiculously clear with 
tons of carbonation that forms a rather 
impressive rocky head that settles 
slowly into a fairly dense layer of foam. 

input 

Encoder enc(z)

positivenegative neutr

prediction 

this beer pours ridiculously clear with 
tons of carbonation that forms a 
rather impressive rocky head that 
settles slowly into a fairly dense layer 

this beer pours ridiculously clear with 
tons of carbonation that forms a rather 
impressive rocky head that settles 
slowly into a fairly dense layer of 

this beer pours ridiculously clear with 
tons of carbonation that forms a rather 
impressive rocky head that settles 
slowly into a fairly dense layer of foam. 

distribution over possible rationales P(z|x)

0.8 0.02 0.1

this beer pours ridiculously clear with 
tons of carbonation that forms a rather 
impressive rocky head that settles 
slowly into a fairly dense layer of 

this beer pours ridiculously clear with 
tons of carbonation that forms a rather 
impressive rocky head that settles 
slowly into a fairly dense layer of foam. 

0.01

…
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R2A Training

a nice and clean hotel to stay for 
business and leisure . but the 
location is not good if you need 
public transport . […] i never tried .

Domain-invariant Encoder Multitask Learning

Attention Generator
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a nice and clean hotel to stay for 
business and leisure . but the 
location is not good if you need 
public transport . […] i never tried .

Domain-invariant Encoder Multitask Learning

Attention Generator

R2A Training
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a nice and clean hotel to stay for 
business and leisure . but the 
location is not good if you need 
public transport . […] i never tried .

Domain-invariant Encoder Multitask Learning

Attention Generator

R2A Training
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a nice and clean hotel to stay for 
business and leisure . but the 
location is not good if you need 
public transport . […] i never tried .

Domain-invariant Encoder Multitask Learning

Attention Generator

Three components are jointly optimized during training.

R2A Training
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Domain-invariant Encoder

Attention Generator

R2A Inference
poured a deep brown color with little 
head that dissipated pretty quickly , 
aroma is of sweet maltiness with 
chocolate and caramel notes . […] 
sessioned .



Source tasks: 

Goal: 
Generate oracle attention 
for each source task.

R2A: Multitask Learning
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𝒮1, 𝒮2, …, 𝒮N

Loss:  
Prediction error on all 
source tasksx𝒮1 x𝒮2 x𝒮N

h𝒮1 h𝒮2 h𝒮N

∑i
h𝒮1

iα𝒮1
i ∑i

h𝒮2
iα𝒮2

i ∑i
h𝒮N

iα𝒮N
i

Task-specific 
Attention

Task-specific 
MLP

̂y𝒮1 ̂y𝒮2 ̂y𝒮N

Shared Bi-LSTM

Task 𝒮1 𝒮2 𝒮N



Source Task 
(beer aroma)

Target Task 
(hotel cleanliness)

R2A: Domain-invariant Encoder

t-SNE

a nice and clean hotel to stay for business and 
leisure . but the location is not good if you need 
public transport . it took too long for transport and 
waiting for bus . but the swimming pool looks good 
although i never tried .

a nice and clean hotel to stay for business and 
leisure . but the location is not good if you need 
public transport . it took too long for transport and 
waiting for bus . but the swimming pool looks good 
although i never tried .

poured a deep brown color with little head that 
dissipated pretty quickly , aroma is of sweet 
maltiness with chocolate and caramel notes . flavor 
is also of chocolate and caramel maltiness . 
mouthfeel is good a bit on the thick side . 
drinkability is ok . this is to be savored not 
sessioned . 

poured a deep brown color with little head that 
dissipated pretty quickly , aroma is of sweet 
maltiness with chocolate and caramel notes . 
flavor is also of chocolate and caramel maltiness . 
mouthfeel is good a bit on the thick side . 
drinkability is ok . this is to be savored not 
sessioned .

poured a deep brown color with little head that 
dissipated pretty quickly , aroma is of sweet 
maltiness with chocolate and caramel notes . 
flavor is also of chocolate and caramel maltiness . 
mouthfeel is good a bit on the thick side . 
drinkability is ok . this is to be savored not 
sessioned .

a nice and clean hotel to stay for business and 
leisure . but the location is not good if you need 
public transport . it took too long for transport and 
waiting for bus . but the swimming pool looks 
good although i never tried .

