

Utilizing Semantic Word Similarity Measures for Video Retrieval

Yusuf Aytar

Computer Vision Lab, University of Central Florida yaytar@cs.ucf.edu, yusufaytar@google.com

Problem Overview

Motivation

• It's not possible to train detectors for all of the concepts in the real world.

• Available concept detectors can be used for retrieving **new concepts**.

Goal

• Retrieving **new concepts** with the help of available (known) concept detectors and semantic word similarity measures.

Problem Definition

1. Visual Co-occurrence

The co-occurrence of concepts in the same scene.

 $p(c_{Car}) = 0.067$ $p(c_{Truck}) = 0.011$ PM $p(c_{Car} \& c_{Truck}) = 0.0072$

 $Sim_{Visual}(c_{Car}, c_{Truck}) = Sigmoid(PMI_{Visual}(c_{Car}, c_{Truck})) = 0.91$

2. Semantic Word Similarity

Semantic word similarity is the relatedness of two concepts and it's generally a common sense knowledge that we build for years.

2.1. PMI-IR Similarity

Pointwise mutual information using data collected by information retrieval [Turney'01].

 $p(c_{Car}) = 0.097$

 $PMI_{IR}(c_{Car}, c_{Truck}) = \log\left(\frac{p(c_{Car} \& c_{Truc})}{p(c_{Car})p(c_{Truc})}\right)$

 $Sim_{PMI-IR}(c_{Car}, c_{Truck}) = Sigmoid(PMI_{IR}(c_{Car}, c_{Truck})) = 0.72$

2.2. Lin's Similarity Measure

concepts and normalize it [Lin'98].

$$Sim_{Lin}(c_{Car}, c_{Truck}) = \frac{2 \times IC}{IC(c)}$$

Department of Computer Science, University of Central Florida, Orlando, FL 32816

Mubarak Shah

Computer Vision Lab, University of Central Florida shah@cs.ucf.edu

Similarity Measures

$$H_{Visual}(c_{Car}, c_{Truck}) = \log\left(\frac{p(c_{Car} \& c_{Truck})}{p(c_{Car})p(c_{Truck})}\right) = 2.3244$$

 $p(c_{Truck}) = 0.020$ $p(c_{Car} \& c_{Truck}) = 0.0049$

$$\binom{k}{c_{k}} = \log \left(\frac{hits(c_{Car} \ NEAR \ c_{Truck}) \times WebSize}{hits(c_{Car})hits(c_{Truck})} \right) = 0.943$$

The key idea is to find the maximum information shared by two

Vehicle

WordNet

Truck

Car

vehicle $\mathcal{J}(\overline{LCS(c_{Car}, c_{Truck}))} = 0.78$ $(c_{Car}) + IC(c_{Truck})$

Retrieving New Concepts

The score for the **new concept** is the linear combination of scores of **known concepts** and similarities between new concept and known concepts.

Results

A comparison of different retrieval methods using Average Precision. MAP (Mean Average Precision) is shown at far right

Top 100 retrieval results for the new concept "shouting"

Jiebo Luo **R&D** Laboratories, Eastman Kodak Company jiebo.luo@kodak.com

Semantic Retrieval Method		MAP'06	MAP'07
Vision Based	PMI-IR	3.4%	3.6%
Retrieval	Lin's Similarity	1.1%	2.1%
Text Based Retrieval		1.9%	1.6%
Average Fusion (Text + PMI-IR)		3.7%	3.5%

