SuperUROP

Advanced Undergraduate Research Opportunities Program

When Do Skills Help Reinforcement Learning?

R

Background: RL skills — components reusable across tasks

• Improve exploration and planning in environments where the agent learns to accomplish a goal ("sparse reward")

But RL skills are not widely used as they often don't work…

Goal: Theoretically understand when and how RL skills work.

Main result: See **center panel A**.

RL skills:

Preliminary definitions

• *Unhelpfulness of skills is lower-bounded by -incompressibility.* — Theorem 4.2 (for J_{learn}) and Corollary 5.3 (for J_{explore}). See center panel C.

• *There are environments where macroactions always harm*, *e.g.,* solutionseparable DSMDPs where p -incompressibility is "high enough." $-$

- We focus on *deterministic sparse-reward MDPs (DSMDPs)*, which are deterministic Markov decision processes (MDPs) with a single *goal state*. Getting to the goal state is the only way to receive a reward, which is $+1$ by default.
- A *solution* to a state is a successful trajectory (sequence of actions leading to the goal state), cf. symbolic reasoning domains.
- A *solution-separable* DSMDP is one where every action sequence solves at most one state.
- A *deterministic skill* (from now on, *skill*) in a DSMDP is a function from states to finite action sequences, i.e., we specify the sequence of actions for each possible initial state of the skill.
- A *macroaction* is a skill that produces the same sequence of actions regardless of initial state.

Notation: Subscript "+" denotes DSMDP augmented with skills; "0" denotes base DSMDP.

• *Skills are better at improving exploration () than learning from gathered experience* (J_{learn}) *.* $-$ Theorem 5.4 and Corollary 5.5.

Zhening Li¹ Gabriel Poesia² Armando Solar-Lezama¹ 1 MIT CSAIL 2 Stanford University ¹{zli11010,asolar}@csail.mit.edu 2 poesia@stanford.edu

Introduction **Base** actions: $\frac{1}{2}$ and $\frac{1}{2}$ a

• *More expressive skills have more potential to be helpful.* Suggested by Theorem 4.2, Corollary 4.4, formalized by appendix Theorem F.5 (for

Pr[uniformly random policy that at every step terminates w.p. $\delta \sim 1/H$ solves s]

• First theoretical characterization of when and how RL skills benefit sample complexity. • Developed RL difficulty metrics and related their improvement by skills to

Lemma. In value iteration with discount rate 1 and learning rate α , convergence of the value of state s takes time

- $\Theta\big(\alpha^{-1}|S||A|(d_{\mathcal{M}}(s) + \log(1/\varepsilon))\big).$
- Constant $|S|, \alpha, \varepsilon$: Θ $(|A|d_{\mathcal{M}}(s))$.
- Weigh states according to MDP initial state distribution p .

• There are environments where unexpressive skills like macroactions provably

• We hope our insights will guide research in automatic skill discovery and help RL

Modeling incompressibility of solutions

Experiments: A weighted average of J_{learn} and $\exp J_{\text{explore}}$ vs. sample complexity N: correlation at least \sim 0.7 most of the time, over 32 action space variants of each of 4 base environments and 4 RL algorithms. See paper Section 3.3.

Most general form – see **center panel B**. *But what exactly is ? It depends – see paper.*

• Find skills s.t. the distribution P of abstracted solutions minimizes p -incompressibility \approx minimize H[P] = LOVE objective (Jiang et al. 2022) ≈ minimize $\mathbb{E}_{s \sim p}[d_{\mathcal{M}_+}(s)] \log |A_+|$ = LEMMA objective (Li et al. 2021)

 $J_{\rm learn}(M_+, p)$ J_{learn} (M₀; p ≥

Modeling RL sample complexity (episodic setting)

-exploration difficulty:

$$
J_{\text{explore}}(\mathcal{M}; p, \delta) = \mathbb{E}_{s \sim p} \big[-\log q_{\mathcal{M}, \delta}(s) \big]
$$

-learning difficulty:

$$
J_{\text{learn}}(\mathcal{M}; p) = |A| \mathbb{E}_{s \sim p}[d_{\mathcal{M}}(s)]
$$

size of length of shortest
action space solution to s

DLLLDRURDL **LLDULLLLLLLL**

Two stages:

Note: We assume size of state space (|S|) is constant. (Skills do not affect S.)

1) Explore to gather experience 2) Learn from gathered experience

- $q(s)$: Pr[uniformly random policy solves s within H steps]
- Samples needed to solve every state once with a uniformly random policy: $\propto \frac{1}{|S|}\sum_{S}\frac{1}{q(s)}$ $q(s)$
- Generalize to weighted mean: $\mathbb{E}_{s \sim p}[1/q(s)]$
- Switch to geometric mean to compensate for $\overline{}$ \bullet overestimation: $\exp\mathbb{E}_{s\sim p}[\log(1/q(s))]$

(MDP initial state distribution)

0.5157

0.8072

8Puzzle 0.64 ± 0.19

Incompressible