

A New Randomized Paralle l Dynamic Convex
Hull Algorithm based on M2M mode l

 YingPeng Zhang

ZhiZhuo Zhang
 the student in South China Univers ity the student in South China University

of Technology o f Technology
 Guangzhou, China 510640 Guangzhou, China 510640

 YingPeng .Zhang @gmail.com zzz2010@gmail.com

 Qiong Chen ZhiMingZhou S hengZhou luo

associate p rofessor in South the student in South China the student in South China
China Univers ity of Techno logy University o f Technology University o f Technology
Guangzhou , China 510640 Guangzhou , China 510640 Guangzhou, China 510640

csqchen@scut.edu.cn zzm_guitar@163.com lsz_xp@126.com

Abstract

In th is paper, we introduce a new randomized parallel convex hu ll algorithm
based on dynamic M2M data structu re whose operat ion such as insert ing o r

delet ing costs O(1) t ime. In p ract ice, th is algorithm is faster than the classical
convex hu ll algorithms such as Grahan scan , qu ick hu ll and Jarv is march. As

with other M2M algorithm, th is algorithm share an iden t ical p reprocessing
which takes the majority o f the cost ing t ime of the ent ire algorithm. Such

characterist ic is very helpfu l in many app licat ions where a large number o f
operat ions need to be executed to the same data set .

1 Introduction

The convex hu ll o f a set o f po ints is one o f the most basal prob lem in computat ional geometry

and is app lied in many fields, such as pattern recognit ion, image processing, stat ist ics and GIS.
It also serves as a too l and a bu ild ing b lock fo r a number o f other computat ional geometric

algorithms .

Ron Graham presented the first (log)O n n algorithm for find ing the convex hu ll o f po ints in the

plane in 1972[1]. If the po ints are already sorted by one o f the coord inates or by the ang le to a

fixed vector, then the algorithm takes ()O n t ime. Another (log)O n n solution is the d iv ide and

conquer algorithm for the convex hu ll, pub lished in 1977 by Preparata and Hong[2]. Th is
algorithm is also app licab le to the th ree d imens ional case. Later, Avis [4] and Yao [5] p roved

lower bounds o f (log)n n on the t ime to find a convex hu ll, where sort ing has an (log)n n

lower bound, and Convex hu ll implements sort ing implied ly.

R.Jarv is constructed an "output sens it ive" algorithm whose runn ing t ime depends on the output

size[3]. Jarv is's algorithm runs in ()O nh time where h is the number o f po ints in the convex hu ll.

In 1986, Kirkpat rick and Seidel [6] computed the convex hu ll o f a set of n po ints in the p lane in

(log)O n h time. (Later, the same resu lt was obtained by Chan using a much s impler algorithm

[7].) The same authors showed that , on algebraic decision trees o f any fixed order,

(log)O n h was a lower bound fo r comput ing convex hu lls o f sets o f n po ints ，where h was the

vert ices o f the convex hu ll.

http://www.answers.com/topic/pattern-recognition
http://www.answers.com/topic/image-processing
http://www.answers.com/topic/statistics
http://www.answers.com/topic/geographic-information-system-1
http://www.answers.com/topic/divide-and-conquer-algorithm
http://www.answers.com/topic/divide-and-conquer-algorithm
http://www.answers.com/topic/divide-and-conquer-algorithm
http://www.answers.com/topic/franco-p-preparata

Start ing with seminal work by Clarkson, randomized algorithms have p layed an increasing ly
important ro le in computat ional geometry and many randomized convex hu ll algorithms were

proposed [8, 9, 10].

In p ract ice, we often requ ire to compute the convex hu ll in the po ints set that is changing in a

small scale. So dynamic convex hu ll algorithm is also widely stud ied [11-15].

In o rder to reduce the t ime complexity, some researchers focus on the p rob lem of design ing

very fast parallel algorithms fo r convex hu lls[16].

