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ABSTRACT: Molecular structure recognition is the task of translating a molecular image into its graph structure. Significant
variation in drawing styles and conventions exhibited in chemical literature poses a significant challenge for automating this task. In
this paper, we propose MolScribe, a novel image-to-graph generation model that explicitly predicts atoms and bonds, along with
their geometric layouts, to construct the molecular structure. Our model flexibly incorporates symbolic chemistry constraints to
recognize chirality and expand abbreviated structures. We further develop data augmentation strategies to enhance the model
robustness against domain shifts. In experiments on both synthetic and realistic molecular images, MolScribe significantly
outperforms previous models, achieving 76−93% accuracy on public benchmarks. Chemists can also easily verify MolScribe’s
prediction, informed by its confidence estimation and atom-level alignment with the input image. MolScribe is publicly available
through Python and web interfaces: https://github.com/thomas0809/MolScribe.

■ INTRODUCTION
Molecules are commonly drawn as 2D images in chemistry
literature. Such drawings exhibit a wide variety of styles, which
complicates the task of translating these images into machine-
readable molecular structures. For example, Figure 1 shows
three different ways to draw the same molecule. The plain
image (a) can be recognized adequately by existing models, but
variants such as (b) and (c) are more difficult as they involve
stereochemistry, functional group abbreviations, and diverse
drawing styles. While prior work has demonstrated that it is
possible to train models that perform well on one style
assuming labeled data is available, the diversity of possible
styles is a standing challenge. We cannot assume access to
training data that covers all possible styles and patterns in the
chemistry literature due to the high annotation cost. Therefore,
we aim to enhance the robustness of molecular structure
recognition model to generalize to an arbitrary molecular
image.
In this paper, we propose MolScribe, which takes as input a

molecular image (e.g., a PNG or JPG file) and generates its
molecular graph structure. The model relies on three
complementary approaches to handle data variation robustly.
First, MolScribe explicitly predicts the atoms and bonds along
with their geometric layouts in the image, which together

constitute a 2D molecular graph. Second, we incorporate
chemistry knowledge as symbolic constraints to the model,
such that it can accurately recognize complex chemical
patterns. For example, we determine the chirality of
asymmetric atoms based on the predicted graph and layout
and design an algorithm to parse abbreviated functional groups
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Figure 1. Three images of the same molecule with different layouts
and styles. (a) depicts the full molecular structure and does not
specify chirality. (b) and (c) use different abbreviations, and (b)
color-codes the phenyl groups.
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that commonly appear in molecular images. Third, we propose
data augmentation strategies to synthetically generate images
that cover diverse drawing styles during training. Specifically,
MolScribe is implemented as an image-to-graph generation
model, which abstracts the input image into hidden
representations and generates the molecular graph with an
autoregressive decoder. MolScribe’s output can be aligned with
the input image at the atom-level, allowing humans to easily
interpret its predictions.
MolScribe combines the strengths of previous rule-based

and neural models. Rule-based methods1,2 can easily enforce
chemistry constraints and conduct symbolic reasoning over the
molecular graph, while neural models3−5 are more robust to
image styles and perturbations. MolScribe naturally extends a
neural generation model to predict atoms and their coordinates
as a sequence and then the bond between each pair of atoms.
This design allows MolScribe to robustly recognize local atoms
and bonds and flexibly integrate chemistry rules when
constructing the molecular graph, such that it generalizes to
different scenarios.
In our experiments, MolScribe outperforms an image-to-

SMILES baseline on both in-domain and out-of-domain
images and achieves strong recognition accuracy (76−93%)
on five public benchmarks. We also construct a new
benchmark with molecular images from journal publications,
and MolScribe significantly outperforms the baseline and
existing systems. Moreover, MolScribe is robust against input
perturbation and low-quality images, predicts chirality more
accurately, and provides confidence estimation. Finally, we
conduct a human evaluation to understand how our model can
help chemists to parse molecular images in a semiautomated
workflow. The results show that our graph prediction
significantly reduces the time needed by chemists to extract
the molecular structures from images. Our model, code, and
data are publicly available (https://github.com/thomas0809/
MolScribe) for future research in molecular structure
recognition and chemistry information extraction. We have
developed a demo that allows chemists to use MolScribe from
a web interface (https://huggingface.co/spaces/yujieq/
MolScribe).

