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Abstract 

In th is  paper, we introduce a new randomized parallel convex hu ll algorithm 
based on  dynamic M2M data structu re  whose operat ion  such  as  insert ing  o r 

delet ing  costs O(1) t ime. In  p ract ice, th is algorithm is  faster than  the classical 
convex hu ll algorithms such as Grahan scan , qu ick hu ll and Jarv is march. As  

with  other M2M algorithm, th is  algorithm share an  iden t ical p reprocessing  
which  takes the majority  o f the cost ing  t ime of the ent ire algorithm. Such  

characterist ic is very helpfu l in many  app licat ions where a large number o f 
operat ions  need  to be executed  to  the same data set . 

1  Introduction  

The convex hu ll o f a set o f po ints is one o f the most basal prob lem in computat ional geometry  

and is  app lied  in  many  fields, such  as   pattern  recognit ion, image processing, stat ist ics  and  GIS. 
It also serves as a too l and a bu ild ing  b lock fo r a number o f other computat ional  geometric 

algorithms . 

Ron Graham presented the first ( log )O n n  algorithm for find ing the convex hu ll o f po ints in the 

plane in 1972[1]. If the po ints are already sorted by one o f the coord inates or by the ang le to a 

fixed vector, then  the algorithm takes  ( )O n  t ime. Another ( log )O n n solution  is the d iv ide and  

conquer algorithm for the convex hu ll, pub lished in 1977 by Preparata and  Hong[2]. Th is 
algorithm is  also app licab le to  the th ree d imens ional case. Later, Avis [4] and  Yao  [5] p roved  

lower bounds o f ( log )n n on the t ime to find a convex hu ll, where sort ing has an ( log )n n  

lower bound, and  Convex hu ll implements sort ing implied ly. 

R.Jarv is  constructed  an  "output sens it ive"  algorithm whose runn ing  t ime depends on  the output  

size[3]. Jarv is's algorithm runs in  ( )O nh time where h is  the number o f po ints in  the convex hu ll.  

In  1986, Kirkpat rick and Seidel [6] computed  the convex hu ll o f a set  of n  po ints  in  the p lane in  

( log )O n h time. (Later, the same resu lt was obtained  by Chan  using  a much  s impler algorithm 

[7].) The same authors showed that , on  algebraic decision  trees o f any  fixed order,  

( log )O n h was  a lower bound  fo r comput ing convex hu lls o f sets o f n  po ints ，where h was the  

vert ices o f the convex hu ll.  
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Start ing  with  seminal work by  Clarkson, randomized  algorithms  have p layed  an  increasing ly  
important ro le in  computat ional geometry and many  randomized convex hu ll algorithms  were 

proposed [8, 9, 10].  

In p ract ice, we often  requ ire to compute the convex hu ll in  the po ints set that  is changing in  a 

small scale. So dynamic convex hu ll algorithm is  also  widely stud ied  [11-15]. 

In o rder to  reduce the t ime complexity, some researchers focus on the p rob lem of design ing  

very  fast parallel algorithms fo r convex hu lls[16]. 

In th is paper, we main ly  d iscuss a new efficient  randomized parallel Convex Hull algorithm 
with  dynamic data structu re based on  M2M model which was p roposed in  [17]. The data 

structure based on  M2M mod el costs O(n) t ime to  p reprocess data. The operat ions  for query ing , 
insert ion and  delet ion  on  convent ional data structu re (like kd -t ree and  quadtree) may  cause 

balance p rob lem of the t ree, however, those operat ions are independent  on each po int  in the 
M2M structure and  can  be executed in  parallel. By  using  the parallel computat ion , the t ime 

complexity  can  be reduced  to  O(n). We also  introduce a new concep t  of p reprocessing  sharing, 
which  great ly improves the efficiency of some mult i-operat ion  prob lem such as image 
processing  and pattern  recognit ion . Like the other algorithms based on  M2M model, the 

convex hu ll algorithm based  on M2M model  is su itab le  for dynamic env ironment, and  
convenient ly  makes t rade-off between  the efficiency  and  the precision . 