In th is paper, we main ly d iscuss a new efficient randomized parallel Convex Hull algorithm
with dynamic data structu re based on M2M model which was p roposed in [17]. The data

structure based on M2M mod el costs O(n) t ime to p reprocess data. The operat ions for query ing ,
insert ion and delet ion on convent ional data structu re (like kd -t ree and quadtree) may cause

balance p rob lem of the t ree, however, those operat ions are independent on each po int in the
M2M structure and can be executed in parallel. By using the parallel computat ion , the t ime

complexity can be reduced to O(n). We also introduce a new concep t of p reprocessing sharing,
which great ly improves the efficiency of some mult i-operat ion prob lem such as image
processing and pattern recognit ion . Like the other algorithms based on M2M model, the

convex hu ll algorithm based on M2M model is su itab le for dynamic env ironment, and
convenient ly makes t rade-off between the efficiency and the precision .

Structure o f the paper: In Sect ion 2 we int roduce the M2M model and its data st ructu re. In
Sect ion 3 we introduce the convex hu ll algorithm based on the M2M model and prove the

correctness of th is algorithm. In Sect ion 4 several comparison experiments between our
algorithm and other famous convex hu ll algorithms was carrried out . In Sect ion 5, some
discussions about the M2M convex hu ll algorithm are g iven .

2 Macro -to-M icro Mode l
2 .1 Th e or ig i n o f M2 M mo de l

The idea o f M2M is derived from human th inking pattern. Wh en people tackle p ract ical
prob lems , at first they used to analyze it at macro level rather than details and then go on to
narrow it to exclude some unnecessary facto rs unt il they can so lve the prob lem rap id ly at an

appropriate micro level. With the M2M model, our computer can have the ab ility as human
being to comprehend a p rob lem from a un iversal perspect ive . In the more abst ract v iew, the

processing from macro to micro is ach iev ing the goal o f sh rinking the search space. In fact , th is
idea is inherent in many algorithms of “Decrease -and-Conquer”.

Generally, Us ing M2M model to solve p rob lems include the fo llowing two steps:

1) Preprocessing : Data set shou ld be d iv ided into a number of s imilar part it ions th rough
Macro to Micro levels. Th is processing is similar to human being 's behav ior when

develop ing the v iew of the prob lem.

2) Query: From macro to micro , shrink the search space at every level and us e the

algorithms based on M2M to find the solut ion qu ickly.

2 .2 Te r mi n ol og y Ex pl an at i on

Figure 1: Terminology Explanat ion

Before the fu rther int roduct ion o f the data st ructu re based on M2M model, we first ly exp lain
some termino log ies which are used frequent ly when describ ing the M2M model.

1) Level: From the abstract v iew, d ifferent levels p resent the d ifferent way of data
classificat ion accord ing to the d ifferent p recis ion. As Figure 1 shows, there are th ree

levels. Only one part belongs to the first level, 16 parts belong to the second level and 256
parts belong to the th ird level.

2) Part: Part is defined as subset of the data po ints s imilar to each other. In the M2M model,
the part can be designed as a s mall square. A ll the data sets in the square belong to such
part it ion . In add it ion , the s ize o f the parts is nearly the same in the same level (s ize is

referred to the cover area in the two -d imension).

3) Las t-level , next-level , up-level and down-level : We define the level accord ing to their

parts’ size. The s ize o f certain level is s maller than its last -level and the s ize o f certain
level is b igger than its next -level as well. Take Figure 1 as example, the first level is the

last -level o f the second level, the th ird level is the next -level o f the second level. A ll the
next -levels under the certain level can be called the down -levels and all the last-levels
upper than the certain level can be called the up -levels as well.

4) Parent-part, chi ld-part, ancestor-part and descendant-part: The parent -part of a
certain part refers to the part belongs to the last -level and contains th is part. Similarly, the

child part o f a certain part is defined as the part included in the part to the last-level. Just
as Figure 1 illustrates, part A is the parent-part of part B, part C is the ch ild -part o f part B.

All the parent -parts belonged to certain part can be called the ancestor-part o f th is part.
Similarly, all the ch ild -part belonged to certain part can be called the descendant -part o f
this part .

3 The Convex Hull Algorithm B ase d on M2M M ode l
3 .1 Th e dat a s t r uc t u re bas e d on t h e M2 M mo de l

M2M is an algorithm model, basing on which many algorithms can be approached . The data
structure to realize th is model is flexib le, as per d ifferent s ituat ions. However, there are some
basic requ irements needed to be sat isfied.