■ MOLECULAR STRUCTURE RECOGNITION
Background. Research on molecular structure recognition

dates back to at least the 1990s (see a recent review by Rajan
et al.6). The task is also known as Optical Chemical Structure
Recognition (OCSR). Earlier rule-based systems7−14 relied on
traditional image processing techniques (binarization, line
smoothing and thinning, vectorization) to segment the pixels
into atoms and bonds and standalone optical character
recognition (OCR) models to identify atom labels. Then,
heuristics based on line length, width, spacing, and direction
were used to determine bond types (single, double, triple,
wedge, dashed) and connect all these elements into molecular
graphs. These systems were usually meticulously engineered by
chemists, with specific rules to handle different situations in
molecular images. For example, they usually have an expert-
compiled dictionary to resolve the most common functional
group abbreviations. A few open-source tools have been
developed,1,2,15 and developers are continuously improving
them by writing new rules to cover edge cases (e.g., bridge
bonds).1 The rule-based systems have achieved decent
recognition accuracy on patent images, but there is still
much room for improvement on journal article images, which

are more diverse. Researchers also identified that small image
perturbations can cause significant performance degradation.4

Neural models have been proposed to improve the
robustness against image variations. Staker et al. presented
an image-to-SMILES generation model:3 a convolutional
neural network encodes the input molecular image into a
hidden representation, and a recurrent neural network decodes
the SMILES string of the molecule. A few variants have been
proposed since, exploring multiple model architectures, such as
Inception network,16 Transformer,17,18 Swin Transformer,19

pretrained decoder,4 graph decoder,5 and also the application
to hand-drawn molecules.20,21 Neural models enjoy the
simplicity of end-to-end training and the strength of handling
different image styles, but operating on the SMILE strings
instead of explicitly recognizing atoms and bonds makes it
difficult to incorporate chemistry constraints. For example, as
we show in the experiments, predicting stereochemistry
presents a challenge for traditional neural networks due to
the need for geometric reasoning over the molecular graph.
Figure 2 shows two equivalent SMILES strings for a chiral
molecule. Whether the chiral center should be written as “[C@
H]” or “[C@@H]” depends on the relative order of its
connecting bonds, which cannot be easily determined from the
local pattern. Due to the lack of explicit notion of atoms and
bonds, we cannot easily inject chemistry rules into these
models.
Besides the image-to-SMILES formulation that directly

generates the SMILES string, ChemGrapher22 and MolMin-
er23 train separate modules to detect atoms, bonds, and texts,
based on image segmentation or object detection; and then
construct the graph with heuristics. Such systems can also
incorporate chemistry constraints during their graph con-
struction process. Compared to these models, we simplify the
method with a single end-to-end model to generate the
molecular graph, so that our model does not rely on heuristics
to connect the local predictions.
Task Formulation. Molecular structure recognition is the

task of translating single-molecule images into corresponding
molecular structures. In this paper, we formulate it as image-to-
graph generation. Given an image I of molecule M, we translate
it into a 2D molecular graph G = (A, B), where A = {a1, a2, ...,
an} is the set of atoms, B ⊂ A × A × T is the set of bonds, and
T is the set of bond types (e.g., single, double, triple, solid
wedge, dashed wedge). We define each atom as ai = (li, xi, yi),
where li is the atom’s corresponding SMILES (sub)string (e.g.,
“C”, “N”, “[OH−]”, and “[235U]”), and xi and yi are the 2D
coordinates of the atom in the image. Finally, the molecular
graph can be converted and stored in standard data formats,
such as a SMILES string24 or a MOLfile.25