Structure o f the paper: In Sect ion 2 we int roduce the M2M model and  its data st ructu re. In  
Sect ion  3 we introduce the convex hu ll  algorithm based  on  the M2M model and  prove the 

correctness of th is algorithm. In Sect ion 4 several comparison experiments between our 
algorithm and  other famous convex hu ll algorithms  was carrried  out . In  Sect ion  5, some 
discussions about  the M2M convex hu ll algorithm are g iven .  

2  Macro -to-M icro  Mode l 
2 .1  Th e  or ig i n  o f  M2 M mo de l  

The idea o f M2M is derived  from human th inking  pattern. Wh en  people tackle p ract ical 
prob lems , at  first they  used to analyze it at macro level rather than  details  and then go on to  
narrow it  to  exclude some unnecessary  facto rs unt il they  can  so lve the prob lem rap id ly  at  an  

appropriate micro level. With the M2M model, our computer can have the ab ility  as human  
being  to comprehend  a p rob lem from a un iversal perspect ive . In the more abst ract  v iew, the 

processing  from macro  to  micro  is ach iev ing  the goal o f sh rinking  the search  space. In  fact , th is 
idea is inherent  in many algorithms  of “Decrease -and-Conquer”.  

Generally, Us ing M2M model to  solve p rob lems include the fo llowing  two steps:   

1) Preprocessing : Data set shou ld  be d iv ided into a number of s imilar part it ions th rough  
Macro  to  Micro  levels.  Th is  processing  is similar to human  being 's behav ior when  

develop ing the v iew of the prob lem.  

2) Query: From macro  to  micro , shrink the search  space at  every  level and  us e the 

algorithms  based  on M2M to find  the solut ion  qu ickly.  

2 .2  Te r mi n ol og y  Ex pl an at i on  

 

Figure 1: Terminology  Explanat ion  



Before the fu rther int roduct ion  o f the data st ructu re based  on  M2M model, we first ly  exp lain  
some termino log ies  which are used  frequent ly  when  describ ing the M2M model.  

1) Level: From the abstract v iew, d ifferent  levels  p resent the d ifferent  way  of data 
classificat ion accord ing to the d ifferent  p recis ion. As Figure 1 shows, there are th ree 

levels. Only  one part  belongs  to  the first level, 16 parts  belong  to  the second  level and  256 
parts belong to  the th ird level. 

2) Part: Part  is  defined  as subset  of the data po ints s imilar to  each  other. In  the M2M model, 
the part  can  be designed  as  a s mall square. A ll the data sets in  the square belong  to such  
part it ion . In  add it ion , the s ize o f the parts is nearly  the same in  the same level (s ize is 

referred  to the cover area in  the two -d imension).  

3) Las t-level , next-level , up-level and down-level : We define the level accord ing  to  their 

parts’ size. The s ize o f certain  level is s maller than its last -level and the s ize o f certain  
level is  b igger than  its next -level as well. Take Figure 1 as example, the first level is the 

last -level o f the second  level, the th ird level is the next -level o f the second level. A ll the 
next -levels under the certain  level can  be called the down -levels and  all the last-levels 
upper than  the certain  level can be called  the up -levels as well.  

4) Parent-part, chi ld-part, ancestor-part and descendant-part: The parent -part  of a 
certain  part  refers to  the part  belongs  to  the last -level and  contains  th is  part. Similarly, the 

child  part o f a certain part is defined  as the part  included  in the part to the last-level. Just 
as Figure 1 illustrates, part  A is  the parent-part  of part  B, part  C is  the ch ild -part  o f part  B. 

All the parent -parts  belonged  to  certain  part  can  be called  the ancestor-part  o f th is part. 
Similarly, all the ch ild -part  belonged  to  certain  part  can be called  the descendant -part o f 
this part . 

