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a b s t r a c t

Exemplar SVMs (E-SVMs, Malisiewicz et al., ICCV 2011), where an SVM is trained with only a single positive

sample, have found applications in the areas of object detection and content-based image retrieval (CBIR),

amongst others.

In this paper we introduce a method of part based transfer regularization that boosts the performance of

E-SVMs, with a negligible additional cost. This enhanced E-SVM (EE-SVM) improves the generalization abil-

ity of E-SVMs by softly forcing it to be constructed from existing classifier parts cropped from previously

learned classifiers. In CBIR applications, where the aim is to retrieve instances of the same object class in a

similar pose, the EE-SVM is able to tolerate increased levels of intra-class variation, including occlusions and

truncations, over E-SVM, and thereby increases precision and recall.

In addition to transferring parts, we introduce a method for transferring the statistics between the parts and

also show that there is an equivalence between transfer regularization and feature augmentation for this

problem and others, with the consequence that the new objective function can be optimized using standard

libraries.

EE-SVM is evaluated both quantitatively and qualitatively on the PASCAL VOC 2007 and ImageNet datasets for

pose specific object retrieval. It achieves a significant performance improvement over E-SVMs, with greater

suppression of negative detections and increased recall, whilst maintaining the same ease of training and

testing.

© 2015 Elsevier Inc. All rights reserved.
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Content based image retrieval (CBIR), the problem of searching

digital images in large databases according to their visual content, is

a well established research area in computer vision. In this work we

are particularly interested in retrieving subwindows of images which

are similar to the given query image, i.e. the goal is detection rather

than image level classification. The notion of similarity is defined as

being the same object class but also having similar viewpoint (e.g.

frontal, left-facing, rear etc.). A query image can be a part of an ob-

ject (e.g. head of a side facing horse), a complete object (e.g. frontal

car image), or a composition of objects (e.g. person riding a horse).

For instance, given a query of a horse facing left, the aim is to retrieve

any left facing horse (intra-class variation) which might be walking or

running with different feet formations (exemplar deformation).

Recently exemplar SVMs (E-SVM) [33], where an SVM is trained

with only a single positive sample, have found applications in the

areas of CBIR [3,40] and object detection [33]. Since the E-SVM is

trained from a single positive sample (together with many negatives),

it is specialized to that given sample. This means that it can be strict
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on viewpoint for example), and the negatives give some background

uppression. However, the single positive is also a limitation: only

o much can be learnt about the foreground of the query (and this

an lead to false detections), and more significantly it can lead to lack

f generalization. In our context, generalization refers to intra-class

ariation and deformation whilst maintaining the viewpoint. Learn-

ng such generalization from a single positive is challenging given the

ack of examples of allowable deformations and intra-class variation.

In this work we propose a transfer learning approach for boosting

he performance of E-SVMs using part-like patches of previously

earned classifiers. The formulation softly constrains the learned

emplate to be constructed from classifiers that have been fully

rained (i.e. using many positives). For instance, the neck of a horse

an be transferred from the tail of an aeroplane (see Fig. 1), or a

umping bike can borrow part of wheel patches from regular side

acing bike or motorbike classifiers (see Fig. 2). The intuitive reason

ehind borrowing patches from other well trained classifiers is that

hese classifier patches bring with them a better sense of discrim-

native features and background suppression, and also bring some

eneralization properties. The result of the transfer learning is an

nhancement of background suppression and tolerance to intra-class

ariation, hence better coping with occlusions and truncations in the
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Fig. 1. Overview of the EE-SVM learning procedure. The box on the right shows mining classifier patches from existing classifiers by matching subparts of E-SVM trained from the

given query image. Comparing E-SVM and EE-SVM, better suppression of the background can be seen from the visualized classifiers. Note, here and in the rest of the paper we only

visualize the positive components of the HOG classifier.

Fig. 2. Two limits of EE-SVM from reconstruction(γ = 0.01) to E-SVM(γ = 10). Learned EE-SVM templates with varying γ values are displayed. λ is fixed to 1.
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uery image. However, these enhancements incurs no (significant)

dditional cost in learning and testing. We term the boosted E-SVM,

nhanced exemplar SVM (EE-SVM).

Objects and parts don’t occur in isolation to each other. They ap-

ear with certain correlations in nature. For example, we don’t ex-

ect to see a zebra in a city scene with road and cars or a bicycle

ext to a sailing boat in the middle of the sea. Stemming from these

bservations, co-occurrence statistics are utilized in the computer vi-

ion problems such as object detection [12], and semantic segmenta-

ion and labeling of objects [25,38] in the scenes. Similarly parts also

ppear with certain correlations: occurrence of feet supports occur-

ence of a head, or seeing one wheel increases the chance of seeing

nother in the close neighborhood. Parts can also have negative cor-

elations, i.e. it is not expected to see spider legs or parts of insects in

he close neighborhood of vehicle-like patches. Hence we can trans-

er not only parts, but also their natural co-occurrence statistics. We

nclude these co-occurrence statistics of the parts, in a convex formu-

ation, for softly enforcing these positive and negative correlations, in

he EE-SVM objective.

