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Figure 1: Illustrative comparison of IOI and today’s cloud/edge-server-based machine learning inference.

ABSTRACT

We present In-network Optical Inference (IOI), a system provid-
ing low-latency machine learning inference by leveraging pro-
grammable switches and optical matrix multiplication. IOI consists
of a novel transceiver module designed specifically to perform lin-
ear operations such as matrix multiplication in the optical domain.
IOI’s transceivers are plugged into programmable switches to per-
form non-linear activation and respond to inference queries. We
demonstrate how to process inference queries inside the network,
without the need to send the queries to cloud or edge inference
servers, thus significantly reducing end-to-end inference latency
experienced by users. We believe IOI is the next frontier for explor-
ing real-time machine learning systems and opens up exciting new
opportunities for low-latency in-network inference.
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1 INTRODUCTION

Artificial Intelligence (AI) is reshaping our society by empowering
novel services such as self-driving vehicles (e.g., Waymo [3]), smart
personal assistants (e.g., Alexa [9]), virtual/augmented reality (e.g.,
Oculus [10]), and personalized recommendations [4, 11]. The suc-
cess of AI-based services depends on the latency perceived by its
users launching inference tasks to interact with the services. To
maintain low latency, neural network models should be located
as close as possible to the user, ideally on the user’s device. How-
ever, to achieve high-accuracy, today’s services often require large
Deep Neural Networks (DNNs) that are constantly updated with
new datasets. Despite research efforts to reduce the size of DNN
models [7, 8], most commercial applications [9, 13] still execute
inference tasks in the cloud or on edge servers instead of locally
due to memory/power/computing limitations [15].

In cloud-based or edge-based machine learning inference tasks,
data are sent from users’ devices all the way to an inference server
that hosts the DNN on a GPU/TPU, as depicted in Figure 1a. The
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Figure 2: Synchronizing a neural network’s input and weight by encapsulating them into the same data packet.

inference latency includes two components: 1) packet propagation
and queueing delay on the network datapath, and 2) packet process-
ing delay at the end-host inference server(s). The first component
depends on the length of the datapath between users and the in-
ference server; hence, the closer the server the better. The second
component adds a significant amount of latency to inference queries
that has been mostly ignored. To ensure reliable delivery, inference
servers have to rely on TCP sockets and the host server’s CPU
computing capabilities to process the arriving inference queries.
Given the clock frequency of today’s CPUs (e.g., Intel Xeon Gold
6152 processor with 44 cores), one CPU can only process packets
at about 5.2 million packets per second (PPS) per core [12] or 220
million packets per second (PPS) in total. We argue this step is un-
necessary and propose performing the inference task inside network
switches by leveraging programmable switch ASICs, such as Intel
Tofino [2] or Juniper Networks Junos Trio chipset [1]. For instance,
Intel Tofino can achieve 6 billion PPS packet processing throughput
with a maximum port bandwidth of 12.8 Tbps. This is 1000× faster
than a CPU core!

Although in-network inference with programmable switches has
fundamental latency advantages over the conventional server-based
solutions, each inference task requires intensive computation such
as matrix multiplication, which is challenging in today’s switches
because of their limited resources [5, 16]. Therefore, we propose
a novel architecture called In-network Optical Inference (IOI) to
leverages emerging optical matrix multiplication hardware [6] us-
ing commercially available modulators and photodetectors that
already exist in today’s transceivers.

Figure 1b illustrates IOI’s approach to enable today’s switches
with neural network inference at line rate. In IOI, the packet process-
ing bottleneck induced by the inference server’s CPU is lifted by the
high-throughput packet processing ASIC of network switches. IOI
transforms the conventional inference path from user→ network

→ inference server→ network→ user into user→ switch→
user, thus significantly reduces the end-to-end inference latency.