3  The  Convex  Hull  Algorithm B ase d on M2M M ode l 
3 .1  Th e  dat a  s t r uc t u re  bas e d on  t h e  M2 M mo de l  

M2M is  an  algorithm model, basing  on  which  many  algorithms  can  be approached . The data 
structure to  realize th is model is flexib le, as per d ifferent  s ituat ions. However, there are some 
basic requ irements needed  to be sat isfied. 

1) Given  a query  po int , it  shou ld  take O(1) t ime to  index the part  which  the po int  belongs  to. 

2)  Insert ion  o r delet ion  of a data po int  should  take O(1) t ime. 

3) Given  the index of the part , it  takes  O(n) t ime to  v isit every  ch ild -part  of the g iven part, 
where n  is the number o f the ch ild -part . 

4) Given  the index of the part, it  takes  O(n) t ime to  v is it  all the data po ints o f th is  part , and  n  

is the number of the data po ints  of th is part .  

5) Given  the index of the part , it takes O(1) t ime to  get  the index of its ancestor-part . 

6) The t ime complexity o f p reprocessing  should  be O(n). And parallel calcu lat ion should  be 
supported. 

It  is clear that  the algorithm which  satis fies  all the requ irements  above ach ieve s  the t riv ial 
lower bounds and  is theoret ically  opt imal. 

In  order to  sat isfy  those requ irements, the fo llowing  data structu re is  used in  our convex hu ll 

algorithm in the p lanar case: 

1) A 2-d imension  array  index is app licab le fo r every  part in the same level. Because query, 

insert ing o r delet ing an  array element approximate cost O(1) t ime, the 1st and 2nd  
requ irements are sat isfied. 

2) Every part maintains the index list o f its ch ild -parts, so that the 3rd requ irement can be 
satisfied  th rough  v isit ing  the ch ild -parts list  (alternately, when  the number o f ch ild -parts 
is s mall, the space o f the index list  is no  longer needed  because o f the regu lar part it ion).  

3) The most  micro  part  maintains a list  of the po ints  it  contains . When we want  to v is it  the 
points  in  a certain  part, the breadth  search  t ree can  be bu ilt  by  taking  query  part  as  the t ree 



root，then we can t raverse every po int  belong to  th is part. The t ime complexity  of th is 

processing  is O(n), that  is, the 4th  requ irement  is also sat isfied.  

4) Because the part it ions are regu lar, it is easy to calcu late the index of parent-part  by the 
index of current  part  (accomplished  by  a mult ip licat ion  fo r scaling  and  a floor funct ion  to  

find the integer part  index).  Th is p rocessing  fin ishes in constant t ime, so the 5th  
requ irement  is sat isfied . 

5) As we exp lain at the 2nd statement above, the p reprocessing is composed of a series of 

insert ion. every insert ion costs O(1) t ime, therefore the t ime complexity o f p reprocessing  
is O(n) and the p reprocessing  can  be computed  in parallel, which  satis fies the 6th  

requ irement .   

The data st ructu re described  above is  bu ilt  in  the step  o f p reprocessing . Because there isn’t  any  

dependency  of each  data po ints in  the M2M preprocessing , it  is conven ient  to  run  the  
preprocessing  in  parallel, which  will improve the efficiency great ly  (the details about  the 
parallelis m of M2M is in  [17]). With  the same reason, the insert ion  or delet ion  of data po ints 

can  be operated  dynamically  and  have no  affect ion  to  other po ints  in  the M2M structure, so  we 
need not  to  preprocess the data  again  when  some changes appear.   

3 .2  Th e  Q u e r y i ng  Pr oce du r e  o f  Th e  Con ve x  Hu l l  A l g ori t h m B as e d on  

M2 M Mo de l  ( M2 MC H)  

Table 1: Terminology  Explanat ion  

Representat ive -Point  An arb it rary po int  in the part o f o rig inal po int set which is  

designated  in  the p reprocessing .  

Center-Line of  two parts  The line connects the centers o f two g iven parts .  

Representat ive -Line The line connects the deput ies o f two g iven parts .  

Vert ices o f hu ll The po in ts that  are used to  compose the final convex hu ll.  

Cen ter-Hull The convex hu ll o f the center po ints o f parts in  a  level.  