Figure 2. Chirality specification in SMILES. A chiral center may be
indicated by “@” or “@@”, meaning the neighbors are listed
counterclockwise or clockwise, in this example when looking down
the H−C bond.
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Model. We propose MolScribe, an image-to-graph model
that translates an input image into a 2D molecular graph. The
model follows an encoder-decoder architecture, as shown in
Figure 3. We first use an image encoder to encode the input
image into a hidden representation and then use a graph
decoder to generate the molecular structure. Unlike traditional
image-to-SMILES models, which output a sequence of tokens,
our decoder predicts atoms, bonds, and their geometric layouts
jointly, such that the molecular structure can be reconstructed.
MolScribe formulates image-to-graph translation as a

conditional generation process

| = | |P G I P A I P B A I( ) ( ) ( , ) (1)

where P(A|I) and P(B|A,I) are parametrized as an atom
predictor and a bond predictor, respectively.
As shown in the middle of Figure 3, the atom predictor is an

autoregressive decoder that generates the atoms in a sequence,
i.e.,

| = |
=

<P A I P a A I( ) ( , )
i

n

i i
1 (2)

where A<i stands for the atoms before ai. Inspired by the object
detection model Pix2Seq,26 our atom predictor simultaneously
predicts atom labels and coordinates. Specifically, we construct
a sequence of discrete tokens as the output format of the atom
predictor

= [ ]S l x y l x y l x y, , , , , , ..., , ,A
n n n1 1 1 2 2 2 (3)

where each atom ai corresponds to three tokens: li, xi, and yi . li
is the atom’s SMILES specification, including the element
identity, isotope, formal charge, and implicit hydrogen count.
xi and yi are discrete values representing the atom’s coordinates
defined by binning, i.e.,

Å
Ç
ÅÅÅÅÅÅÅ

Ñ
Ö
ÑÑÑÑÑÑÑ

Å
Ç
ÅÅÅÅÅÅÅ

Ñ
Ö
ÑÑÑÑÑÑÑ= × = ×x

x
W

n y
y

H
n,i

i
i

i
bins bins (4)

where H and W are the height and width of the input image,
respectively, and nbins is a hyperparameter for the number of
bins. This discretization is designed to simplify the model
architecture. As the sequence SA contains all the atom labels
and coordinates, we implement the atom predictor to generate
it autoregressively

| = | = |
=

| |

<P A I P S I P S S I( ) ( ) ( , )A

i

S

i
A

i
A

1

A

(5)

In practice, we split the molecule’s SMILES string with an
atom-wise tokenizer27 into atom labels and append the
coordinate tokens to them. The other tokens in the SMILES
string, such as parentheses, bond symbols and digits, indicate
connections among the atoms and are helpful to the model, so
we keep them in the output sequence SA. These tokens are not
associated with coordinates.
The bond predictor is a feedforward network that predicts

the bond between each pair of atoms (see Figure 3). Each
atom ai is represented as a vector hai

, the hidden state of its last
token in the decoder output. For each pair ai and aj, we
concatenate their representations to form the input to the
bond predictor, which classifies the bond type. Formally,

| = |
= =

P B A I P b A I( , ) ( , )
i

n

j

n

i j
1 1

,
(6)

where bi,j indicates the bond between ai and aj. We use “None”
to indicate no bond exists between the atom pair, and other
possible bond types include single, double, triple, aromatic,
solid wedge, and dashed wedge. For single, double, triple, and
aromatic bonds, it is expected that bi,j = bj,i, but wedge bonds
are not symmetric. To account for this, we predict both
directions bi,j and bj,i independently and merge their predicted
probabilities at inference time. For symmetric bonds, bi,j and bj,i
are expected to be the same, so the probabilities are averaged,
i.e.

= = = + =

{ }

P b t P b t P b t

t

( )
1
2

( ( ) ( )),

“single”, “double”, “triple”, “aromatic”

i j i j j i, , ,

(7)

For asymmetric bonds (wedges), as a solid wedge ("s.w.") is
equivalent to a dashed wedge ("d.w.") in the opposite
direction, we set bi,j = “s.w.” and bj,i = “d.w.” if there is a
solid wedge from ai to aj and vice versa. At inference time, we
merge the probabilities by

= = = + =

= = = + =

P b P b

P b P b

( “s.w.”)
1
2

( ( “s.w.”) P(b “d.w.”)),

( “d.w.”)
1
2

( ( “d.w.”) P(b “s.w.”))

i j i j

i j i j

, , j,i

, , j,i

(8)

P b( )i j, is the bond predictor’s final prediction during inference.
(The conditional parts are omitted.)
Finally, a molecular graph is constructed from the predicted

atoms and bonds. We use the RDKit28 toolkit to save the

Figure 3. MolScribe model architecture. The input image is encoded with an image encoder, and the graph decoder predicts the atoms and bonds.
A molecular graph is constructed from the predictions and converted to a MOLfile or a SMILES string.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c01480
J. Chem. Inf. Model. 2023, 63, 1925−1934

1927

https://pubs.acs.org/doi/10.1021/acs.jcim.2c01480?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01480?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01480?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01480?fig=fig3&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.2c01480?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


molecular structure as a MOLfile (with 2D coordinate
information) or a SMILES string (without 2D coordinate
information).

