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Abstract

The objective of this work is object category detection in
large scale image datasets in the manner of Video Google –
an object category is specified by a HOG classifier template,
and retrieval is immediate at run time.

We make the following three contributions: (i) a new
image representation based on mid-level discriminative
patches, that is designed to be suited to immediate object
category detection and inverted file indexing; (ii) a sparse
representation of a HOG classifier using a set of mid-level
discriminative classifier patches; and (iii) a fast method for
spatial reranking images on their detections.

We evaluate the detection method on the standard PAS-
CAL VOC 2007 dataset, together with a 100K image subset
of ImageNet, and demonstrate near state of the art detection
performance at low ranks whilst maintaining immediate re-
trieval speeds. Applications are also demonstrated using an
exemplar-SVM for pose matched retrieval.

1. Introduction
Over the last decade there has been considerable

progress in immediate large scale object instance retrieval,
where the goal is to instantly retrieve images containing
a specific object in a large scale image dataset, given a
query image of that object [12, 14, 22, 27, 33]. These
methods are now appearing in web and mobile applications
such as Google Goggles, Kooaba, and Amazon’s SnapTell.
Similarly, large scale image classification, where the goal
is to retrieve images containing an object category, has
also seen improvements in both accuracy [6] and descrip-
tors [3, 26]. With the advent of more efficient descriptor
compression methods such as Product Quantization [13] or
binary codes [29, 35, 37] large scale image search can pro-
ceed quickly in memory without requiring (slow) disk ac-
cess, for example by using efficient approximate nearest
neighbor matching or binary operations, respectively.

However, object category detection, where the goal is to
determine the location of any instances of a category present
in an image, has not seen a similar development of imme-

diate large scale retrieval. The complexity of detecting an
object category is still linear in the number of images in
the dataset. Despite methods of greatly speeding up sliding
window search (over all possible scales and positions) on a
per image basis [5, 7, 8, 9, 16, 25, 30, 34, 36], the cost of
applying these methods at large scale is still extremely high.
The objective of this paper is to fill this gap.

To this end, given a HOG classifier template, we inves-
tigate an approach that can immediately retrieve detections
throughout a large scale dataset. Note, the goal is detection
rather than image level classification and consequently we
operate in a very large space of subwindow candidates. The
key idea is to develop a sparse representation of the HOG
template in terms of mid-level discriminative patches, that
is suitable for inverted file retrieval. This enables the scal-
able fast retrieval, and precision is improved by re-ranking
a short list. We are agnostic about the source of the clas-
sifier template; it could be the component of a linear SVM
based object category detection [8], or from an exemplar
SVM (E-SVM) [19, 31], with the latter more suited to de-
tecting object categories in a similar pose. We can also ben-
efit from recent fast methods of training such classifier tem-
plates, such as LDA (Linear Discriminant Analysis) mod-
els [10].

A natural question to ask is why another representation
is needed when there already exists sparse detectors (e.g.
affine-Harris [11, 21]) and descriptors (e.g. SIFT) that are
perfectly adequate for large scale immediate object instance
retrieval (at least if the objects are lightly textured) using
bag-of-visual-word representations [12, 22, 27, 33]. There
are two responses: first, this representation does not gen-
eralize well over the deformation and intra-class variation
required for category (rather than instance) recognition. We
demonstrate the validity of this response empirically in sec-
tion 5.2. Second, and in contrast, the recent development
of mid-level discriminative primitives has shown that they
are suitable for object (and scene) categorization, so they
are clear candidates for our task. In this we are inspired
by the mid-level sparselet features of [9, 34] and the mid-
level discriminative patches used for scene category recog-
nition [2, 15, 23, 24, 32].
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2. Architecture Overview
We first briefly overview the architecture of the ap-

proach, and then describe the stages in more detail in the
following sections. The method follows the framework es-
tablished for the bag-of-visual-words (BoW) instance re-
trieval systems [12, 22, 27, 33] with an offline processing
stage (that can be computationally expensive), followed by
an online search stage using an inverted index and posting-
lists that is fast at run time and scalable. The online search
involves two steps: an initial ranking of the images using
image level vectors alone; followed by reranking of a short
list using spatial information.