2 IOI DESIGN

We propose IOI as a next-generation inference system using a novel
transceiver module with optical computation capabilities, combined
with the power of programmable switches, for high-efficiency line-
rate inference query processing. Specifically, matrix multiplication
is done with specially designed “IOI’s transceiver modules” in the
optical domain (§2.1), and non-linear activation is performed by
programmable switch ASICs [2] in the electrical domain (§2.2).
Multiple layers of the neural network are processed with scheduled
recirculations using programmable switches pipelines (§2.3), and
a novel packet structure and a protocol are proposed to enable
efficient communications between users and IOI hardware (§2.4).

2.1 Optical Matrix Multiplication at IOI

Prior work has demonstrated the feasibility of Optical Neural Net-
works (ONNs) to perform linear algebra computations in the optical
domain with the photoelectric effect under time/wavelength multi-
plexing [6]. Compared with electrical computing systems that carry
out computation with binary logic electrical circuits on CMOS, opti-
cal systems have intrinsic energy and throughput advantages. This
is because the computation is done in the analog domain using
photons and, hence, ONNs have much lower latency and energy
consumption. IOI leverages the ONN hardware to perform ma-
trix multiplications entirely in the optical domain instead of the
electrical domain. As shown in Fig. 2a, a vector-vector product
𝑌𝑚 =

∑
1≤𝑖≤𝑁 𝑋𝑖 ·𝑊𝑚,𝑖 in IOI is performed by encoding the 𝑁 -

dimensional input X = [𝑋𝑖 ] and Wm = [𝑊𝑚,𝑖 ] in 𝑇 time steps
and 𝑆 spatial channels (e.g., wavelengths) such that 𝑁 = 𝑇 · 𝑆 . To
compute 𝑌𝑚 , we leverage the photoelectric effect that accumulates
the product of 𝑋𝑖 and𝑊𝑖 over 𝑁 units at the photodetector.
Handling frequency differences between themodulator and

photodetector. Due to the 𝑇 -step time integration, the operation
speeds of modulators and photodetectors are different. When both
modulators work at a frequency of𝑀 , the photodetector has to work
at a reduced frequency of𝑀/𝑇 to perform a𝑇 -step time integration.
This effect also agrees with the nature of the vector-vector product
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whereby the volume of input data (two vectors, each with multiple
values) is much larger than the volume of output data (a single
value). Hence, the datarate that enters the ONN hardware will
be faster than the exiting datarate. This creates a rate-mismatch
problem for line rate processing. To address this challenge, we
propose to put a memory module right after the analog-to-digital
converter (ADC) so that the readout 𝑦𝑚 from the photodetector
can be temporally stored before all the 𝑦𝑚 are calculated (refer to
Fig. 2a). As soon as the entire activation vector 𝑌 = [𝑦𝑚] has been
completed by the ONN hardware, the memory will flush the entire
𝑌 vector into the programmable switches at line rate for nonlinear
activation processing and then start the computation of the next
layer. The size of the memory should be sufficient to store the inter-
layer activation vector, which would be equivalent to the largest
number of neurons of all layers.

Hybrid time/wavelength multiplexing. Optical matrix multi-
plication can be done in either time or frequency domains with
the same system throughput, because they are exchangeable in the
Fourier space. Time-division multiplexing needs the fewest optical
devices (modulator, photodetector), but it requires the entire vector
to be serialized in time so that the computation time is prolonged;
wavelength-divisionmultiplexing allows encoding on parallel wave-
length channels at the same time so that the integration happens in
the frequency domain without the need to wait over 𝑇 time steps
to get a photodetector readout value at the cost of more optical
devices. For matrix multiplication, having𝑊 parallel channels will
result in a computation time speedup of up to𝑊 times.