We describe the relation with the prior work in Section 1, and then

ntroduce the enhanced E-SVM in Section 2, and incorporate part cor-

elations in Section 3. We relate introduced transfer learning meth-

ds with feature maps in Section 4. We give implementation details

n Section 5. Finally we present a quantitative and qualitative evalua-

ion in Section 6. Although it might be feared that judging the quality

f retrieval results will be very subjective, we show that available an-
otation and measures from the PASCAL VOC [17] can be used for this

ask.

. Relation to prior work

Exemplar SVMs are utilized in a variety of problems including

bject detection[33], face recognition[28], transferring segmenta-

ions masks and semantic scene parsing[45,51], cross domain image

atching (matching drawings to pictures)[2,40], transferring 3D ge-

metry [1,33], and transferring labels to 3D point clouds [50]. Here

e propose a method for improving the quality of E-SVMs, which will

otentially boost these performances of all these methods.

Our work uses the notion of parts as patches of classifier tem-

lates. Many other studies utilize shared parts across different

lasses. Torralba et al. [48] introduced a method for sharing small

atch oriented templates in a boosting framework and Opelt et al.

34] extended this approach to shared boundary fragments. Fidler

t al. [20] explored the shareability of features among object classes

n a generative hierarchical framework. Stark et al. [44] proposed

method for transferring part-like shape features through ex-

licit migration of model parameters for each part; however this

ransfer is manual at the moment. Ott and Everingham [35] intro-

uced part sharing across classes for object detection in the frame-

ork of discriminatively trained part-based models [19]. In [22,42]

OG based templates are represented as a sparse reconstruction

f shared parts (sparselets) which enable very fast evaluation of
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multiple detectors. Dean et al. [9] also use the notion of part shar-

ing for efficient evalution of large number of detectors. In another

perspective Aytar and Zisserman [4] use shared parts to reconstruct

and evaluate a single detector very fast on large image collections

using inverted file indexing. Endres et al. [16] proposes to learn a

diverse collection of discriminative parts from object bounding box

annotations and utilize it for object category detection. Recently

mining mid-level discriminative patches for scene understanding

[13,14,23,36,37,41] has attracted considerable attention for their au-

tomatic discovery of distinctive parts for scene recognition. Mid-level

discriminative patches are also utilized for inferring the 3D surface

normals given a single image [7], and aligning object parts in order to

discover visual connections in space and time [27] .

The proposed approach also has a strong relation to the line of

work that focuses on enriching the image descriptors with the re-

sponses of mid-level and high-level classifiers [18,24,26,29,30,43,54].

These approaches either replace or augment the original low-level

descriptor with the outputs of higher level classifiers. The proposed

method also employs a similar augmentation scheme; however we

augment the feature vector with the responses of previously learned

classifier patches which are selected and relocated based on the qual-

ity of match with an E-SVM template learned from the query image.

Our approach can be viewed both as a transfer regularization ap-

proach and a feature augmentation approach. Hence it constructs an

equivalence between these two views. We explicitly prove this equiv-

alence and discuss its implications in Section 4.

2. Enhanced exemplar SVM

This section discusses the E-SVM formulation and introduces the

enhanced E-SVM objective. The formulation of the E-SVM [33] is:

minw,b λ||w||2 +
N∑
i

max
(
0, 1 − yi(wTxi + b)

)
(1)

where λ controls the weight of regularization term, w is the classifier

vector, b is the bias term, xi and yi are the training samples and their

labels, respectively. Note that there is only one positive sample in the

training set and its error is weighted more (50 times in [33]) than

the negative samples. In order to simplify the formulation, different

weightings of positive and negative samples are not explicitly shown.

In enhanced E-SVM, part based transfer regularization is incorpo-

rated to the E-SVM formulation. The objective is:

minw,b,α λ||w −
M∑
i

αiui||2 + γ
M∑
i

α2
i

+
N∑
i

max
(
0, 1 − yi(wTxi + b)

)
(2)

st : αi ≥ 0, ∀i

where λ and γ controls the balance between the two regularization

terms as well as the tradeoff between error term and regularization

terms. ui’s are the classifier patches cropped from source classifiers

and relocated on a w sized template padded with zeros other than

the classifier patch (see Fig. 1), and αi’s are transfer weights. As αi’s

are the reconstruction weights on ui’s and negative use of a part is not

possible, non-negativity constraints are imposed on αi’s. Note that

given a fixed set of ui’s the formulation is convex.

The two limits of this formulation are E-SVM and reconstruction

from the classifier patches. As γ → ∞, since αi’s will be forced to be

zero due to infinite penalization,
∑M

i αiui will be a zero vector and (2)

converges to the E-SVM formulation (1). As λ → ∞, w will be forced

to be equal to
∑M

i αiui and thus it will be forced to be constructed

as a weighted combination of ui’s. Therefore by adjusting λ and γ
we can obtain a midway solution between E-SVM and reconstruction
rom the other classifiers. Fig. 2 shows the smooth transition from

econstruction to E-SVM by changing γ with a fixed λ.