In our case the offline stage consists of the following
steps: (i) build a vocabulary of mid-level discriminative
classifier patches (CPs). (ii) represent each image in the
dataset by the maximum response to each of the CPs, i.e.
if there are V CPs then the vector representing each image
would be of dimension V if only the maximum response is
stored; and (iii) compute an inverted index (or equivalently
posting lists) for each CP.

At run time, detection for a given HOG template clas-
sifier then proceeds in three stages (illustrated in figures 1
and 2):
1. Represent the HOG classifier template: The classifier
is approximated by a set of the CPs.
2. Image retrieval: A ‘posting list’ is obtained for each
CP used to represent the template, and those images occur-
ring in the posting lists are ranked based on their aggregated
maximum scores.
3. Rerank a short list: The top K images of the ranked list
are reranked based on the spatial consistency of the maxi-
mum response CPs in that image and/or the original HOG
classifier.

It is worth noting at this point that the reason we store
the maximum response of each CP (rather than the count as
in BoW) for the image representation is that this provides
an upper bound on the score of the (reconstructed) HOG
classifier on that image – see section 3.2 below.

3. Approach
This section describes the scalable detection system. The

two main aspects are the query representation, and the im-
age representation for the dataset to be searched. We de-
scribe how to obtain each of these representations and then
their joint use for fast detection.

3.1. HOG query representation

The query is specified as a HOG classifier template
which can be obtained using various methods (e.g. DPMs,
E-SVMs, LDAs, etc.), and it is represented using a ‘vocabu-
lary’ of CPs. The CPs are essentially parts of classifiers that
have earlier been trained in a discriminative manner using

a DPM on another dataset. The intuition here is that there
are naturally repeating classifier patches that can be shared
across objects, such as parts of wheels, legs, corner-like pat-
terns of doors and windows, etc. The method of generating
the CP vocabulary is described in the implementation de-
tails of section 4.

The query HOG template is approximated by another
HOG template constructed using a sparse weighted com-
bination of CPs. This procedure is illustrated in figure 1,
and the intermediate query representation is referred to as
the reconstructed template (RT). In detail, given the query
HOG template w, the reconstructed template wrt is obtained
from a set of CPs d j by minimizing a sparse learning objec-
tive function:

min
α j
||w−∑

j
α ju j||2 + γ||α||1 st : α j ≥ 0 (1)

wrt = ∑
j

α ju j (2)

where each u j consists of a CP d j located at a position x j
on a w sized zero filled template (as shown in figure 1).
The location x j is determined as the best fit of d j to the
original template w (as measured by sliding d j over w and
selecting the location with maximum normalized dot prod-
uct). The scalar α j is the combination weight of the relo-
cated classifier patch d j, and γ controls the sparsity of the
reconstruction. Large values of γ encourage very sparse re-
constructions, i.e. a small number of CPs are used. Note
that this method differs from the traditional sparse coding
reconstruction of image patches by a dictionary of atoms
(e.g. [18]) by the necessity to choose both the dictionary
element and its specific spatial location on the w sized tem-
plate.

Instead of using all possible u j’s in learning, optimiza-
tion is performed over a smaller subset that is determined
by a similarity (i.e. normalized dot product score) thresh-
olding operation. This simplification allows much faster
optimization, and has a negligible effect on the final result
since the l1 norm on α , which induces sparsity, is already
forcing most of the unrelated α j to zero. Note we do not re-
quire that the chosen CPs are non-overlapping in the recon-
struction wrt . The optimization is performed using SPAMS
toolbox [18].

Discussion. There are many other HOG template recon-
struction methods that could be explored – for example:
dense, or sparse but non-overlapping, or discriminative
learning; and others have considered some of these. In par-
ticular the sparselet representation [34] is learnt as a vocab-
ulary for reconstruction, whereas [9] learns both the vocab-
ulary and the classifiers simultaneously in a discriminative
framework. In future work each of these possibilities can be
explored but, as will be seen in the experiments, the simple
method we have employed is sufficient here.