Representat ive-Hull The po lygon  that  is  composed  by  the  Representat ive-Point  

belong ing  to  Center-Hull in a level. 

Tab le 1 exp lain  the termino log ies that  are used  in  the query ing  procedure o f M2MCH. In  the 
M2MCH, there are two bas ic steps : p reprocessing  and query ing . Preprocessing  is ident ical fo r 

many  algorithms  based  on  M2M model (more detail in  [17]), we describe the details  o f convex 
hull query ing  in the fo llow. 

After p reprocessing , the M2M data structu re is  established . Our algorithm will first ly  get  all 
the parts  contain ing  at  least  one po int  and  compute the convex hu ll o f the centers o f those parts 
in  topmost level, which  is shown in  Figure 3. Secondly, all the subparts o f the parts  which  are  

in  the Center-Hull will be cons idered in the next  level. In the next  level, the algorithm will 
check all the parts hand led by the last level and s imilarly  find out all the parts contain ing at  

least one po int , then  compute the Center-Hull o f those parts, as shown in  Figure 4. It  is 
worthwhile  to  not ice that  our algorithm on ly  concerns the centers o f the parts  hand led  by  the 

last  level and contain ing  at  least one po int, which  leads to  a great  shrink to  the search ing  space. 
The algorithm repeats  similar p rocessing  in  the fo llowing  levels, unt il reach ing  the bo ttom 
level. In  the  bottom, the algorithm will cons ider not  just  the centers  o f the parts  hand led  by  the 

last level but  all the po ints contained in those parts, and output the convex hu ll among  
considering  po ints, as shown in  Figure 5. 

  

Figure 2: The po int  set  Figure 3: The Center-Hull in  the top  level 



  

Figure 4: The Center-Hull in  the next  level  Figure 5: After several levels  comput ing, the 

algorithm returns  the final convex hu ll in  the 
bottom level 

 

Figure 6: The summary  of the whole p rocessing in  the above example 

Although  the descrip t ion above can express the general idea of M2MCH, it  can’t guarantee  
correctness of the final output . In  order to ensure the correctness of our algorithm, we will not  
only consider the parts contain ing  Center -Hull but also includes the parts intersect ing  with the 

Representat ive -Hull. In  the fo llowing  sect ion , we will p rove the correctness o f the convex hu ll 
algorithm based on  M2M model.  

3 .3  Th e  C or r ec t n es s  o f  M2 M C H  

In o rder to  prove the correctness of M2MCH, we first int roduce four lemmas. 

Lemma1 : In  the current  level, all the parts whose centers are outside of the Center-Hull 
contains no po int (hu ll po ints as  well) in  them.  

Lemma2 : The area ins ide o f Representat ive-Hull contains  no hu ll po ints.  

Lemma3 : All parts have at  least  one int ersect ion  with  the Representat ive-Hull, if their centers 
are ins ide o f Center-Hull but outs ide o f the Representat ive-Hull. 

Lemma4 : All the parts which  contain  hu ll po ints  have at  least  one intersect ion  with  the 
Representat ive -Hull.  

Proof:  Accord ing  to  Lemma 1 and  Lemma 2, all the hu ll po ints exist  in  the parts that  sat isfy  

two  condit ions. One condit ion  is that  those parts ’ centers shou ld  be inside o f the Center-Hull. 
The other is that  those parts shou ld be some area outs ide of the Representat ive-Hull. 

Accord ing  to Lemma 3, the parts whose centers are ins ide o f Center-Hull but  outside o f the 
Representat ive -Hull and  which also sat isfy  above two condit ions , have been proved  to have at  

least one intersect ion  with the Representat ive-Hull. The rest parts which sat isfy  the two  



condit ions  above but  not  conform to  the p recondit ion  o f Lemma 3, are  those whose centers  are  
ins ide both Center-Hull and Representat ive-Hull and  are  some area outside o f the 

Representat ive -Hull. Th is kind  of parts also have at  least  one inte rsect ion  with  the 
Representat ive -Hull, because the center po ints  of them inside mean  that  some area o f those 

parts is ins ide in  the Representat ive-Hull. Meanwhile, some other area o f them is outs ide, and  
it  is ev ident  that there is at  least intersect ion between those parts and the Representat ive-Hull. 