1) Given a query po int , it shou ld take O(1) t ime to index the part which the po int belongs to.

2) Insert ion o r delet ion of a data po int should take O(1) t ime.

3) Given the index of the part , it takes O(n) t ime to v isit every ch ild -part of the g iven part,
where n is the number o f the ch ild -part .

4) Given the index of the part, it takes O(n) t ime to v is it all the data po ints o f th is part , and n

is the number of the data po ints of th is part .

5) Given the index of the part , it takes O(1) t ime to get the index of its ancestor-part .

6) The t ime complexity o f p reprocessing should be O(n). And parallel calcu lat ion should be
supported.

It is clear that the algorithm which satis fies all the requ irements above ach ieve s the t riv ial
lower bounds and is theoret ically opt imal.

In order to sat isfy those requ irements, the fo llowing data structu re is used in our convex hu ll

algorithm in the p lanar case:

1) A 2-d imension array index is app licab le fo r every part in the same level. Because query,

insert ing o r delet ing an array element approximate cost O(1) t ime, the 1st and 2nd
requ irements are sat isfied.

2) Every part maintains the index list o f its ch ild -parts, so that the 3rd requ irement can be
satisfied th rough v isit ing the ch ild -parts list (alternately, when the number o f ch ild -parts
is s mall, the space o f the index list is no longer needed because o f the regu lar part it ion).

3) The most micro part maintains a list of the po ints it contains . When we want to v is it the
points in a certain part, the breadth search t ree can be bu ilt by taking query part as the t ree

root，then we can t raverse every po int belong to th is part. The t ime complexity of th is

processing is O(n), that is, the 4th requ irement is also sat isfied.

4) Because the part it ions are regu lar, it is easy to calcu late the index of parent-part by the
index of current part (accomplished by a mult ip licat ion fo r scaling and a floor funct ion to

find the integer part index). Th is p rocessing fin ishes in constant t ime, so the 5th
requ irement is sat isfied .

5) As we exp lain at the 2nd statement above, the p reprocessing is composed of a series of

insert ion. every insert ion costs O(1) t ime, therefore the t ime complexity o f p reprocessing
is O(n) and the p reprocessing can be computed in parallel, which satis fies the 6th

requ irement .

The data st ructu re described above is bu ilt in the step o f p reprocessing . Because there isn’t any

dependency of each data po ints in the M2M preprocessing , it is conven ient to run the
preprocessing in parallel, which will improve the efficiency great ly (the details about the
parallelis m of M2M is in [17]). With the same reason, the insert ion or delet ion of data po ints

can be operated dynamically and have no affect ion to other po ints in the M2M structure, so we
need not to preprocess the data again when some changes appear.

3 .2 Th e Q u e r y i ng Pr oce du r e o f Th e Con ve x Hu l l A l g ori t h m B as e d on

M2 M Mo de l (M2 MC H)

Table 1: Terminology Explanat ion

Representat ive -Point An arb it rary po int in the part o f o rig inal po int set which is

designated in the p reprocessing .

Center-Line of two parts The line connects the centers o f two g iven parts .

Representat ive -Line The line connects the deput ies o f two g iven parts .

Vert ices o f hu ll The po in ts that are used to compose the final convex hu ll.

Cen ter-Hull The convex hu ll o f the center po ints o f parts in a level.

Representat ive-Hull The po lygon that is composed by the Representat ive-Point

belong ing to Center-Hull in a level.

Tab le 1 exp lain the termino log ies that are used in the query ing procedure o f M2MCH. In the
M2MCH, there are two bas ic steps : p reprocessing and query ing . Preprocessing is ident ical fo r

many algorithms based on M2M model (more detail in [17]), we describe the details o f convex
hull query ing in the fo llow.