Figure 1. Query representation. The query HOG template w is approximated with the reconstructed template wrt = ∑ j α ju j which is used
as the intermediate query representation. Note, the representation u j records both the classifier patch (CP) d j used and also its position
relative to the original HOG template.

Figure 2. Detection using a template composed of CPs. Each CP retrieves a posting list of images, and a score for each image is
computed from the weighted maximum response representation. Images are initially ranked on this score, and the top K then reranked
using the spatial information associated with each maximum response.

3.2. Image Representation

This section describes the image representation that is
used for fast detection. The aim is to define a representa-
tion that is suitable for obtaining a good upper bound on the
score of wrt on a given image. Each image in the dataset is
represented as a V -dimensional vector, r, which contains the
maximum scores of each CP evaluated on the image over all
possible locations and scales. The location and the scale of
the CP detection is also stored so that we can obtain a can-
didate bounding box as suggested by the specific CP. These
candidates will be used later for the spatial reranking.

In detail, let Ψ(c, I) be the maximum response of any
classifier template c on the image I over all possible loca-

tions and scales. Then the image representation vector r is
obtained with components r j = Ψ(d j, I) ∀ CPs d j. The vec-
tor r is V dimensional, where V is the size of the vocabulary
of CPs.

Upper bound. For ranking, an image is scored as αTr,
where α is the sparse V -dimensional vector of coefficients
of the reconstructed template wrt . This is an upper bound
on the score of wrt on the image, since

α
Tr = ∑

j
α jΨ(d j, I)≥Ψ(wrt , I) (3)

where the ≥ arises because the maximum response of each
CP can occur at any position and scale, (i.e. there is no rea-



son why the CPs should ‘fire’ at the relative positions as-
signed to them in the wrt template), and the representation
r ignores the spatial locations of the CPs detected on the
image.

Detection information. The vector r, for each image in
the dataset, is sufficient to obtain a ranked list of images, but
additional information is necessary in order to evaluate the
spatial reranking (described below). First, the location and
the scale of the CP detection is also stored so that we can
obtain a candidate bounding box (BB) as suggested by the
specific CP. Second, instead of storing only the maximum
response of each CP, the top R responses (and associated
positions) are stored. As will be seen, this information will
enable multiple instances of the category to be localized in
each image and also improves the localization of each.

3.3. Fast Detection

This section describes how to perform immediate de-
tection using the image and the query representations de-
scribed in the previous two sections. Given a HOG template
as the query the fast detection is performed in three stages:
Query representation. As discussed above in section 3.1
the query HOG template is represented with the recon-
structed template wrt = ∑ j α ju j.
Shortlist retrieval. At this stage a shortlist of images, po-
tentially matching well with the query, are retrieved. The
score of the image Ik for the query wrt is computed as
sk = αTrk where the (sparse) reconstruction weights α are
obtained from the query representation. As noted in sec-
tion 3.2, this score is indeed an approximation of the max-
imum response of wrt evaluated on the image Ik. Then the
shortlist is compiled as the selection of top K images sorted
by the score sk. This stage is carried out very efficiently for
large scale collections using an inverted file index.
Spatial reranking. After obtaining the shortlist of candi-
date images, a reranking process is performed which aggre-
gates the scores of candidate bounding boxes (BB) coming
from each CP (as determined from its position x j in the re-
constructed template). Each firing of a CP d j in the image
proposes a BB in a manner similar to [4, 20].

