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Abstract. Unlike classroom education, immediate feedback from the student is 
less accessible in Massive Open Online Courses (MOOC). A new type of sen-
sor for detecting students’ mental states is a single-channel EEG headset simple 
enough to use in MOOC. Using its signal from adults watching MOOC video 
clips in a pilot study, we trained and tested classifiers to detect when the student 
is confused while watching the course material. We found weak but above-
chance performance for using EEG to distinguish when a student is confused or 
not. The classifier performed comparably to the human observers who moni-
tored student body language and rated the students’ confusion levels. This pilot 
study shows promise for MOOC-deployable EEG devices being able to capture 
tutor relevant information. 
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1 Introduction 

In recent years, there is an increasing trend towards the use of Massive Open Online 
Courses (MOOC), and it is likely to continue [1]. MOOC can serve millions of stu-
dents at the same time, but it has its own shortcomings. In [2], Thompson studied 
post-secondary students who had negative attitudes toward correspondence-based 
distance education programs. The results indicate that lack of immediate feedback and 
interaction are two problems with long-distance education. Current MOOC can offer 
interactive forums and feedback quizzes to help improve the communication between 
students and professors, but the impact of the absence of a classroom is still being 
hotly debated. As also discussed in [3], indicates the lack of feedback is one of the 
main problems for student-teacher long distance communication.  

There are many gaps between online education and in-class education  [4] and we 
will focus on one of them: detecting students’ confusion level. Unlike in-class educa-
tion, where a teacher can judge if the students understand the materials by verbal in-
quiries or noticing their body language (e.g., furrowed brow, head scratching, etc.), 
immediate feedback from the student is less accessible in long distance education. We 
address this limitation by using electroencephalography (EEG) input from a commer-
cially available device as evidence of students’ mental states.  
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The EEG signal is a voltage signal that can be measured on the surface of the 
scalp, arising from large areas of coordinated neural activity manifested as synchroni-
zation (groups of neurons firing at the same rate) [5]. This neural activity varies as a 
function of development, mental state, and cognitive activity, and the EEG signal can 
measurably detect such variation. Rhythmic fluctuations in the EEG signal occur 
within several particular frequency bands, and the relative level of activity within 
each frequency band has been associated with brain states such as focused attentional 
processing, engagement, and frustration [6-8], which in turn are important for and 
predictive of learning [9]. 

The recent availability of simple, low-cost, portable EEG monitoring devices now 
makes it feasible to take this technology from the lab into schools. The NeuroSky 
“MindSet,” for example, is an audio headset equipped with a single-channel EEG 
sensor [10]. It measures the voltage between an electrode that rests on the forehead 
and electrodes in contact with the ear. Unlike the multi-channel electrode nets worn in 
labs, the sensor requires no gel or saline for recording and therefore requires much 
less expertise to position. Even with the limitations of recording from only a single 
sensor and working with untrained users, a previous study [11] found that the Mind-
Set distinguished two fairly similar mental states (neutral and attentive) with 86% 
accuracy. MindSet has been used to detect reading difficulty [12] and human emo-
tional responses [13] in the domain of intelligent tutoring systems. 

A single-channel EEG device headset currently costs around $99-149 USD, which 
would be a cost deterant to the free service of MOOC. We suggest that MOOC pro-
viders (e.g., Coursera, edX) supply EEG devices to a select group of students. In re-
turn, MOOC providers would get feedback on students’ EEG brain activity or confu-
sion levels while students watch the course materials. These objective EEG brain 
activities can be aggregated and augment subjective rating of course materials to pro-
vide a simulation of real world classroom responses, such as when a teacher is given 
feedback from an entire class. Then teachers can improve video clips based on these 
impressions. Moreover, even though an EEG headset is a luxury device at the mo-
ment, the increasing popularity of consumer-friendly EEG devices may one day make 
it a house-hold accessory like audio headsets, keyboards and mice. Thus, we are 
hopeful of seeing our proposed solution come to fruition as the market for MOOC 
grows and the importance of course quality and student feedback increases.  

To assess the feasibility of collecting useful information about cognitive processing 
and mental states using a portable EEG monitoring device, we conducted a pilot study 
with college students watching MOOC video clips. We wanted to know if EEG data 
can help distinguish among mental states relevant to confusion. If we can do so by 
better than chance, then these data may contain relevant information that can be de-
coded more accurately in the future. Thus, we address two questions:   

1. Can EEG detect confusion? 
2. Can EEG detect confusion better than human observers? 

The rest of this paper is organized as follows. Section 2 describes the experiment 
design. Section 3 and 4 answers the two research questions, respectively. Finally, 
Section 5 concludes and suggests future work.  
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2 Experiment Design 

In a pilot study, we collected EEG signal data from college students while they 
watched MOOC video clips. We extracted online education videos that are assumed 
not to be confusing for college students, such as videos of introduction of basic alge-
bra or geometry. We also prepare videos that are assumed to confuse a normal college 
student if a student is not familiar with the video topics like Quantum Mechanics, and 
Stem Cell Research1. We prepared 20 videos, 10 in each category. Each video was 
about 2 minutes long. We chopped the two-minute clip in the middle of a topic to 
make the videos more confusing.  