Therefore, the Lemma 4 is p roved .  

Proof of the correctness of M2MCH:  

The proof uses the fo llowing  loop invariant: 

Initialization: The query ing  processing beg ins from the top  most level, which includes all the 
points on the orig inal po ints set.  Hence, at the in it ializat ion, all hu ll po ints will be included in  

the first level.  

Maintenance: Accord ing to  Lemma 4, our algorithm adds all the parts which  have 

intersect ions  with  the Representat ive-Hull, in  another wo rd , includ ing  all the hu ll po ints , to  the 
ChildSet . Hence, it  guarantees  that  the input  part  set  o f next  iterat ion  contains all the hu ll 
points. 

Termination: At the bottom level, the correct convex hu ll (all the hu ll po ints) is with in  the 
final input  set accord ing  to  loop invariant  in main tenance. The inner algorithm can generate the 

correct  convex hu ll if and  on ly if the input set contains the desiring  po ints. Th is completes the 
proof. 

4  Expe rime nt  

To learn  more about  the  performance of M2M algorithm, we construct  the fo llowing  
experiments  to  compare the convex hu ll algorithm based  on  M2M with  the classical covex hu ll 

algorithm: Graham scan  [1], qu ick hu ll [2] and  Jarv is march  [3]. (Jarv is  march  is 
time-consuming , so the resu lt  d idn't  show in  the d iagram), In  the experiments, p lanar po ints are  

generated  randomly  from un iform d istribut ion .  Tab le 4 shows  the experimental env iroment .  

Tab le 4: The experimental env ironment  

CPU：  Intel(R) Pent ium(R) 1.73GHz  

Memory : 1 GB 

Operat ion  System: Windows  XP sp2 

Programming  Language: C#  2.0 

 

Figure 8: The comparison  of consumed  t ime among convex hu ll algorithms . 

In  the s mall scale po ints  set , the Graham's  scan  has the best  performance, and  the rat io  o f 

preprocessing  in  M2MCH is  about  50%, in  o rder words, the rat io  o f query ing  convex hu ll 
processing  in  M2MCH is also about  50%.  

Whereas  in  the large scale po ints set, beyond  1 million ,  M2MCH outperforms  other algorithms  
as showing  in  Figure 8. It is  obv ious  that  Graham's  scan  cost s about  twice more t ime than  

M2MCH as the number o f po ints keeps increas ing. In add it ion, the rat io  of preprocessing in  
M2MCH is  up  to  95%, that  is, the rat io  of query ing  in  M2MCH is less than  5%. This  fact  
suggests that the cost can be reduced great ly when the p reprocessing is  computed  in parallel.   



5  D is cuss ion 
5 .1  Th e  ad van t ag e  of  Con ve x  Hu l l  A lg or i t h m of  M2 M mo de l  

Compared  to  convent ional algorithms, Convex hu ll algorithm based on  M2M model have 
fo llowing  advantage :  

1) High parallelis m: The preprocessing o f M2M algorithm which  runn ing  t ime accounts  fo r 
95 percent o f the total t ime fo r convex hu ll algorithm in p ract ice , can  be run in  
mult i-independent  channels  at  the same t ime which  can  reduce the runn ing  t ime 

complexity  to  O(1) in  theory [17]. 

2) Dynamic structure: The operat ion  o f M2M data st ructu re  such  as  insert ing  or delet ing  

can  be fin ished  in  O(log  n) t ime in  the worst  case and  in  O(1) t ime in  most  cases. 
Moreover, these add it ional operat ions will not  delay  o r in fluence the  p rocessing of 

query ing  convex hu ll. 

3) Preprocessing sharing:  The algorithms  based  on  M2M model share an  ident ical 
preprocessing  which  takes  the main ly  part  o f the costing  t ime of the ent ire algorithm. 