Given this set of BBs, two spatial reranking methods are
employed. The first, ReRanking (RR) by BB aggregation, is
similar to the Hough transform method used in the Implicit
Shape Model (ISM) of [17] and to the standard method of
greedy non-maximal suppression (NMS) used in object de-
tection. More precisely, if the overlap between two can-
didate BBs is more than 0.5, then they are aggregated by
taking the maximally scoring BB position and summing the
scores coming from the two BBs. Starting with the maxi-
mum scoring BB, this procedure is repeated until there are
no remaining overlapping BBs above the 0.5 overlap thresh-
old. Note that if all the CPs fire with the same relative po-
sitioning as they have in the wrt , in other words all the can-

didate BBs overlap 100%, then this procedure will give the
score of the wrt exactly together with the original bound-
ing box. Also note that specifying the overlap threshold
as 0.5, rather than a larger value, allows a certain degree
of spatial deformation for the detected instance. The sec-
ond reranking method, HOG scoring, is to use the BB to
score a detection using the original HOG classifier template
w. Note, this operation is very fast (compared to sliding w
over the entire image at multiple scales) since the BB spec-
ifies the location and scale, so only a single scalar product
is required, and this is implemented very efficiently using
product quantization (PQ) with a look up table [13, 30, 36].
Note, using PQ for HOG scoring has the additional benefit
of a tremendously decreased (128×) memory footprint for
the dataset HOG representation.

4. Implementation Details
4.1. Construction of Classifier Patch Vocabulary

The vocabulary is composed of CPs obtained from pre-
viously trained classifiers. DPM models are trained using
3 components (6 in total with mirrors) without parts over
1000 classes of the ImageNet 2012 challenge [6] using the
provided images. The training set (∼400 positive images
per class) is used for training and the quality of the detec-
tors are evaluated using a small validation set of 50 positive
images per class and a 1000 randomly selected negative im-
ages. The models achieving over 30% AP (329 models) are
selected as the source for the CPs – we restrict to these as
we wish to use a vocabulary of well trained discriminative
patches.

To build the vocabulary, all patches with sizes of 3× 3,
4×4, 5×5, 6×6, and 7×7 are extracted from the compo-
nents of the trained DPMs. For each size, a k-means clus-
tering is performed with k = 10K centres. Finally from each
cluster the most central patch is selected and is used for the
vocabulary (i.e. we do not use the mean of the cluster as
this tends to average out details). The outcome is five 10K
vocabularies, one for each patch size.

Since the DPMs are trained discriminatively using a
large number of training samples, the vocabulary items have
a strong ‘sense’ of foreground/background discrimination,
and since they are extracted from semantically meaningful
objects, they possess certain spatial semantic properties as
well.

4.2. The inverted index and offline processing

For each image in the test dataset, the maximum re-
sponse of each CP together with the corresponding loca-
tions and scale is computed and stored (non-maximum sup-
pression is used while extracting the top R responses for
each CP). If there are V CPs and N images, and R = 1, then
this is equivalent to a V ×N matrix M where each entry m ji



Methods NC NR NW PR@10 PR@50 PR@100 AP Time
Original w SW - - 0 100.0 98.0 77.0 31.1 ∼ 1.3 hrs
Reconstructed wrt SW (6CPs) 6 - 0 90.0 88.0 63.0 19.7 ∼ 1.3 hrs
Fast Search (FS) 6 1 0 70.0 58.0 39.0 9.1 0.2 s
FS + Reranking (RR) 6 1 0 80.0 62.0 38.0 9.4 0.3 s
FS + HOG-SC 6 1 1K 90.0 74.0 45.0 12.3 1.2 s
FS + RR + HOG-SC 6 1 1K 90.0 80.0 49.0 13.3 1.3 s
FS + HOG-SC + PQ 6 1 1K 90.0 74.0 42.0 11.4 0.8 s
FS + RR + HOG-SC + PQ 6 1 1K 90.0 74.0 46.0 12.3 0.9 s
FS 6CP + ALL-BB + HOG-SC 6 1 6K 90.0 84.0 61.0 18.6 5.5 s
FS 9CP + ALL-BB + HOG-SC 9 1 9K 100.0 88.0 63.0 19.4 7.8 s
FS 17CP + ALL-BB + HOG-SC 17 1 17K 100.0 86.0 63.0 19.7 12.4 s
FS 6CP + TOP-3 + ALL-BB + HOG-SC 6 3 18K 90.0 86.0 62.0 21.4 14.6 s
FS 9CP + TOP-3 + ALL-BB + HOG-SC 9 3 27K 100.0 88.0 66.0 21.9 23.4 s
FS 6CP + TOP-5 + ALL-BB + HOG-SC 6 5 30K 90.0 86.0 60.0 21.8 29.3 s
FS 9CP + TOP-5 + ALL-BB + HOG-SC 9 5 45K 100.0 86.0 65.0 22.7 36.2 s