Stereochemistry. As explained in Figure 2, it can be
challenging for a neural model to recognize stereochemistry. In
SMILES, chirality is indicated as an atomic property, i.e., @ or
@@ after an atom label specifies the relative spatial orientation
of the bonds connected to this atom in the order they are
listed. There is no direct correspondence between the local
image pattern and whether the atom symbol is @ or @@.
Understanding stereochemistry requires geometric reasoning,
which is not a strength of traditional neural networks.29 In our
model, we apply chemistry rules to explicitly determine the
stereochemistry, including both chirality for atoms and cis/
trans isomerism for double bonds, based on the predicted
molecular graph and coordinates. For example, to predict
chirality, we first find the bonds connected to each chiral
center, infer their relative order by the predicted atom
coordinates, and determine the chiral type explicitly (with
RDKit’s implementation). Since the atoms and bonds are
easier to predict from the image, this rule-based approach
recognizes stereochemistry more accurately than a vanilla
neural model.

Abbreviated Structures. Another challenge in molecular
structure recognition is the parsing of abbreviated structures.
Chemists often simplify their drawings of molecules by using
abbreviations or condensed formulas, such as “Me” for methyl,
“Et” for ethyl, and “CHO” for formyl. The model cannot
understand their underlying structures without external
knowledge. The abbreviated structures can be treated as
“superatoms” in the molecular graph, but additional processing
is required if we want to derive the complete molecular
structure. Both rule-based and machine learning models in
previous works typically compile a list of common abbrevia-
tions and their functional group structures and substitute the
superatoms at inference time. Given the combinatorial nature
of abbreviations, this solution may not be sufficient. There is a
large amount of combinations of element symbols and
functional group abbreviations, e.g., “OMe”, “CO2Et”, and
“P(O)(OEt)2”. While they can all be considered as
superatoms, it is infeasible to enumerate all possible
combinations in a list.

We propose a more flexible method to parse abbreviated
structures. We first split the superatom symbols into characters,
such that our model is not limited to the prediction space of
patterns in the training data and can generalize to unseen
patterns. During inference, we design a greedy algorithm to
expand the abbreviated structures. This task is nontrivial
because the abbreviations do not follow a rigorous grammar
(for example, a carboxyl group can be written as either
“COOH” or “CO2H”), and there is no deterministic way to
parse them. In Algorithm 1, we derive the list of atoms and
greedily connect them until their valences are full, based on
assumptions of how these abbreviations are typically written to
reflect the connections between atoms. We adopt this simple
solution instead of using another learned model, as our
algorithm has already addressed most abbreviations we observe
and is extensible. More details are available in the Supporting
Information.
Data. We train MolScribe on publicly available data,

following previous works.3,5 Our training data comes from
two sources:

• Synthetic data. We collect 1 million molecules from the
PubChem database30 and automatically render their
images using the Indigo toolkit.31 Atom labels and bond
types can be easily obtained from the toolkit, and we
modify the source code to access atom coordinates.
Previous works have combined other toolkits to generate
a diverse set of training data,4,32 but many of them do
not provide atom coordinates. In this work, the
molecules are randomly sampled from PubChem
without special constraints. More advanced sampling
strategies33 could be used to ensure a diverse coverage of
the chemical space. We encourage future work to
analyze this problem.

• Patent data. We collect 680 K examples from patent
grants released by the United States Patent and
Trademark Office (USPTO),34 which contain molecular
images and structure labels. As some of our benchmarks
were collected from the same source, we do not include
the images from the same patents as those in the
benchmarks. This dataset is noisy, and exact atom
coordinates in the image are not available. We use the
relative coordinates that are available in the MOLfiles
and normalize them according to the image size. Details
about data processing and examples of the noise in this
data can be found in the Supporting Information.

Data Augmentation. We design data augmentation
strategies for both molecules and images, so that the training
data can cover diverse chemical patterns and drawing styles.