Synchronizing modulators inputs with weight pickup and

fiber delay line. For a vector-vector product
∑
1≤𝑖≤𝑁 𝑥𝑖𝑤𝑚,𝑖 on

IOI, the first challenge is to synchronize 𝑥𝑖 and 𝑤𝑚,𝑖 so that the
coded waveforms are executed on the modulator at the same time.
IOI tackles this challenge by encapsulating 𝑥𝑖 and 𝑤𝑚,𝑖 into the
same packet using programmable switches and feeds this packet
into the DAC, so that the analog values of 𝑥𝑖 and𝑤𝑚,𝑖 can arrive
at the second modulator (MOD 2 in the Fig. 2a) at precisely the
same time. We also design a fiber delay line connecting modulators
(MOD 1 and MOD 2) to compensate for the elapsed time of 𝑥𝑖 and
ensure the 𝑥𝑖 in optical signals and𝑤𝑚,𝑖 in electrical voltages will
arrive at the second modulator simultaneously. To encapsulate both
𝑥𝑖 and𝑤𝑚,𝑖 into the same data packet, we design a weight-pickup
mechanism, as shown in Fig. 2b. Weights of a neural network𝑤𝑚,𝑖

are stored in the registers of the programmable switches ASICs in
each stage. To achieve this, we need to design the packet structure,
and leverage programmable switches to generate such packets at
line rate for the high-speed DACs.

2.2 Electrical Nonlinear Activation at

Programmable Switches

Nonlinear computation is challenging in the optical domain [14].
Fortunately, nonlinear operations are simple in the electrical do-
main. For example, ReLU, a widely-used nonlinear activation func-
tion in various neural networks, can be interpreted as programmable
switch match-action tables as follows:

Programmable Switch Chip

!!"",!

Public IOI packets from Internet

Layer 1

Pipeline for nonlinear calculation

"",!

0 !!

registerregister

Match-action Match-action
Remove Ethernet metadata 0 → "",!

!!header

Pipeline for first NN layer

Match-action
&$ = ()*+(-$)

Match-action

0 → "",!

!!"",!

0

Layer /

Layer / + 1
1!

IPG (12 byte)

Figure 3: Packet processing for incoming packets.

𝑅𝑒𝐿𝑈 (𝑥) =
{
null action, 𝑥 .𝑠𝑖𝑔𝑛 = 1
all bits set to zero, 𝑥 .𝑠𝑖𝑔𝑛 = 0

(1)

ReLU on programmable switch pipeline. In IOI, we implement
the nonlinear activation function inside the programmable switches
pipeline with match-action logic using P4 language. As depicted
in Fig. 2b, for a 32-bit or 16-bit floating number, its binary form
is coded as three parts: sign (1 bit), exponent (5 bits or 8 bits) and
mantissa (10 bits or 23 bits). The ReLU function can be implemented
on programmable switches using P4 language to describe the match-
action as follows: for incoming data 𝑥 , perform “null" action if the
𝑥 ’s “sign" bit matches 1 or “set-to-zero" action if the 𝑥 ’s “sign" bit
matches 0.
IOIpacket design. To involve the programmable switches into the
machine learning inference and utilize their flexible programma-
bility, we need to carefully design the packet structure, as only
packet metadata can be processed in the programmable switches’
pipeline architecture. As discussed in Section 2.1, to perform matrix
multiplication while satisfying the synchronization requirements of
the ONN hardware, we propose to encapsulate the corresponding
𝑋𝑖 and𝑊𝑚,𝑖 into the same packet. Fig. 3 shows the programmable
switches logic for incoming data packets from users. The pack-
ets sent from users will contain Ethernet/IP information so that
they can arrive at designated switches instead of host servers. The
programmable switch is responsible for removing this routing in-
formation from the packet headers, and replacing it with weights
𝑊𝑖,𝑚 , which will be used for matrix multiplication in the following
optical computation. We name these processed packets as IOI pack-
ets. Figure 4 shows the structure of a typical IOI packet. Depending
on the source and destination the IOI packet, it has two variants: 1)
public IOI packet and 2) private IOI packet. The public IOI packet
is the data packet between user clients and the IOI system in the
public Internet: its metadata part is encoded as the packet header
carrying IP/Ethernet routing information and zero paddings, and
its payload part is encoded as the packet payload carrying user
input data or final inference results. On the other hand, the private
IOI packet circulates within the programmable switch carrying
activation vectors between neural network layers. Because both 𝑋𝑖



OptSys ’21, August 23, 2021, Virtual Event, USA Zhong, et al.

ac:de:48:00:11:22 ac:de:48:00:11:22

Src. MAC addr Dst. MAC addr.