Table 1. Comparison of sliding window (SW) and fast search (FS) detection performance on VOC07 test for a single template.
The template is a side-facing bicycle component from a DPM. NC: number of CPs used in template reconstruction; NR: number of top
responses stored for each CP in each image; NW: number of re-evaluated windows using HOG scoring – this is a good indication of the
overall cost. Compared methods: (i) exhaustive sliding window search with the original HOG template (Original w SW); (ii) exhaustive
sliding window search with the reconstructed template (Reconstructed wrt SW); (iii) fast search (FS) through the use of inverted index files;
and (iv) fast search with a number of reranking methods as described in section 3.3: BB aggregation reranking (RR) which aggregates the
scores coming from different CPs; and HOG scoring (HOG-SC). “+ PQ” is used for denoting the use of product quantisation during HOG
scoring. In “FS + HOG-SC” and “FS + RR + HOG-SC” the HOG scoring is only applied to the best BB in the image; whilst for “ALL-BB
+ HOG-SC”, HOG scoring is applied to all the candidate BBs suggested by the CPs. Note, the number of rescored windows (NW) using
the original HOG template is NC × NR × 1000 for ”ALL-BB‘”. Timings are for a single core. Recall-rank curves are displayed together
with the AP scores. Note that (i) the performance approaches that of the original HOG template, and (ii) the tremendous timing difference
between exhaustive and fast search. A 5×5 patch size is used for this experiment.

is the maximum response of the jth CP on the ith image.
Since the approximated template is composed from a small
number of CPs, obtaining the scores for all images involves
computing a weighted sum of a small number of rows of
M. In practice the matrix is sparse as only scores above a
threshold need be stored.

For the large scale regime, or for R > 1, it is more ef-
ficient to store an inverted index, where each entry is a
posting list for the CP containing: the image identifier, re-
sponses to the particular CP in that image, and the location
and scale of the associated templates.

The offline process, using our brute-force implementa-
tion, takes about a minute per image to compute the re-
sponses of 10K dictionary items at all scales and positions,
however this can be done very efficiently (∼ 5 sec) using
[5, 34].

5. Experiments

The objective of these experiments is to investigate the
performance of the retrieval architecture first as the key pa-
rameters are varied, and then as the number of images are
scaled up. Performance here includes timings (as we are in-
terested in immediate retrieval), but principally in measur-
ing how rankings differ from using the original HOG clas-
sifier (or set of HOG classifiers in the case of a DPM). This
difference is termed the ‘mAP gap’ in [28].

The experiments are conducted on two image datasets:
(1) the test set of the PASCAL Visual Object Classes 2007
challenge, which will be referred to as VOC07; and (2) the
validation sets of the ImageNet Large Scale Visual Recogni-
tion Challenge 2011 and 2012 [6], referred to as ImageNet.
The number of test images in VOC07 is ∼5K, and in Ima-

geNet ∼100K. The method is assessed on VOC07 alone,
and then on VOC07+ImageNet for large scale detection,
where the 100K images of ImageNet act essentially as dis-
tractors.

We evaluate the methods based on their object category
detection performance in terms of average precision (AP),
and precision of the top 10, 50 and 100 ranked detections.
Here we follow the VOC practice and software (for example
using an overlap threshold of 0.5 between prediction and
ground truth for a true positive detection).