Functional Groups and R-Groups. Synthetic images
generated by Indigo never contain functional group abbrevia-
tions or R-groups. We dynamically augment the molecules to
cover such patterns. Figure 4 illustrates the augmentation
process. For functional groups, we construct a list of common

Figure 4. Examples of replacing a functional group with its
abbreviation and adding an R-group during synthetic data generation.
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abbreviations, where each item consists of a SMARTS pattern
for the functional group, an abbreviated label, and a
substitution probability. During training, if a functional group
exists in a molecule, we randomly replace it with the
abbreviation according to the substitution probability.
Specifically, the functional group branch is removed from the
molecular graph, and a superatom with the abbreviation label is
added. For R-groups, we also have a list of common R-group
labels (R, R1, R2, R′, etc.) and randomly add R-groups as
superatoms to the molecule. Furthermore, in order to
generalize to abbreviations that are not covered in these lists,
we add superatoms consisting of random characters. Although
they are not necessarily chemically meaningful, this augmenta-
tion helps the model acquire the capability of optical character
recognition (OCR), so that the model can recognize unseen
labels. It does not hurt the model, as the molecular images
should be valid at inference time. The functional group and R-
group superatoms are associated with labels and coordinates,
so our model predicts them in the same way as the other
atoms.
The data augmentation allows our model to handle basic

Markush structures,35 e.g., an R-group attached to a particular
atom or within a ring. However, positional variation (a
substituent that could be attached to any atom within a ring)
and frequency variation (brackets and variables indicating
repetition of a substructure) are not covered. Such structures
can not be represented in SMILES strings or MOLfiles; thus,
we leave them as future work.

Drawing Styles. We use image augmentation to improve the
robustness of our model with respect to drawing styles.
Specifically, we vary the rendering options from Indigo when
generating the synthetic data, such as font, bond width, bond
length, etc. Furthermore, we apply random perturbations to
the molecular images, such as rotation, padding, cropping, and
Gaussian noise. Details about the augmentation strategy are
available in the Supporting Information. The image augmenta-
tion strategy guarantees our model is trained with diverse
image styles and quality, such that it can generalize better in
the real world.

■ EXPERIMENTS
Experimental Setup. Model Implementation. Our image

encoder is a Swin Transformer,36 a state-of-the-art model in
many computer vision tasks. We use the Swin-B model,37

which has 88 M parameters in total and pretrained on
ImageNet-22K. A recent work, SwinOCSR,19 used the same
image encoder as MolScribe. We resize the input image to 384
× 384 resolution for both training and inference. Our decoder
is a 6-layer Transformer38 with 8 attention heads, a hidden
dimension of 256, and sinusoidal positional encoding. We
apply dropout with probability 0.1. The bond predictor is a 2-
layer feedforward network with ReLU activation on top of the
decoder and has the same hidden dimension.
The model is trained by teacher forcing, i.e., the decoder is

fed with the ground truth token at each step, and predicts the
next step conditioned on the previous tokens. The bond
predictor takes the hidden states of the decoder as input and
predicts the bond between each pair of atoms. All modules of
the model are fully differentiable and trained jointly. (Note
that during training, the input to the bond predictor does not
depend on the atom predictions.) We use a maximum learning
rate of 4e-4 with a linear warmup for 5% steps and a cosine
function decay. We use a batch size of 128 and train the model

for 30 epochs. We use label smoothing with ϵ = 0.1. The atom
coordinates are converted to discrete tokens with nbin = 64 in
both the x and y directions. During inference, we use greedy
decoding to generate the atoms and then predict the bonds.
This procedure is a little different from that during training
time, as we have to first autoregressively decode the atoms and
then run the bond predictor.

Benchmarks. Table 1 lists the benchmarks in our
evaluation. First, we construct two synthetic test sets to

evaluate MolScribe’s performance on in-domain and out-of-
domain images. The in-domain dataset is generated by Indigo
(same as training data), and the out-of-domain dataset is
generated by ChemDraw. The two datasets share the same set
of 5719 molecules. We also evaluate our model on five public
benchmarks of realistic images: CLEF, JPO, UOB, USPTO,6

and Staker.3

We create a new dataset with 331 molecular images
collected from American Chemistry Society (ACS) Publica-
tions and manually annotate their SMILES strings. This dataset
is a complement to existing benchmarks as they do not contain
molecular images from journal articles, which are more diverse
in terms of drawing style and use of abbreviations.