After p reprocessing , the M2M data structu re is established . Our algorithm will first ly get all
the parts contain ing at least one po int and compute the convex hu ll o f the centers o f those parts
in topmost level, which is shown in Figure 3. Secondly, all the subparts o f the parts which are

in the Center-Hull will be cons idered in the next level. In the next level, the algorithm will
check all the parts hand led by the last level and s imilarly find out all the parts contain ing at

least one po int , then compute the Center-Hull o f those parts, as shown in Figure 4. It is
worthwhile to not ice that our algorithm on ly concerns the centers o f the parts hand led by the

last level and contain ing at least one po int, which leads to a great shrink to the search ing space.
The algorithm repeats similar p rocessing in the fo llowing levels, unt il reach ing the bo ttom
level. In the bottom, the algorithm will cons ider not just the centers o f the parts hand led by the

last level but all the po ints contained in those parts, and output the convex hu ll among
considering po ints, as shown in Figure 5.

Figure 2: The po int set Figure 3: The Center-Hull in the top level

Figure 4: The Center-Hull in the next level Figure 5: After several levels comput ing, the

algorithm returns the final convex hu ll in the
bottom level

Figure 6: The summary of the whole p rocessing in the above example

Although the descrip t ion above can express the general idea of M2MCH, it can’t guarantee
correctness of the final output . In order to ensure the correctness of our algorithm, we will not
only consider the parts contain ing Center -Hull but also includes the parts intersect ing with the

Representat ive -Hull. In the fo llowing sect ion , we will p rove the correctness o f the convex hu ll
algorithm based on M2M model.

3 .3 Th e C or r ec t n es s o f M2 M C H

In o rder to prove the correctness of M2MCH, we first int roduce four lemmas.

Lemma1 : In the current level, all the parts whose centers are outside of the Center-Hull
contains no po int (hu ll po ints as well) in them.

Lemma2 : The area ins ide o f Representat ive-Hull contains no hu ll po ints.

Lemma3 : All parts have at least one int ersect ion with the Representat ive-Hull, if their centers
are ins ide o f Center-Hull but outs ide o f the Representat ive-Hull.

Lemma4 : All the parts which contain hu ll po ints have at least one intersect ion with the
Representat ive -Hull.

Proof: Accord ing to Lemma 1 and Lemma 2, all the hu ll po ints exist in the parts that sat isfy

two condit ions. One condit ion is that those parts ’ centers shou ld be inside o f the Center-Hull.
The other is that those parts shou ld be some area outs ide of the Representat ive-Hull.

Accord ing to Lemma 3, the parts whose centers are ins ide o f Center-Hull but outside o f the
Representat ive -Hull and which also sat isfy above two condit ions , have been proved to have at

least one intersect ion with the Representat ive-Hull. The rest parts which sat isfy the two

condit ions above but not conform to the p recondit ion o f Lemma 3, are those whose centers are
ins ide both Center-Hull and Representat ive-Hull and are some area outside o f the

Representat ive -Hull. Th is kind of parts also have at least one inte rsect ion with the
Representat ive -Hull, because the center po ints of them inside mean that some area o f those

parts is ins ide in the Representat ive-Hull. Meanwhile, some other area o f them is outs ide, and
it is ev ident that there is at least intersect ion between those parts and the Representat ive-Hull.

Therefore, the Lemma 4 is p roved .

Proof of the correctness of M2MCH:

The proof uses the fo llowing loop invariant:

Initialization: The query ing processing beg ins from the top most level, which includes all the
points on the orig inal po ints set. Hence, at the in it ializat ion, all hu ll po ints will be included in

the first level.

Maintenance: Accord ing to Lemma 4, our algorithm adds all the parts which have

intersect ions with the Representat ive-Hull, in another wo rd , includ ing all the hu ll po ints , to the
ChildSet . Hence, it guarantees that the input part set o f next iterat ion contains all the hu ll
points.

Termination: At the bottom level, the correct convex hu ll (all the hu ll po ints) is with in the
final input set accord ing to loop invariant in main tenance. The inner algorithm can generate the

correct convex hu ll if and on ly if the input set contains the desiring po ints. Th is completes the
proof.

4 Expe rime nt

To learn more about the performance of M2M algorithm, we construct the fo llowing
experiments to compare the convex hu ll algorithm based on M2M with the classical covex hu ll

algorithm: Graham scan [1], qu ick hu ll [2] and Jarv is march [3]. (Jarv is march is
time-consuming , so the resu lt d idn't show in the d iagram), In the experiments, p lanar po ints are

generated randomly from un iform d istribut ion . Tab le 4 shows the experimental env iroment .