5.1. Evaluation on a single component

Initially we evaluate the framework with a single side-
facing bicycle component which is obtained from a three
component DPM model trained using VOC07 data. The
test performance is assessed using all bicycle instances (i.e.
not only restricted to side-facing bicycles). We compare the
precision and recall as the key parameters of the fast search
system are varied, namely: NC, the number of CPs used in
template reconstruction (achieved by varying γ); and NR,
the number R of top detection responses stored for each
CP for obtaining candidate BBs in each image. The recon-
struction is performed using a 5×5 vocabulary and the top
K = 1000 images are reranked in the shortlisting stage. The
results are presented in table 1 which also includes plots of
recall against rank.

The detection results show that the maximum response
representation with spatial reranking does indeed enable
immediate detection, with precision at low rank (up to 50)
being comparable to exhaustive search with the original de-
tector. The timings are 1.3 seconds compared to 1.3 hours.
With fewer CPs the retrieval is faster, however increasing
the number of used CPs increases the performance. Re-



PR@10 Results aero. bike bird boat bottle bus car cat chair cow table dog horse m.bike person plant sheep sofa train tv mean
Original SW 100 100 30 70 100 100 100 40 100 80 60 20 100 100 100 70 80 100 90 100 82.0
Reconstructed SW 20 100 60 30 40 70 100 0 30 40 10 10 60 90 70 0 20 0 80 70 45.0
FS + HOG-SC 70 100 10 20 40 90 90 0 20 90 0 0 90 70 70 10 20 0 70 60 45.9
FS + RR + HOG-SC 70 100 30 30 60 90 90 10 40 70 10 10 90 90 70 0 50 0 90 70 53.5
Video Google 10K 40 80 0 0 0 20 60 10 0 10 0 10 100 55 60 0 0 10 50 10 25.8
Video Google 200K 80 90 0 10 0 10 60 10 0 10 0 10 90 87 50 0 0 10 70 70 32.9
PR@50 Results aero. bike bird boat bottle bus car cat chair cow table dog horse m.bike person plant sheep sofa train tv mean
Original SW 64 98 20 42 72 94 100 22 86 66 28 8 94 86 94 42 44 65 82 86 64.7
Reconstructed SW 12 98 30 18 28 32 82 6 16 22 2 8 28 54 72 0 14 0 46 46 30.7
FS + HOG-SC 40 94 8 14 24 40 88 0 8 35 4 0 54 32 74 6 6 0 24 27 28.9
FS + RR + HOG-SC 42 94 14 20 34 62 94 4 16 44 4 2 67 50 76 6 18 0 52 36 36.8
Video Google 10K 20 44 0 0 0 6 72 2 0 2 2 6 60 35 16 0 0 2 10 18 14.8
Video Google 200K 28 32 0 2 2 14 64 2 0 6 0 2 62 45 40 0 0 2 18 28 17.4
PR@100 Results aero. bike bird boat bottle bus car cat chair cow table dog horse m.bike person plant sheep sofa train tv mean
Original SW 51 95 15 27 44 72 98 15 64 51 23 7 85 74 90 25 32 40 70 67 52.4
Reconstructed SW 10 80 18 11 19 23 72 6 13 18 1 10 27 39 64 0 14 0 27 42 24.8
FS + HOG-SC 21 77 5 9 16 27 84 0 4 24 4 0 32 22 73 5 3 0 16 18 22.0
FS + RR + HOG-SC 22 79 7 12 21 36 88 2 12 31 6 1 44 32 73 6 13 0 34 29 27.5
Video Google 10K 14 27 2 0 0 5 55 1 0 1 2 4 36 21 13 0 0 1 7 14 10.2
Video Google 200K 16 21 0 1 1 8 47 1 1 3 0 1 44 26 23 0 0 1 11 17 11.1

Table 2. Performances of the complete DPM detector (3 components) on the VOC07 test set. Note that fast search approaches the
performance of the original sliding window, though with significantly smaller search times, and clearly outperforms Video Google.

call can be increased at higher ranks by storing more CP
responses and BBs per image, and a very respectable AP
of 22% can be reached (compared to the original 31%) but
at the increased cost of around 30s for the retrieval. Note
though that these timings are evaluated using a single core,
and the HOG rescoring operations can easily be paralellized
and obtained much faster with a multiple core implementa-
tion.