08:00

Eth.
Paddings for
"",%→'

00:00:00:…:00

Packet metadata (740 byte)

Packet payload (740 byte)

!%
8 bit

!(
8 bit

!)
8 bit

!'
8 bit

… …

Figure 4: Public IOI packet structure, private IOI packet will

put the payload into header and leave the payload empty.

and𝑊𝑚,𝑖 of the packet need to be processed by the programmable
switch ASICs, they are both encoded as packet headers, while the
payload is left empty. In the IOI packet, the size of the packet meta-
data is equal to the size of the payload, regardless of the Ethernet
header’s size (typically 14 bytes, the rest is padded with zeros) ,
as they will be removed in the first stage of the programmable
switches pipeline. After we set the entire metadata area to be zero
in the first programmable switch stage, the second stage will pick
up the corresponding𝑊𝑚,𝑖 so that we get the packets ready for the
first layer of the neural network. After the first layer’s computation
finishes, the programmable switch will follow the packet recircula-
tion logic introduced in Figs 2a and 2b. The size of the IOI packet
depends on the maximum number of weights𝑊𝑚,𝑖 that we can pick
up after one pass of the programmable switch pipeline. Note that
for a typical Ethernet packet, the size can be as large as 1500 bytes,
which means we can encapsulate an input vector with a maximum
size of 750 (coded as 8-bit integers) into the same packet.

2.3 Recirculation for Multiple Neural Network

Layers

Sections 2.1 and 2.2 explain how IOI finishes matrix multiplication
and nonlinear activation for one neural network layer. For a deep
neural network with multiple layers, we need to recirculate these
two processes and pass private IOI packets between adjacent layers
to turn output vectors from the previous layer into the input of the
next layer.

Provision resources for the largest layer. As we discussed in
Section 2.1, the previous layer output vector 𝑌𝑖 is first cached in the
memory, and then flushed to the programmable switch ASIC to start
the computation of the next layer. During this process, we need to
make sure there are sufficient resources (registers in programmable
switch ASICs, modulators, and photodetectors on IOI transceivers).
Therefore, we provision the resources for the largest layer of the
neural network (the layer with the most neurons).

2.4 IOI Client and Protocol

IOI packet routing. To allow IOI packets to arrive at their desig-
nated IOI system, we introduce a routing protocol for IOI. As shown
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Figure 5: Routing of IOI packets.

in Fig. 5, we assign an IP address to each IOI transceiver module and
leverage the segment routing. Since different switches may store
different neural networks, we need to ensure an IOI packet will
only be processed at its destination switch, bypassing intermediate
ones. In addition, if a neural network is so large that it cannot fit
into a single switch, we want to distribute its layers into multiple
switches as a chain, and leverage the segment routing to allow IOI
packets to traverse these switches in a designated order.

IOI client design. IOI protocol also needs to be implemented on
the client side so that when users initiate an inference task using
IOI, the input data can be accurately encapsulated into the IOI
packet format. For the segment routing paradigm, the IOI client
also contains a routing path finder component which calculates
the routing path among programmable switches, and selects the
chain of switches to finish the inference task. The results of the
routing path finder algorithm are encoded into the packet headers
and guide packets to arrive at their designated switches in IOI. Note
that we aim to design a light-weighted client which does not require
complex operations. The IOI protocol and the routing algorithm
can be directly implemented on the top of clients’ current operating
systems.

3 CONCLUDING REMARKS

Is in-network machine learning inference possible for deep neural
networks? This problem is challenging with existing programmable
switches, given their limited computing resources. IOI is the first
step towards enabling in-network optical inference by incorporat-
ing advanced optical matrix multiplexing with non-linear activation
on programmable switches. We believe that IOI provides new and
exciting opportunities to design the next-generation machine learn-
ing systems with in-network computing for line-rate processing
and ultra low latency.
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