Discussion. Transfer regularization is introduced as an adaptive

VM (A-SVM) [31,52] which transfers information from a single aux-

liary classifier. Subsequently A-SVMs were extended to transfer from

ultiple classes [53]. The proposed formulation is also a transfer

egularization objective which transfers from the parts of previously

earned classifiers. The main difference to [53] is that we control the

eight of transfer with an additional regularization term (γ
∑M

i α2
i
)

here γ → ∞ indicates no transfer and γ → 0 indicates maximum

ransfer. The equivalence of this formulation to a “classical” SVM for-

ulation and advantages will be elaborated in Section 4. Note that

his formulation is not specific to E-SVM and this transfer regulariza-

ion can also be applied to “classical” SVM formulations.

. Incorporating part correlations to EE-SVM

Parts generally occur with certain correlations. The existence of

part hints about the existence or absence of some other parts. For

nstance the occurrence of an up-left window-corner-like part might

ncrease the occurrence probability of up-right window-corner-like

art and decrease the existence probability of a zebra-face-like part.

onsequently, in addition to transferring parts from the well trained

ource classifiers, we can also transfer statistical correlations be-

ween parts. This section will elaborate on the incorporation of such

airwise statistical correlations in the EE-SVM objective.

One common approach for enforcing pairwise statistics is per-

ormed through pairwise potential functions using Markov random

elds (MRF) or conditional random fields (CRF) frameworks [5]. These

otential functions are mostly non-convex and defined over discrete

andom variables; however, they can be efficiently optimized using

raph-cuts or linear programming relaxations. Unfortunately they are

ot directly applicable for the SVM framework. Here we introduce a

airwise potential function that is convex and can be conveniently

pplied to convex regularized risk minimization frameworks, par-

icularly SVMs. We are particularly interested in enforcing pairwise

tatistics in the transfer regularization formulations (i.e. Eq. 3) where

he correlation is enforced on the activation of classifier parts ui’s in

rder to construct the classifier w. Assuming that a positive value of

i represents the activation of the part ui and αi = 0 indicates that

i is not activated, the pairwise statistics can be captured through

orrelations between αi, αj pairs. The energy function to enforce this

tatistics can be defined as:

inα φ(α) =
∑
i, j

Ci j||αi − α j||2 (3)

here Cij is the pairwise correlation between the variables αi and αj.

hen, the complete transfer objective is:

minw,b,α λ||w −
M∑
i

αiui||2 + γ
M∑
i

α2
i

+
N∑
i

max
(
0, 1 − yi(wTxi + b)

)

+ θ
M,M∑

i, j

Ci j||αi − α j||2 st : αi ≥ 0, ∀i (4)

here θ is the hyperparameter that controls the weight of enforcing

tatistical correlations.

Intuitively a positive Cij enforces the values of αi and αj to be as

lose as possible, therefore if one activated the other will be as well,

specially when Cij is a very high positive value. Conversely, a nega-

ive Cij forces them to be as distinct as possible. However this objec-

ive is not necessarily convex, particularly when Cij contains negative

alues. In order to obtain a convex energy function, we introduce a
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light addition to the pairwise potential and define φ̄ as:

¯ (α) =
∑
i, j

Ci j||αi − α j||2 − 4
∑

i

D−
ii
α2

i (5)

=
∑
i, j

C+
i j
||αi − α j||2 −

∑
i, j

C−
i j
||αi + α j||2 (6)

here the pairwise correlation matrix C is decomposed into its pos-

tive and negative components as C = C+ + C−, D+ is a diagonal ma-

rix with entries D+
ii

= ∑
j C+

i j
, and D− is a diagonal matrix with en-

ries D−
ii

= ∑
j C−

i j
. Intuitively by introducing more penalization (i.e.

4
∑

i D−
ii
α2

i
) over highly negatively correlated αi’s, which is sensible

ince these αi’s have smaller probabilities to be activated, we can ob-

ain a convex pairwise potential (6). Finally by plugging φ̄(α) into (4)

s the pairwise potential, we obtain a convex minimization objective

hat combines transfer regularization and co-occurrence statistics of

he parts:

inw,b,αλ||w −
M∑
i

αiui||2 + γ
M∑
i

α2
i

+
N∑
i

max
(
0, 1 − yi(wTxi + b)

)
(7)

+θ

(
M,M∑

i, j

C+
i j
||αi − α j||2 −

M,M∑
i, j

C−
i j
||αi + α j||2

)
st : αi ≥ 0, ∀

his new version of EE-SVM will be referred to as EE-SVM-COR. The

art correlations are learnt from the source filters, and the implemen-

ation details will be discussed in Section 5.

Discussion. Another way of enforcing part correlations is to use

nverse covariance matrix regularization, i.e. αT�−1α, assuming that

is a valid covariance matrix. However, due to the large number of

arameters and the limited samples the estimated � may not be pos-

tive definite which prevents us from computing the inverse. In [21] �

s treated as an affinity matrix (i.e. stronger correlation means higher

ffinity). They directly used it for constructing the precision matrix of

Gaussian and used it in the regularization as αT(I − λ�)α, where

is a hyperparameter that ensures the positive definiteness. We also

reat the correlation matrix Cij as an affinity matrix and enforce part

orrelations in a similar manner. The detailed derivations of the for-

ulations are given in Section 4.