Approaches such as cascade detection [8], branch and
bound [16], and product quantization [13, 30, 36] also im-
proves the detection speed per image, but scale linearly with
the number of images as opposed to the near constant time
complexity of fast search (∼ 1sec).

5.2. Fast detection using a DPM

In the previous section the experiments were conducted
on a single template. Here we evaluate a DPM models with
multiple components (templates) over all the VOC classes.
The DPM models are trained on VOC07 train/val using 3
components (6 with mirrors) but excluding parts. For the
fast search implementation, each component of the DPM
model is reconstructed and used to retrieve a ranked list of
detections; these lists are then aggregated using the weight-
ings and NMS from the DPM model. The performances are
reported in table 2 for a CP size of 5×5.

As a related baseline we also adapt a Video Google (VG)
[33] like BoW approach to object category detection, us-
ing an implementation with sparse affine-covariant detec-
tions and SIFT descriptors as described in [1]. In VG cate-
gory detection all the training BBs are used as queries and
the returned list of detections (together with their matching
scores) are merged by a simple ranking based on scores (the
score is the number of inliers to the estimated affine trans-
formation between the query and target BB). This ranking
method is recommended in [1] for merging the returns from
multiple queries. VG is performed with two different vo-
cabulary sizes, 10K and 200K. There exist 332 queries per
class on average and each query takes about 100ms, hence
the timing per class is around ∼ 30 seconds. The timings
for fast search is around 6 seconds per class since there are

PR@10 Results 3x3 4x4 5x5 6x6 7x7
Reconstructed SW 57.5 52.0 45.0 43.0 49.0
FS + HOG-SC 23.5 44.0 45.9 53.3 48.0
FS + RR + HOG-SC 34.5 53.7 53.5 59.9 53.5
PR@50 Results 3x3 4x4 5x5 6x6 7x7
Reconstructed SW 43.2 35.7 30.7 28.8 34.2
FS + HOG-SC 13.1 24.2 28.9 33.8 35.2
FS + RR + HOG-SC 20.9 32.1 36.8 39.7 38.7
PR@100 Results 3x3 4x4 5x5 6x6 7x7
Reconstructed SW 34.1 29.4 24.8 21.7 27.2
FS + HOG-SC 8.7 17.5 22.0 24.5 25.9
FS + RR + HOG-SC 14.6 22.8 27.5 29.9 29.4

Table 3. DPM detector performance as a function of CP size.
As CP size increases, the performance of fast search gradually in-
creases, reaching a limit at 6×6. For Video Google and Original
SW results, please refer to table 2

6 components.
From the mean (average over class) performance it can

be seen that that FS with spatial reranking: (i) outperforms
the DPM using reconstructed templates, (ii) approaches the
level of the original DPM models (see the performances of
bike and car classes in table 2), and (iii) outperforms VG
substantially (by a factor of two at rank 100). Interestingly,
VG has a similar performance to FS for some classes (e.g.
horse and motorbike) but fails completely for several others
(e.g. cow).

5.3. Effect of CP size

As in the previous section, we evaluate the FS version of
the DPM detector over all 20 classes of VOC07, and report
the mean performance in table 3 as the the CP size varies
from 3× 3 to 7× 7. As would be expected, the quality of
reconstruction generally decreases with increase in CP size
(since smaller CPs can better match the original template),
and this is reflected in the decrease in reconstructed tem-
plate (SW) results. However, as CP size increases, the CPs
become more semantically meaningful and discriminative,
and this improves the quality of the fast search results (less
false positives). Consequently, at around a size of 6× 6
FS methods obtains better performance than reconstructed
template SW (as noted above, FS with HOG scoring using
original HOG template can exceed the performance of the



Figure 3. Comparison of top 10 detections of the side-facing bicycle component over 5K and 105K test sets.