SourceTarget
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Goal: 
Learn an invariant feature representation 
for the source and the target task.

Loss:  
Wasserstein distance between source 
and target feature distributions.



R2A: Domain-invariant Encoder
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After alignment:

Source Task 
(beer aroma)

Target Task 
(hotel cleanliness)

t-SNE

a nice and clean hotel to stay for business and 
leisure . but the location is not good if you need 
public transport . it took too long for transport and 
waiting for bus . but the swimming pool looks good 
although i never tried .

a nice and clean hotel to stay for business and 
leisure . but the location is not good if you need 
public transport . it took too long for transport and 
waiting for bus . but the swimming pool looks good 
although i never tried .

poured a deep brown color with little head that 
dissipated pretty quickly , aroma is of sweet 
maltiness with chocolate and caramel notes . flavor 
is also of chocolate and caramel maltiness . 
mouthfeel is good a bit on the thick side . 
drinkability is ok . this is to be savored not 
sessioned . 

poured a deep brown color with little head that 
dissipated pretty quickly , aroma is of sweet 
maltiness with chocolate and caramel notes . 
flavor is also of chocolate and caramel maltiness . 
mouthfeel is good a bit on the thick side . 
drinkability is ok . this is to be savored not 
sessioned .

poured a deep brown color with little head that 
dissipated pretty quickly , aroma is of sweet 
maltiness with chocolate and caramel notes . 
flavor is also of chocolate and caramel maltiness . 
mouthfeel is good a bit on the thick side . 
drinkability is ok . this is to be savored not 
sessioned .

a nice and clean hotel to stay for business and 
leisure . but the location is not good if you need 
public transport . it took too long for transport and 
waiting for bus . but the swimming pool looks 
good although i never tried .

SourceTarget



R2A: Attention Generator
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Source tasks: 

Goal: 
Predict oracle attention from rationales 
and the input representation.

Loss:  
Distance between the generated 
attention      and the oracle attention 
(obtained from multi-task learning)

α̂𝒮i α𝒮i

𝒮1, 𝒮2, …, 𝒮N

α̂𝒮1 α̂𝒮2 α̂𝒮N

Bi-LSTM (shared across tasks)

Dot product attention (shared across tasks)

r𝒮1 r𝒮2 r𝒮N

h𝒮1 h𝒮2 h𝒮N

Task 𝒮1 𝒮2 𝒮N



Tasks:
Sentiment analysis on different aspects from two domains.

Data:
BeerAdvocate review, TripAdvisor hotel review

Tasks Train Test

Beer Look 43,351 10,170

Beer Aroma 39,825 8,772

Beer Palate 30,041 7,152

Hotel Cleanliness 200 12,684

Experimental Setup

Target

Source



Result
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R2A as a proxy for oracle

27% error reduction!



Annotating on a Budget: Rationales vs More Data
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Same performance on 
6% of the dataAc

cu
ra

cy

78.00

81.50

85.00

88.50

92.00

Number of training examples

200 900 1600 2300 3000 3700

90.66
Ours

Attention Model

200 examples+rationales  =  3100 examples
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R2A-generated Attention vs Oracle Attention

R2A-generated attention mimics oracle attention

Oracle Attention

R2A-generated Attention

Task: Hotel Cleanliness

Task: Hotel Cleanliness
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R2A-generated Attention from Different Rationales

R2A-generated Attention

Task: Hotel Location

Task: Hotel Cleanliness

R2A-generated Attention

R2A-generated attention changes according to the input rationales.
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R2A-generated Attention vs Oracle Attention

Task: Hotel Location R2A-generated Attention

Oracle AttentionTask: Hotel Location

R2A-generated attention mimics oracle attention



Cosine Distance to Oracle Attention

0

0.2

0.4

0.6

Cleanliness Location

Human rationales R2A-generated attention
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R2A-generated attention is closer to the oracle.
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Can NN do better on small training sets?

Training data: 200 instances 

Er
ro

r

NN SVM



!34

Er
ro

r

NN SVM R2A

Conclusions

Training data: 200 instances 

Yes, it can.
Code & data: https://github.com/YujiaBao/R2A

https://github.com/YujiaBao/R2A


Thank you
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