Evaluation Metric. We evaluate the model’s recognition
performance with exact matching accuracy as the evaluation
metric, i.e., the prediction is considered correct only if the
entire molecular graph structure matches the ground truth.
This metric has been used by previous works3−5 but with small
differences. Specifically, we use RDKit to convert both
prediction and ground truth into canonical SMILES, a unique
molecular representation, and then compute the string exact
match. Regarding stereochemistry, we require the prediction to
match the tetrahedral chirality of the ground truth but ignore
other forms of stereoisomerism (such as cis−trans) because
such information is often not available in the ground truth.
Regarding R-groups, as the their symbols are not allowed in
SMILES, we replace them with wildcards (*) during
evaluation. For numbered R-group “Rd” where d is a integer,
we replace them with “[d*]”. We make our evaluation script
publicly available and encourage future work to follow the
same metric for fair comparison. In the Supporting
Information, we present other evaluation metrics, such as
accuracy without considering chirality and Tanimoto similarity.

Compared Methods. We compare MolScribe with state-of-
the-art molecular structure recognition methods. For direct
comparison, we train an image-to-SMILES baseline model with
the same data and the same encoder-decoder architecture. We
also run existing systems for comparison, including rule-based
MolVec2 and OSRA,1 and machine learning-based models
Img2Mol,4 DECIMER (version 2.1.0),39 and SwinOCSR.19

For systems that are not publicly available, such as MSE-

Table 1. Summary of the Benchmarks for Evaluation

Dataset Source No. of Images % of chiral

Indigo synthetic 5,719 20.2%
ChemDraw synthetic 5,719 20.2%
CLEF patent (US) 992 32.7%
JPO patent (Japanese) 450 0%
UOB catalog 5,740 0%
USPTO patent (US) 5,719 20.2%
Staker patent (US) 50,000 17.3%
ACS journal article 331 19.3%
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DUDL,3 ChemGrapher,22 and Image2Graph,5 we use the
reported results in their papers.

■ RESULTS
Recognition Accuarcy. Table 2 shows the recognition

accuracy of different models. Our model MolScribe achieves
consistently higher scores than existing systems on most
benchmarks, demonstrating its robust performance in molec-
ular structure recognition. MolScribe outperforms the baseline
image-to-SMILES model, validating the benefits of our graph
generation formulation and the integration of symbolic
chemistry knowledge. The JPO dataset involves Japanese
characters, which are sometimes recognized by MolScribe as
extra fragments. We apply a postprocessing step to keep the
largest molecule if there are multiple fragments in the
prediction. The rule-based systems, MolVec and OSRA,
achieve decent performance on CLEF, JPO, UOB, and
USPTO but degrade severely on Staker, in which the images
are blurry and low-resolution. Compared with previous neural
models such as MSE-DUDL,3 ChemGrapher,22 Img2Mol,4

DECIMER,39 and Image2Graph,5 MolScribe achieves stronger
performance despite being trained on less data. (We use 1.68
M examples in total, while MSE-DUDL uses 68M,
ChemGrapher uses 1.5M, DECIMER uses 400 million,
Image2Graph uses 7.1M, and Img2Mol uses 11M.) DECIMER
performs slightly better than MolScribe on UOB. The images
in this dataset are close to DECIMER’s training distribution
and relatively simple (no abbreviations, R-groups, or chirality),
and thus a neural model trained with more data works well.

Following the setup of Clevert et al., we further evaluate the
model on perturbed datasets with slight image rotation and
shearing. MolScribe continues to exhibit robust performance
on these datasets, outperforming other methods by large
margins. MolVec and OSRA’s performance drops significantly
as compared to the performance on original images, showing
that rule-based systems are sensitive to input perturbations. We
note that our baseline model performs slightly better than
MolScribe on UOBp and Stakerp. It is because these two
datasets do not contain chiral molecules and the strength of
MolScribe is concealed. The evaluation in Table 2 requires the
chirality in the predicted molecules to be correct. It can be
unfair for Img2Mol, which does not predict chirality. In the
Supporting Information, we present additional evaluation
results when chirality is ignored.
Chirality. Figure 5 compares the performance of our