. Relating feature maps, transfer learning and optimization

In this section, initially we will investigate transforming transfer

earning formulations to a “classical” SVM formulation, which comes

ith the benefit of using easy and robust optimization for trans-

er learning approaches and makes it potentially possible to use for

ractical purposes without the need of expert knowledge in transfer

earning. Several equivalence relations between transfer regulariza-

ion and feature mapping will be investigated, and their correspond-

ng implications will be discussed.

.1. Transfer regularization by feature mapping

Transfer regularization [52] is applied for many transfer learning

pproaches in object classification and detection. We’ll start with the

eneral form of the formulation used by [47] for transferring from

ultiple sources which uses squared loss. Due to the robustness of

he hinge loss over the squared loss, we substitute the squared loss

erm with the hinge loss and obtain:

inα,w,b λ||w −
M∑
i

αiui||2 +
N∑
i

max
(
0, 1 − yi(wTxi + b)

)
(8)

st : ||α|| ≤ 1
here ui’s are the source classifiers and αi’s are the corresponding

eights of transfer for each source classifier. After a slight modi-

cation to the transfer regularization formulation (i.e. from (8) to

2) by bringing the constraint into the objective), we will transform

he problem to a “classical” SVM formulation through a feature aug-

entation approach. The derivation below steps through the rear-

angements for mapping the transfer regularization objective to an

quivalent “classical” SVM formulation where the feature vector is

ugmented with the responses of source classifier models. Let w =
ˆ + ∑M

i αiui, and then the derivation is:

||w −
M∑
i

αiui||2 + γ
M∑
i

α2
i +

N∑
i

max
(
0, 1 − yi(wTxi + b)

)
(9)

= λ||ŵ||2 + γ
M∑
i

α2
i

+
N∑
i

max

⎛
⎝0, 1 − yi

⎛
⎝ŵTxi +

(
M∑
i

αiui

)T

xi + b

⎞
⎠

⎞
⎠ (10)

||w̄||2 +
N∑
i

max
(
0, 1 − yi(w̄Tx̄i + b)

)
(11)

here

¯ = [
√

λŵ;√
γα1;√

γα2; ...;√
γαM],

x̄i =
[

1√
λ

xi;
1√
γ

uT
1 xi;

1√
γ

uT
2 xi; ...; 1√

γ
uT

Mxi

]
,

¯ is the transformed classifier and x̄i is the augmented feature vec-

or with the responses of u’s on xi. The classifier w, the solution

o the original problem (9), can easily be computed from w̄ since

= ŵ + ∑M
i αiui. As is clear from (11), the transformed problem is a

classical” SVM formulation with feature augmentation, and it can be

ptimized efficiently using existing powerful SVM solvers. Note that

his derivation is applicable to both EE-SVM objective and previously

sed transfer regularization formulations.

Discussion. The major implication of this derivation is that trans-

er regularization can also be stated as a classical SVM minimization

roblem where the feature vector is augmented with the responses

f source classifiers. This equivalence constructs a bridge between pa-

ers implementing feature augmentation or populating the features

ith the responses of high-level classifiers [15,18,24,26,32,49,54]

nd papers performing transfer regularization [46,47,52,53]. An-

ther direct implication is that transfer regularization approaches

46,47,52,53], which requires specialized optimization, can be refor-

ulated to be efficiently optimized with the state-of-the-art SVM

olvers.

Another way of converting (9) to a normal SVM formulation would

e solving α analytically and substituting it into the original equation.

et the regularization part of (9) be R = λ||w − Uα||2 + γ ||α||2 then

he derivation is as follows:

∂R

∂α
= 0 → α = λ(γ I + λUTU)−1UTw (12)

y substituting α in to R we obtain:

=
√

λ(I − λU(γ I + λUTU)−1UT) + λ
√

γ (γ I + λUTU)−1UT

(13)

= ||Mw||2 = wTMTMw (14)

imilar to the derivation in (11), this regularization can also be imple-

ented as a feature transformation (i.e. w̄ = Mw, x̄i = (MT)−1xi)

nd solved using a normal SVM formulation.
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4.2. Enforcing co-occurrence statistics by feature mapping

This section will discuss how to map the objective (7) to a “classi-

cal” SVM formulation by defining appropriate feature maps. Initially

the formulation will be converted to a graph Laplacian form, and

then by incorporation of some new variables, a few pseudo-training

samples and appropriate rearrangements the objective will be trans-

formed to a linear SVM objective.