Such  characterist ic is very  helpfu l in  the image process ing  field  where many  operat ions 
need  to  be executed  on  the same image (po int  set  as  well) and  many  algorithms  used  in  

image processing  can  be approached  based on  the M2M model. A ll those algorithms share 
one p reprocessing , thus the efficiency  of the whole p rocessing is  great ly  improved .  

4) Trade-off between the efficiency and the precision: As  with  other M2M algorithm, 
convex hu ll algorithm based on  M2M can  eas ily t rade-off between  the efficiency and  the 
precis ion , that  is, it  is  a  p robab ly  approximate ly  correct  algorithm.   For example, if we 

output the Deputy  Hull o f certain level instead  of the convex hu ll in the bottom level, the 
time of computat ion  is  shorter but  the resu lt  is approximately  correct , and  it  is no  doubt  

that the more closer the stop level is  to the bottom, the more p recise the  resu lt  is.  

5) Trade-off between the time efficiency and s pace cost:  The parameters o f M2M model 

such as the number o f levels  and  the way  of part it ion  at  each level can  be changed on  
certain purpose. Generally speaking , the more subtler o f the Macro-Micro levels being  
div ided  and the more s maller the rat io o f the part it ion between the ad jacent levels  is , the 

higher the cost o f the space may be, and  the h igher the t ime efficiency may  get . 

5 .2  O t h e r  appl i c at i on  of  M2 M mo de l  

With  the help  o f M2M model, the algorithms  can  be des igned  to  so lve many  c lassical p rob lems :  
such as nearest po ints , convex hu ll, TSP, cluster, path find ing , co llis ion detect ion and so on .  
Thus, tas ks in many  app licat ion fields (includ ing  geography  informat ion  system, data min ing, 

pattern  recognit ion , image processing  and  real  t ime st rategy  game) related  to  those 
fundamental algorithm can be better performed . Taking image processing  fo r example, we can  

preprocess fo r a specific po ints set , and  then  do  convex hu ll query ing, nearest  po ints query ing, 
or area query ing with  out  p rep rocessing  again. 

6 Conclus ion 

In add it ion to  the less time cost than the classic algorithms in  the large scale po ints set, the 
M2MCH algorithm integrates the characteristics of paralle l, dynamic and  randomized  

computat ions , even  th rough the recent  researches  [8-16] just focus  on one of these 
characterist ics.  Moreover, the un ique p reprocessing  sharing  character b igger theoret ical value 

and more app licat ion  potent ial.  

7  Future  work  

1) Perfecting M2MCH: M2M model is  a  newborn  computat ion  model, base on  which  the 

convex hu ll algorithm is  also  an  o rig inal one. Together with  the advantage o f the 
algorithm, there are some configurat ion issues outstanding , such as the affect o f d ifferent  

inner algorithm, the way  of st rat ificat ion  and  how to select the Representat ive-po int .  

2) The Time Complexity of M2MCH: As  we know, the average t ime complexity depends 
on the d ist ribut ion  of the input  set; therefore , it  is d ifficu lt  fo r us to define the t ime 

complexity  without  knowing the real po int  set. Briefly, from the t rend of the comparison 



to Graham's  scan  and  Quick hu ll which are O(n logn) t ime complexity, we believe the t ime 
complexity  o f M2MCH is no  greater than  O(n logn).  

3) Extending To Higher Dimension: It  wouldn't  be d ifficu lt to  extend M2M algorithms  fo r 
higher d imension , but  it requ ires h igher-d imension  surface const ruct ion algorithm (as 

draw-line algorithm used  in  the p lanar case) and   h igher-d imens ion  convex hu ll algorithm 

as an inner algorithm。  

4) Contribution To M2M Model : As we have iterated , many  graph ics algorithms  can  be 

designed  base on  M2M model, and  benefit  from its  general advantages . Hitherto, we have 
implemented  some algorithms  based  on  M2M model that  include nearest  po ints search ing , 

convex hu ll and  path  find ing, but  there are many other algorithms wait ing fo r research.  
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