baseline image-to-SMILES model and MolScribe on chiral
molecules. MolScribe predicts chirality more accurately than
the baseline. As discussed in the Stereochemistry section, end-
to-end neural models make mistakes more frequently on chiral
molecules, as it requires geometric reasoning over the graph
structure to determine the chirality. MolScribe, on the other
hand, predicts all the atom coordinates and bond types and
explicitly determines the chiral types. This design leads to
significant improvement on chiral molecules.
Ablation Study. Table 3 shows the ablation study of our

model design. In this experiment, we use a subset of our
synthetic training data (200 K images) and train three model
variants to validate the effects of several components of

Table 2. Molecule Structure Recognition Accuracy on Synthetic, Realistic, and Perturbed Benchmarksa

Synthetic Realistic Perturbed

Models Indigo ChemDraw CLEF JPO UOB USPTO Staker ACS CLEFp UOBp USPTOp Stakerp
Rule-based MolVec 95.4 87.9 82.8 67.8 80.6 88.4 0.8 47.4 43.7 74.5 29.7 5.0

OSRA 95.0 87.3 84.6 55.3 78.5 87.4 0.0 55.3 11.5 68.3 4.0 4.6
Machine learning-based Img2Molc 58.9 46.4 18.3 16.4 68.7 26.3 17.0 23.0 21.1 74.9 29.7 51.7

DECIMER 69.6 86.1 62.7 55.2 88.2 41.1 40.8 46.5 70.6 87.3 46.4 47.9
SwinOCSRd 74.0 79.6 30.0 13.8 44.9 27.9 − 27.5 32.2 − − −
MSE-DUDLb − − − − − − 77.0 − − − − −

ChemGrapherb − − − − 70.6 − − − − − − −
Image2Graphb − − 51.7 50.3 82.9 55.1 − − − − − −

Ours Baseline 94.1 92.2 87.4 74.8 88.2 91.5 86.1 59.8 88.0 87.1 91.4 65.9
MolScribe 97.5 93.8 88.9 76.2 87.9 92.6 86.9 71.9 90.4 86.7 92.5 65.0

aScores are exact matching accuracy in %. bResults from the original papers; − means not available. cImg2Mol does not predict chirality. Additional
evaluation results with chirality ignored can be found in the Supporting Information. dWe omit the results of SwimOCSR on the large datasets that
take it more than 1 day to complete.

Figure 5. MolScribe explicitly determines chirality from the predicted graph and coordinates, thus improving recognition accuracy on chiral
molecules.
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MolScribe. First, the model trained without data augmentation
achieves much worse performance on the out-of-domain
ChemDraw dataset, which consists of images generated by a
different software than the one used to generate training data
(Indigo). This demonstrates that our data augmentation
strategy is the key for the model to generalize to different
styles. Second, we train a model that predicts continuous atom
coordinates with an additional layer on top of the decoder as a
regression task.5 MolScribe performs better by converting the
coordinates to discrete tokens and generating the atoms and
coordinates in a sequence. Third, we remove the nonatom
tokens (parentheses, digits, equal signs, etc.) from the decoder
output, and the performance drops slightly. The nonatom
tokens in SMILES indicate branching and connections, thus
helping the decoder to better model the graph structure.
Figure 6 shows the contributions of the two datasets used to

train MolScribe. The model trained with patent data alone
performs well on CLEF, USPTO, and Staker, which are also
collected from patent images, but performs unsatisfactorily in
other domains. Our synthetic data and data augmentation
strategies contribute to MolScribe’s robust performance across
different domains.
Model Confidence. MolScribe can provide the confidence

of its atom and bond predictions. Figure 7 shows a qualitative
analysis of the model-assigned probabilities of atoms and
bonds and their correctness. Usually, lower probabilities are
assigned to incorrect atoms/bonds, indicating the model is
uncertain about certain parts of the image.
MolScribe also estimates how likely the entire molecular

graph is correct by aggregating atom and bond confidence. We
compute the molecule confidence with the average log
probabilities of its atoms and bonds. Figure 8 shows the
molecule-level confidence-accuracy and precision-recall curves.
The precision-recall curve slopes downward, and model
accuracy increases with the confidence. By setting thresholds