Assuming that Cij are the weights on a graph, φ(α) in (3) can be

re-written in the form below:

φ(α) =
∑
i, j

Ci j||αi − α j||2 = 2αTLα (15)

where L = D − C, Dii =
∑

j

Ci j,

where L is the graph Laplacian. Similarly we can rewrite φ̄(α) in (5)

as:

φ̄(α) =
∑
i, j

Ci j||αi − α j||2 − 4αTD−α = 2αTL̄α (16)

L̄ = D̄ − C, D̄ii =
∑

j

|Ci j| = D+ − D−

Let U = [u1, u2, .., uM] and w = ŵ + ∑M
i αiui = ŵ + Uα, rewriting

(7) with appropriate substitutions:

minw,b,α λŵTŵ + αT(γ I + 2θ L̄)α

+
N∑
i

max
(
0, 1 − yi(ŵTxi + αTUTxi + b)

)
(17)

st : αi ≥ 0, ∀i

Considering both L̄ and I are positive-semi definite, we can de-

compose the term γ I + 2θ L̄ using the Cholesky decomposition as RRT

then introduce β = RTα and rewrite:

αT(γ I + 2θ L̄)α = αTRRTα = βTβ (18)

αT = βTR−1 (19)

Plugging in (18) and (19) to (17) we obtain:

minŵ,b,β λŵTŵ + βTβ

+
N∑
i

max
(
0, 1 − yi(ŵTxi + βTR−1UTxi + b)

)
st :

[
(R−1)Tβ

]
i
≥ 0, ∀i

= minw̄,b ||w̄||2 +
N∑
i

max
(
0, 1 − yi(w̄Tx̄i + b)

)
st :

[
(R−1)Tβ

]
i
≥ 0, ∀i

where w̄ = [
√

λŵ;β], x̄i = [
1√
λ

xi; R−1UTxi], (20)

Other than the linear constraints
[
(R−1)Tβ

]
i
≥ 0, the objective

becomes a linear SVM objective.

Enforcing linear constraints in SVMs. For any classical SVM for-

mulation:

minw,b ||w||2 +
N∑
i

max
(
0, 1 − yi(wTxi + b)

)
(21)

we can implement a linear constraint aTw > 0 by introducing an ad-

ditional training sample xN+1 = [∞ × a] with the label yN+1 = +1.

Here ∞ × a is the multiplication of the vector a with the infinity

which is approximated with a very high numeric value (i.e. 106).
A similar approach will be used for implementing the linear con-

traints [(R−1)Tβ]i ≥ 0,∀i in (20). Another additional training sam-

le will be added for each row of (R−1)T as each row introduces an-

ther constraint on β . Since the constraints only concern the β part

f w̄ = [
√

λŵ;β], the initial parts of the additional training sample

ill be filled with a zero vector of the same length as ŵ. The rest of

t will be filled by the appropriate row extracted from (R−1)T and

ultiplied by infinity. In a formal definition, linear constraints are

mplemented by adding M additional samples to our training set as

elow:

¯N+k = [0|ŵ|;∞ × (R−1)Tk,:], yN+k = +1, 1 ≤ k ≤ M (22)

here x̄N+k are the additional training samples that implement the

onstraints, 0|ŵ| is the zero vector of the same length as ŵ, (R−1)T
k,:

is

he kth row of (R−1)T.

After handling the constraints as well, the transformation of the

riginal objective (7) to a classical SVM formulation is completed.

herefore we can optimize (7) using available robust SVM optimiza-

ion tools.

. EE-SVM training and obtaining the part vocabulary

In this section the details of the implementation will be discussed.

nitially training source classifiers and E-SVM will be discussed. Then

E-SVM training procedures and obtaining part correlations will be

xplained.

Source classifiers and part vocabulary. The source classifiers

re linear SVM classifiers (templates) over HOG [8,19] features. The

ource classifiers are trained with three components for each class

nd without parts, similar to the procedure in [19]. While testing on

he PASCAL VOC 2007 test set, the source classifiers are learnt from

he 1000 classes of the ImageNet [11] 2012 challenge. In total, the

29 models out of 1000 are selected that have an AP over 30% on a

mall validation set of 1000 images (50 positive images per class).

ogether with the mirrored versions of these templates it totals to

29 × 3 × 2 = 1974 source classifiers. To build the vocabulary of

lassifier patches, all patches with sizes of 5 × 5 are extracted from

he components of the trained DPMs, then a k-means clustering is

erformed with k = 10K centers. Other ways of composing the vo-

abulary could be learning the vocabulary via sparse reconstruction

s in [42], or learning both the vocabulary items and the classifiers

t the same time as in [22]; however this is beyond the scope of our

ork. While testing on ImageNet, the source classifiers are trained

sing 20 classes of the PASCAL VOC 2007 training set. All 5 × 5 clas-

ifier patches are used to form a vocabulary of 1948 items.

E-SVM training. Similar to [33], each E-SVM is composed of 100

r slightly less HOG cells where the aspect ratio is chosen according

o the query image. The E-SVM is trained with the given query image

s the positive sample and randomly selected 2000 negative images

rom the PASCAL VOC 2007 training set. The training is performed

teratively in a similar fashion to [33] where mined hard negatives

re incorporated to the learning after each iteration.

EE-SVM training. The training procedure of EE-SVM, which is

riefly visualized in Fig. 1, starts with training an E-SVM classifier

rom the given query image. After obtaining the E-SVM, for each

× 5 cell classifier patch a good match is searched for within the vo-

cabulary. This linear search can be efficiently done using fast matrix

multiplication since we have a limited number of vocabulary items.