Tab le 4: The experimental env ironment

CPU： Intel(R) Pent ium(R) 1.73GHz

Memory : 1 GB

Operat ion System: Windows XP sp2

Programming Language: C# 2.0

Figure 8: The comparison of consumed t ime among convex hu ll algorithms .

In the s mall scale po ints set , the Graham's scan has the best performance, and the rat io o f

preprocessing in M2MCH is about 50%, in o rder words, the rat io o f query ing convex hu ll
processing in M2MCH is also about 50%.

Whereas in the large scale po ints set, beyond 1 million , M2MCH outperforms other algorithms
as showing in Figure 8. It is obv ious that Graham's scan cost s about twice more t ime than

M2MCH as the number o f po ints keeps increas ing. In add it ion, the rat io of preprocessing in
M2MCH is up to 95%, that is, the rat io of query ing in M2MCH is less than 5%. This fact
suggests that the cost can be reduced great ly when the p reprocessing is computed in parallel.

5 D is cuss ion
5 .1 Th e ad van t ag e of Con ve x Hu l l A lg or i t h m of M2 M mo de l

Compared to convent ional algorithms, Convex hu ll algorithm based on M2M model have
fo llowing advantage :

1) High parallelis m: The preprocessing o f M2M algorithm which runn ing t ime accounts fo r
95 percent o f the total t ime fo r convex hu ll algorithm in p ract ice , can be run in
mult i-independent channels at the same t ime which can reduce the runn ing t ime

complexity to O(1) in theory [17].

2) Dynamic structure: The operat ion o f M2M data st ructu re such as insert ing or delet ing

can be fin ished in O(log n) t ime in the worst case and in O(1) t ime in most cases.
Moreover, these add it ional operat ions will not delay o r in fluence the p rocessing of

query ing convex hu ll.

3) Preprocessing sharing: The algorithms based on M2M model share an ident ical
preprocessing which takes the main ly part o f the costing t ime of the ent ire algorithm.

Such characterist ic is very helpfu l in the image process ing field where many operat ions
need to be executed on the same image (po int set as well) and many algorithms used in

image processing can be approached based on the M2M model. A ll those algorithms share
one p reprocessing , thus the efficiency of the whole p rocessing is great ly improved .

4) Trade-off between the efficiency and the precision: As with other M2M algorithm,
convex hu ll algorithm based on M2M can eas ily t rade-off between the efficiency and the
precis ion , that is, it is a p robab ly approximate ly correct algorithm. For example, if we

output the Deputy Hull o f certain level instead of the convex hu ll in the bottom level, the
time of computat ion is shorter but the resu lt is approximately correct , and it is no doubt

that the more closer the stop level is to the bottom, the more p recise the resu lt is.

5) Trade-off between the time efficiency and s pace cost: The parameters o f M2M model

such as the number o f levels and the way of part it ion at each level can be changed on
certain purpose. Generally speaking , the more subtler o f the Macro-Micro levels being
div ided and the more s maller the rat io o f the part it ion between the ad jacent levels is , the

higher the cost o f the space may be, and the h igher the t ime efficiency may get .

5 .2 O t h e r appl i c at i on of M2 M mo de l

With the help o f M2M model, the algorithms can be des igned to so lve many c lassical p rob lems :
such as nearest po ints , convex hu ll, TSP, cluster, path find ing , co llis ion detect ion and so on .
Thus, tas ks in many app licat ion fields (includ ing geography informat ion system, data min ing,

pattern recognit ion , image processing and real t ime st rategy game) related to those
fundamental algorithm can be better performed . Taking image processing fo r example, we can

preprocess fo r a specific po ints set , and then do convex hu ll query ing, nearest po ints query ing,
or area query ing with out p rep rocessing again.

6 Conclus ion

In add it ion to the less time cost than the classic algorithms in the large scale po ints set, the
M2MCH algorithm integrates the characteristics of paralle l, dynamic and randomized

computat ions , even th rough the recent researches [8-16] just focus on one of these
characterist ics. Moreover, the un ique p reprocessing sharing character b igger theoret ical value

and more app licat ion potent ial.