on confidence scores, we can obtain more confident and
accurate predictions.
Human Evaluation. MolScribe also has the advantage of

being more interpretable due to the atom-level alignment
between the predicted graph and the molecular image. Given
the molecular graph predicted by our model, chemists can
easily determine whether it is the same molecule as depicted in
the image and make corrections if there are mistakes. To
validate this function, we asked three students with a chemistry
background to conduct an experiment of converting molecular
images to SMILES strings. We compare three setups:
(1) Image-only: the students are given only the image and

reconstruct the molecule;
(2) Predicted SMILES: the students are given the image and

the predicted SMILES;
(3) Predicted graph: the students are given the image and

the predicted molecular graph.
As it is difficult to manually write the SMILES, the students use
ChemDraw to edit the molecule’s structure. In (2) and (3), the
students import the prediction into ChemDraw, judge whether
the prediction is correct, and edit it if there are any mistakes.
Setup (2) (predicted SMILES) does not preserve the
molecular layout, making it harder to compare. Each setup
contains 20 images of similarly sized molecules (34−36 atoms
on average). We record the time taken by the students to make
the judgment and edit.
Figure 9 shows the experimental results. In the image-only

setup, it took these students 137 s on average to draw the
depicted molecule in ChemDraw. (Note that these students
are not power users of ChemDraw who can take advantage of
the large number of keyboard shortcuts.) When the predicted
SMILES is provided, the average time reduces to 39 s. When
the predicted graph is provided, it further reduces to 20 s. The
results clearly demonstrate the benefits of our graph generation
method in visually inspecting the correctness of the model-
generated structure.

■ CONCLUSION
In this paper, we propose MolScribe, an image-to-graph
generation model for molecular structure recognition.
MolScribe is built on an encoder-decoder architecture and
jointly predicts atoms and bonds, along with their geometric
layout. We design data augmentation strategies such that the
model is robust to the domain shift and diverse patterns in
real-world molecular images. Our model’s flexibility allows us
to incorporate symbolic chemistry constraints such as chirality
verification and abbreviated structure expansion. Evaluations
on both synthetic and realistic benchmarks show strong

Table 3. Ablation Study of MolScribea

Indigo
(in-domain)

ChemDraw
(out-of-domain)

Baseline 88.7 82.5
- without data augmentation 86.0 57.2

MolScribe 95.9 89.7
- without data augmentation 91.4 72.1
- continuous coordinates 89.3 79.5
- remove nonatom tokens 95.3 89.4

aWe train model variants with 200 K synthetic images generated by
Indigo and evaluate their in-domain and out-of-domain performance.

Figure 6.MolScribe is trained with both synthetic (PubChem) and patent (USPTO) data and achieves better performance than training on each of
them alone.
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Figure 7. Examples of incorrectly predicted atoms/bonds and their confidence. Atom/bond confidence is represented by shade (darker means
more confident), and mistakes are indicated with dashed boxes.

Figure 8. MolScribe’s confidence estimation on synthetic and realistic benchmarks. We show the correlation between model accuracy and
confidence and the precision-recall curve by setting thresholds on confidence.
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performance, surpassing existing rule-based and learned
systems. Finally, our model produces more interpretable
output, allowing chemists to easily examine the prediction
and correct the mistakes. We release our code, data, and model
for reproducibility and provide interfaces so that chemists can
easily use MolScribe in their research.
The scope of this work is limited to the recognition of

single-molecule images. MolScribe achieves strong and robust
performance on this task, which is an essential component in
building a chemistry information extraction system.40−42 An
important future direction is to extend MolScribe to handle
hand-drawn molecules. MolScribe can recognize basic
Markush structures with R-groups, but more complicated
cases, such as the R-group that could be attached to any atom
of a ring or a variable number of repetitions of a substructure,
are not covered. Such cases cannot be represented as SMILES
strings or MOLfiles, and future work may need to design a
specialized format to handle Markush structures.

■ DATA AND SOFTWARE AVAILABILITY
Our code, data, and model checkpoints are publicly available at
https://github.com/thomas0809/MolScribe. We have also
developed a web interface for MolScribe: https://
huggingface.co/spaces/yujieq/MolScribe. More details about
the data sources can be found in the Supporting Information.
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