Even though we use 5 × 5 cell classifier patches for experimental val-

idation, any other varying size and aspect ratio can also be applied. A

good match is defined by thresholding the cosine similarity (normal-

ized dot product) between the E-SVM patch (a 5 × 5 × 32 dimen-

sional vector) and vocabulary items. This threshold value is fixed to

0.2. After determining where to transfer from, each patch is relocated

on a w sized HOG template padded with zeros other than the trans-

ferred classifier patch. Finally learning of the EE-SVM is performed
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Table 1

MAP (mean average precision) comparisons of EE-SVM variants and E-SVM with changing quality

groups. For instance AP ≥ 0.01 means the queries which achieved AP = 0.01 or above. Random 10 im-

ages are selected for each of the 17 classes and four major poses (i.e. left, right, frontal, rear) from the

PASCAL’07 training set as the queries. Tests are performed on PASCAL’07 test set. “EE-SVM w/o learn-

ing” defines the classifier as the average of ui ’s (i.e. it doesn’t learn αi ’s). “EE-SVM reconstruction only”

learns the classifier as the reconstruction from ui ’s only (i.e. w = ∑M
i αiui, this is achieved by solving (2)

when λ = ∞), and the last row is the full EE-SVM (i.e. setting λ = γ = 1 in (2)).

AP ≥ 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.50

# of queries 558 216 112 73 48 38 21 8

E-SVM 3.2 8.2 14.1 18.8 23.7 26.7 32.6 41.1

EE-SVM w/o learning 3.3 8.3 14.6 20.3 26.1 29.9 40.8 53.6

EE-SVM reconstruction only 3.5 8.6 15.1 21.0 27.0 30.8 42.0 54.2

EE-SVM 4.2 10.5 18.1 24.2 30.7 34.2 42.8 53.4
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sing the same set of training samples used for training the E-SVM

nd no new hard negatives are collected.

Partial matching for occlusion and truncation. In occluded or

runcated queries, the parts of the E-SVM classifier might not match

ell with the vocabulary items due to the distortion caused by oc-

lusions and truncations. Hence instead of using good mathces of the

-SVM patch from the vocabulary items as defined above, ignoring a

ew cells (potentially occluded or truncated regions) while comput-

ng similarity would be a better idea. The matches obtained by this

artial matching method is referred as partial good mathces of the E-

VM patch. Here we only use the most similar (i.e. cosine similarity)

percent of the cells for matching an E-SVM patch to a vocabulary

tem. For instance if the E-SVM patch and vocabulary items are 5 × 5

ells and β is 70%, then the top matching 18 (i.e. 70% of 25) cells

re used for computing normalized dot product and deciding if the

ocabulary item is a partial good match or not. Similar to the good

atch, the same threshold of 0.2 is used for the decision.

Optimization. The optimization of the EE-SVM and EE-SVM-COR

bjectives are performed using the LIBSVM [6] package through

he equivalent feature mapping formulations which are already dis-

ussed in Section 4. The only additional cost of EE-SVM and EE-SVM-

OR over E-SVM is the transformation of training samples, and train-

ng another SVM, which constitutes less than 1% of the training time

i.e. mining hard negatives is costly). The test time complexity of EE-

VM and EE-SVM-COR is exactly the same as that of E-SVM.

Part correlations. The entries of the pairwise part correlation ma-

rix Cij are estimated using the pairwise sample correlation coeffi-

ient ρ i, j which is computed from the joint occurrence of parts i and j

n the source filters (i.e. the source filters are the samples). The com-

utation of the correlation coefficient is:

i, j = cov(i, j)

σiσ j

= E[(i − μi)( j − μ j)]

σiσ j

(23)

here cov is the sample covariance, σ i is the standard deviation of

ccurrence of part i computed over samples (1 states occurrence and

states absence of part i in the given sample), μi is the mean occur-

ence of part i across all the samples, and E is the expectation.

. Experiments

In this section the experimental results will be described. Initially

e give the experimental settings, evaluation metrics and the de-

aults for the hyperparameters. In the next two sections, we then dis-

uss two sets of experiments performed on the PASCAL VOC 2007

17] dataset and ImageNet [11]. Average precision (AP), and precision

t top K (PR@5, PR@10, PR@50, PR@100) retrievals are used for eval-

ating the quality of retrieval results. A correct retrieval is defined as

he same object class with the same pose as the query image and the

etrieved subwindow should have at least 50% overlap with the true

ounding box around the object class. The definition of the pose is

nherited from the PASCAL VOC metrics [17] where four main poses
xist namely left, right, frontal, rear (the pose “unspecified” is omit-

ed). In all the experiments the proposed approaches are compared

ith the E-SVM method. Both λ and γ parameters are fixed to 1, and

is fixed to 10 in all the experiments unless otherwise stated. The

atching similarity threshold, which determines the good classifier

atch matches based on the normalized dot product of two vectors,

s fixed to 0.2.