7 Future work

1) Perfecting M2MCH: M2M model is a newborn computat ion model, base on which the

convex hu ll algorithm is also an o rig inal one. Together with the advantage o f the
algorithm, there are some configurat ion issues outstanding , such as the affect o f d ifferent

inner algorithm, the way of st rat ificat ion and how to select the Representat ive-po int .

2) The Time Complexity of M2MCH: As we know, the average t ime complexity depends
on the d ist ribut ion of the input set; therefore , it is d ifficu lt fo r us to define the t ime

complexity without knowing the real po int set. Briefly, from the t rend of the comparison

to Graham's scan and Quick hu ll which are O(n logn) t ime complexity, we believe the t ime
complexity o f M2MCH is no greater than O(n logn).

3) Extending To Higher Dimension: It wouldn't be d ifficu lt to extend M2M algorithms fo r
higher d imension , but it requ ires h igher-d imension surface const ruct ion algorithm (as

draw-line algorithm used in the p lanar case) and h igher-d imens ion convex hu ll algorithm

as an inner algorithm。

4) Contribution To M2M Model : As we have iterated , many graph ics algorithms can be

designed base on M2M model, and benefit from its general advantages . Hitherto, we have
implemented some algorithms based on M2M model that include nearest po ints search ing ,

convex hu ll and path find ing, but there are many other algorithms wait ing fo r research.

Re f e re n ces

[1] R. L. Graham, An efficient algorithm for determining the convex hull of a finit e planar set,
Information Process ing Letters 1 (1972) 132–133.

[2] F. P. Preparata, S. J. Hong, Convex hulls of finit e point sets in two and three dimensions,
Communications of the ACM 2 (20) (1977) 87–93.

[3] A. Jarvis , On the ident ification of the convex hull of a finite set of points in t he plane, Informat ion
Process ing Letters 2 (1973) 18–21.

[4]Avis, D. Comments on a lower bound for convex hull determination. Inform. Process. Lett.11 (1980),
126.

[5]Yao, A.C. A lower bound to finding convex hulls . J. ACM 28 (1981), 780 -787

[6] D. G. Kirkpatrick, R. Seidel, The ult imate planar convex hull algorithm?, SIAM Journal on
Computing 15 (1) (1986) 287–299.

[7] T. M. Chan. Optimal output-sens itive convex hull algorithms in two and three dimensions. Discrete
Comput. Geom., 16(4):361–368, 1996. Eleventh Annual Symposium on Computational Geometry
(Vancouver, BC, 1995).

[8]Clarkson, K.L. New applications of random sampling in computational geometry. Discret e Comput.
Geom. 2(1987), 195-222.

[9]Clarkson, K.L. A randomized algorithm for closest -point queries. SIAM J. Comput. 17(1988),
830-847.

[10] R. Wenger, Randomized quick hull, Algorithmica 17 (1997) 322 –329.

[11] M. H. Overmars and J . van Leeuwen. Maintenance of configurations in the plane. J. Comput.
System Sci., 23(2):166–204, 1981.

[12] J. Hershberger and S. Suri. Applications of a semi-dynamic convex hull algorithm. BIT,
32(2):249–267, 1992.

[13] J. Hershberger and S. Suri. Off-line maint enance of planar configurations. J . Algorithms,
21(3):453–475, 1996.

[14] T. M. Chan. Dynamic planar convex hull operat ions in nearlogarithmic amortize d time. Journal of
the ACM, 48(1):1–12, January 2001.

[15] Gerth Stolt ing Brodal and Riko Jacob Dynamic Planar Convex Hull. 43 rd Annual IEEE, 2002.

 [16] Neelima Gupta and Sandeep Sen, Faster output -sens itive parallel algorithms for 3D convex hulls
and vector maxima, Journal of Parallel and Distributed Computation, 63 (2003) 488 –500

[17] YingPeng Zhang, ZhiZhuo Zhang, Qiong Chen A NEW NEAREST NE IGHBOUR SEAR CHING ALGOR ITHM

BASED O N M2M MODEL . THE INTER NATIONA L MU LTICO NFERENCEOF ENG INEE RS AND COMPU TER SCIE NTISTS

2007（IMECS 2007）. 2007