PR@10 PR@50 PR@100 TIME
VOC07 FS 70.0 58.0 39.0 123 ms
(5K) FS + RR 80.0 62.0 38.0 238 ms
ImageNet FS 50.0 36.0 39.0 121 ms
+ VOC07 FS + RR 60.0 42.0 40.0 244 ms

Table 4. Detection performance of the side-facing bicycle com-
ponent evaluated at large-scale (∼105K). Neither the timings
nor the performances are affected much by the additional ∼100K
distractors.

reconstructed template SW).

5.4. Large scale detection

In this experiment we extend the VOC07 test set by
adding distractors from ImageNet validation sets. In the
combined test set we have ∼105K images. Since we don’t
have reliable ground truth for the ImageNet set, we perform
manual evaluation.

We evaluated the side-facing bicycle component on
VOC07 alone and on the combined set. The results are
shown in table 4 and figure 3. We observe that the quality of
the detections at low ranks is not affected by the distractors
coming from ImageNet, and the timings are similar even
though we move from a 5K to a 105K set, i.e. scaling up to
large databases does not affect the speed or accuracy of the
system – our original objective.

Note that the drop in performance with the ImageNet dis-
tractors at lower ranks is due to tandems (see figure 3) – two
of these appear in the top 10, and are not counted as bicy-
cles hence marked as false retrievals. If we count them as
bicycles as well, the performance would be much higher.

5.5. Fast Detection using E-SVMs

Finally, we use the fast search for templates obtained
from E-SVM models for VOC07, and compare the perfor-
mance to the original E-SVM template and to Video Google
(where for VG the query is the image BB that is used to de-
termine the E-SVM). For the quantitative results, E-SVMs
are trained for 50 BBs randomly selected for each of the 20
classes. The truncated and the difficult BBs are not used
for training since they are not good representatives of the
class. Each E-SVM model is evaluated individually for the
category that it belongs to.

Many of the original E-SVMs (using sliding window
search) do not return any positive images within the top 10
retrievals. Therefore, for a more sound evaluation, we use
only the 192 queries where either the original E-SVM or the
reconstructed one retrieves at least three instances of the tar-
get class within the top 10 using sliding window search. Ta-

PR@10 PR@50 PR@100 TIME
Original SW 46.8 24.9 17.0 ∼ 1.3 hrs
Reconstructed SW 31.7 21.1 15.8 ∼ 1.3 hrs
Fast Search (FS) 15.4 8.7 6.4 0.2 s
FS + RR 15.5 8.7 6.5 0.3 s
FS + RR + HOG-SC 24.5 13.0 9.0 1.1 s
Video Google 10K 8.8 4.5 3.0 0.1 s
Video Google 200K 4.0 0.8 0.4 0.1 s

Table 5. Mean performance comparison of sliding window
(SW) and fast search (FS) methods on VOC07 test set using
192 E-SVMs trained from randomly selected samples from the
20 classes of VOC07 training set. Note the tremendous timing
difference between sliding window methods (which employs ex-
haustive search) and fast search methods.

ble 5 reports the mean (class average) performances of the
E-SVM queries. Again, the FS with reranking performance
at low ranks is quite good – though not at the same level as
for the DPM trained templates of table 2. This is because
the E-SVM templates cannot be represented so well by the
CPs since E-SVMs are not such ‘pure’ detectors. Again, the
fast search methods perform significantly better than Video
Google, with similar timings. Figure 4 shows qualitatively
the retrieved images for a sample of E-SVMs.

6. Summary and discussion
Traditionally object category detection is performed in a

sliding window fashion, which is a very costly procedure
for large scale datasets. We have presented a fast, scalable,
detection framework which obtains near state of the art low
rank results immediately. It is now possible, by learning the
HOG classifier using an E-SVM or LDA (see figure 4), to
go from specifying a visual query in an image, to retrieving
object category detections over a large scale dataset in just a
matter of seconds on a single core. Furthermore, recall can
be increased to quite satisfactory levels at a cost of greater
retrieval times, though these costs can be ameliorated by
simple multi-core parallelism of the spatial reranking.
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