.1. Evaluation on PASCAL VOC

The retrievals of PASCAL’07 classes with four main poses are eval-

ated. The part vocabulary is obtained from ImageNet. The query im-

ges are selected as all non-truncated images of the 17 classes (bottle,

ining table and potted plant are omitted since they don’t have poses)

ith four main poses from the PASCAL’07 training set. For each query

mage, an E-SVM and EE-SVM variants are trained and run on the test

et. Ground truth is identified as the same object class with the same

ose label. Due to the strong visual similarities in the poses (e.g. left–

ight symmetries for bicycle, car, motorbike, etc.), the detections of

he same object class other than the target pose are omitted and not

ounted towards AP computation. For instance if we are searching for

bicycle facing left, we ignore (i.e neither count as positive or nega-

ive) the detections of front, rear, left or unspecified poses of bicycle.

n total 1659 queries from 17 classes are evaluated, and the pose dis-

ribution is: 452 left, 439 right, 561 frontal, and 207 rear.

For some query images, due to being unusual examples of the pose

e.g. left facing bicycle with front wheel up as in Fig. 2), the AP results

an be very low. Conversely for some others, which are canonical ex-

mples of the pose, the AP results are much higher. In order to have

better insight on the results and see the boost for different quality

f samples, we grouped the queries as being above some AP thresh-

ld. The query belongs to the quality group AP > threshold, if the AP

f E-SVM, EE-SVM or EE-SVM-COR is above the defined threshold (for

nstance group AP ≥ 0 means all the queries).

Table 1 shows the AP improvements of EE-SVM variants over E-

VM on a smaller subset of randomly selected 10 query images for

ach of the 17 classes and 4 major poses. In this table we demon-

trated EE-SVM variants in order to see the effects of different com-

onents of EE-SVM. The evaluated models are: (a) “EE-SVM w/o

earning” which defines the classifier as the average of ui’s (i.e. w =
1
M

∑M
i ui, it doesn’t learn αi’s), (b) “EE-SVM reconstruction only”

hich learns the classifier as the reconstruction from ui’s only (i.e.

= ∑M
i αiui, this is achieved by solving (2) when λ = ∞), and (c)

ull EE-SVM (i.e. setting λ = γ = 1 in formulation (2)). All EE-SVM

ariants outperform E-SVM. Learning the combination weights (i.e.

i’s) as in “EE-SVM reconstruction only” improves to performance

ver just averaging the ui’s (i.e. “EE-SVM w/o learning”). Finally the

E-SVM, the midway solution between E-SVM and “EE-SVM recon-

truction only”, performs significantly better than the others.

Table 2 shows the overall results and the AP improvement of EE-

VM and EE-SVM-COR over E-SVM. This experiment is performed on
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Table 2

Relative MAP (mean average precision) improvements of EE-SVM and EE-SVM-COR over E-SVM with

changing quality groups. Queries are the images of 17 classes with four major poses (i.e. left, right, frontal,

rear) from the PASCAL’07 training set. Tests are performed on PASCAL’07 test set. EE-SVM-COR constantly

outperforms EE-SVM which significantly improves over E-SVM.

AP ≥ 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.50

# of queries 1659 650 346 241 169 121 70 14

E-SVM 3.3 8.2 14.0 17.9 21.6 25.3 30.0 44.2

EE-SVM 4.2 10.6 17.9 22.8 27.6 32.4 39.1 55.2

EE-SVM-COR 4.3 10.8 18.3 23.4 28.5 33.4 40.4 57.3

Rel. Imp. of EE-SVM 28.3 28.4 27.9 27.6 28.1 27.9 30.1 24.9

Rel. Imp. of EE-SVM-COR 30.9 31.1 30.9 31.0 32.3 32.0 34.7 29.7

Table 3

MAP results and relative improvements of EE-SVM-COR over E-SVM for individual classes for the quality group (AP ≥
0.05). Tests are performed on PASCAL’07 test set. Only classes which have more than five queries are shown.

Class Plane Bicycle Bus Car Cow Dog Horse M.bike Sheep TVmonitor

# of queries 5 59 15 129 13 6 33 28 16 32

E-SVM 5.3 23.3 8.5 16.0 4.9 5.6 9.3 11.3 8.6 10.2

EE-SVM 7.9 30.7 9.0 20.7 7.7 8.9 11.4 13.0 11.9 11.3

EE-SVM-COR 7.1 32.1 8.8 21.0 8.5 10.2 11.6 12.9 12.3 11.3

Rel.Imp. 34.3 38.0 3.4 31.0 74.2 82.8 25.4 13.9 44.3 10.2

Fig. 3. Retrieval results of PASCAL’07 queries. Top 3 positives and negatives are being displayed. Orders in the ranked list is shown left bottom corner of each image.
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Fig. 4. Occlusion and truncation handling via EE-SVM. The top row shows an occlusion example, note the decreased effect of occlusions around the wheels of the bicycle in the

EE-SVM model. The second row shows how the bottom part of the wheels are softly completed by the EE-SVM. It is better visualized with zooming into the document.

Table 4

Precision at top K comparison of ImageNet Queries. Three queries with varying poses are evaluated for each class from ImageNet and the mean precisions

are presented. Retrieval is performed on the collection composed of PASCAL’07 test images and corresponding ImageNet category.

Lion Deer Tandem Bulldozer Ambulance MEAN

e-SVM ee-SVM e-SVM ee-SVM e-SVM ee-SVM e-SVM ee-SVM e-SVM ee-SVM e-SVM ee-SVM

PR@5 0.47 0.60 0.60 0.73 1.00 1.00 0.93 0.93 1.00 1.00 0.80 0.85

PR@10 0.40 0.40 0.50 0.50 1.00 1.00 0.90 0.90 1.00 1.00 0.76 0.76

PR@50 0.19 0.21 0.30 0.32 0.98 0.99 0.62 0.67 0.85 0.87 0.59 0.61

PR@100 0.13 0.14 0.22 0.28 0.93 0.97 0.42 0.49 0.76 0.80 0.49 0.54
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he full query set. In all the quality groups EE-SVM significantly im-

roves over E-SVM, and EE-SVM-COR improves over EE-SVM. Even

hough the actual AP improvements are changing across the qual-

ty groups of samples, the relative boost of EE-SVM and EE-SVM-COR

re consistently similar in different quality groups. In Table 3 the AP

esults and improvements are shown for individual classes for the

uality level (AP ≥ 0.05). For statistical significance only the classes

hich have more than 5 queries are shown. For all the classes EE-SVM

nd EE-SVM-COR significantly outperforms E-SVM.

A few qualitative results can be seen in Fig. 3 where the top three

ositives and negatives are shown with their ranks in the ordered

ist of retrieved subwindows. In EE-SVM retrievals the ranks of the

op three negatives are much later; this shows that EE-SVM better

uppresses the negatives and thus increases the recall.

Handling occlusion and truncation via EE-SVM. It is quite com-

on to come across truncated and occluded query images. Here we’ll

riefly present a potential use scenario of EE-SVM for handling oc-

lusions and truncations. Considering that certain parts of the query

bject is not visible in truncated or occluded queries, for each E-SVM

lassifier patch partial good matches (see Section 5) of vocabulary

tems are used instead of good matches. This procedure simply ig-

ores a few cells (potentially the ones which correspond to occluded

nd truncated regions of the classifier patch) while performing the

atching.

Fig. 4 shows two examples of handling occlusion and completing

he truncated parts. In these examples 5 × 5 patches are used and the

parameter of the partial good match measure is 70%. γ parameter,

hich defines the strength of transfer, is set to 1. Particularly in the

runcation example (second row on Fig. 4) the truncated parts (i.e.

he bottom extension of the query) are partially completed with the
upport coming from matched vocabulary items, note that there is no

isual data coming from the query image for these sections.

.2. Evaluation on ImageNet

These experiments are conducted on ImageNet and the part vo-

abulary in obtained from PASCAL’07 dataset. Since PASCAL’07 has

nly 20 classes, robust computation of the part co-occurrence statis-

ics is not feasible: hence the EE-SVM-COR is omitted in these exper-

ments. For quantitative experiments five ImageNet classes (synsets)

re selected: lion, deer, tandem, bulldozer, and ambulance. For each of

hese classes three random queries (from one of the main canoni-

al poses) are selected from web images and evaluated on a test set

hich contains the images of the corresponding synset (∼1300 im-

ges) and the PASCAL’07 test set (∼5000 images). The evaluations are

ompared using precision at the top K retrievals. From the results, dis-

layed in Table 4, we can conclude that the recall of EE-SVM is much

etter than the recall of E-SVM, particularly for top 50 and top 100

etrievals.

In addition to canonical poses, the method is also qualitatively

emonstrated for unusual poses. With the help of part based trans-

er, since parts can be relocated and migrated across classes, even for

uite unusual poses we can obtain significant improvements. The left

acing bicycle with the front wheel up (see Figs. 2 and 5) is a nice

xample where the wheel patches are transferred from motorbike

nd bicycle classifiers with regular poses. Another example, displayed

n Fig. 5, is a sitting lion where the ranks of positives clearly show

E-SVM’s ability for better recall.

Recently detecting person–object interactions [10] and compo-

itions of objects [39] gained popularity. Our method can also be
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Fig. 5. Retrieval of unusual poses on ImageNet.

Fig. 6. Retrieval of person-object compositions.
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utilized in a similar scenario. A qualitative example for retrieving

such object compositions (i.e. person riding horse) is demonstrated

in Fig. 6.

7. Conclusion

We introduced a method of part based transfer regularization that

boosts the performance of E-SVMs. We demonstrated that EE-SVM

suppresses the false detections significantly better than E-SVM. This

improvement is shown both quantitatively and qualitatively on PAS-

CAL’07 and ImageNet queries with canonical and unusual poses in-
luding compositions of objects. We also discussed the potential ad-

antages of EE-SVM for handling truncation and occlusion.

We also introduced a convex potential function for incorporat-

ng the pairwise co-occurrence relations into convex max-margin

earning frameworks. We showed that by defining appropriate fea-

ure maps, many transfer learning formulations are transformed to a

lassical SVM formulation, and subsequently solved by much easier

nd more robust optimization tools developed throughout the past

ears.
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