We collected data from 10 students. One student was removed because of missing 
data due to technical difficulties. An experiment with a student consisted of 10 ses-
sions. We randomly picked five videos of each category and randomized the presenta-
tion sequence so that the student could not guess the predefined confusion level. In 
each session, the student was first instructed to relax their mind for 30 seconds. Then, 
a video clip was shown to the student where he/she was instructed to try to learn as 
much as possible from the video. After each session, the student rated his/her confu-
sion level on a scale of 1-7, where 1 corresponded to the least confusing and 7 corre-
sponded to the most confusing. Additionally, there were three student observers 
watching the body-language of the student. Each observer rated the confusion level of 
the student in each session on a scale of 1-7. The conventional scale of 1-7 was used. 
Four observers were asked to observe 1-8 students each, so that there was not an ef-
fect of observers just studying one student. 

The students wore a wireless single-channel MindSet that measured activity over 
the frontal lobe. The MindSet measures the voltage between an electrode resting on 
the forehead and two electrodes (one ground and one reference) each in contact with 
an ear. More precisely, the position on the forehead is Fp1 (somewhere between left 
eye brow and the hairline), as defined by the International 10-20 system [14]. We 
used NeuroSky’s API to collect the EEG data. 

3 Can EEG detect confusion? 

We trained Gaussian Naïve Bayes classifiers to estimate, based on EEG data, the 
probability that a given session was confusing rather than not confusing. We chose 
this method (rather than, say, logistic regression) because it is generally best for prob-
lems with sparse (and noisy) training data [15]. 

To characterize the overall values of the EEG signals while the students watch the 
2 minute video, we computed their means over the interval. To characterize the tem-
poral profile of the EEG signal, we computed several features, some of them typically 
used to measure the shape of statistical distributions rather than of time series: mini-
mum, maximum, variance, skewness, and kurtosis. However, due to the small number 
of data points (100 data points for 10 subjects, each watching 10 videos), inclusion of 

                                                           
1 http://open.163.com/ 
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those features tends to overfit the training data and results in poor classifier perfor-
mance. As a result, we used the means as the classifier features for the main analysis. 
Table 1 shows the classifier features. 

Table 1. Classifier features 

Features Description Sampling rate Statistic 
Attention Proprietary measure of mental focus 1 Hz Mean 
Meditation Proprietary measure of calmness 1 Hz Mean 
Raw Raw EEG signal 512 Hz Mean 
Delta 1-3 Hz of power spectrum 8 Hz Mean 
Theta 4-7 Hz of power spectrum 8 Hz Mean 
Alpha1 Lower 8-11 Hz of power spectrum 8 Hz Mean 
Alpha 2 Higher 8-11 Hz of power spectrum 8 Hz Mean 
Beta1 Lower 12-29 Hz of power spectrum 8 Hz Mean 
Beta 2 Higher 12-29 Hz of power spectrum 8 Hz Mean 
Gamma1 Lower 30-100 Hz of power spectrum 8 Hz Mean 
Gamma2 Higher 30-100 Hz of power spectrum 8 Hz Mean 

 
To avoid overfitting, we used cross validation to evaluate classifier performance. 

We trained student-specific classifiers on a single student’s data from all but one 
stimulus block (e.g., one video), tested on the held-out block (e.g., all other videos), 
performed this procedure for each block, and averaged the results to cross-validate 
accuracy within reader. We trained student-independent classifiers on the data from 
all but one student, tested on the held-out student, performed this procedure for each 
student, and averaged the resulting accuracies to cross-validate across students. 

We use two ways to label the mental states we wish to predict. One way is the pre-
defined confusion level according to the experiment design. Another way is the user-
defined confusion level according to each user’s subjective rating. 

Detect pre-defined confusion level. We trained and tested classifiers for pre-
defined confusion. Student-specific classifiers achieve a classification accuracy of 
67% and a kappa statistic of 0.34, whereas student-independent classifiers achieve a 
classification accuracy of 57% and a kappa statistic of 0.15. Both classifier perfor-
mances were statistically significant better than a chance level of 0.5 (p < 0.05). Fig. 
1a) plots the classifier accuracy for each student. Fig. 1a) shows that both student-
specific classifiers and student-independent classifiers performed significantly above 
chance in 6 out of 9 students. 

Detect user-defined confusion level. We also trained and tested classifiers for 
student-defined confusion. Since students have different sense of confusing, we 
mapped the seven scale self-rated confusion level into a binary label, with roughly 
equal number of cases in the two classes. A middle split is accomplished by mapping 
scores less than or equal to the median to “not confusing” and the scores greater than 
the median are mapped to “confusing”. Furthermore, we used random undersampling 
of the larger class(es) to balance the classes in the training data. We performed the 
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sampling 10 times to limit the influence of particularly good or bad runs and obtain a 
stable measure of classifier performance. 

Student-specific classifiers achieve a classification accuracy of 57% and a kappa 
statistic of 0.13, whereas student-independent classifiers achieve a classification accu-
racy of 51% and a kappa statistic of -0.04. The student-specific classifier performance 
was statistically significant and better than a chance level of 0.5 (p < 0.05), but not the 
student-independent classifier. Fig. 1b) plots the accuracy for each student. Fig. 1b) 
shows that the student-specific classifier performed significantly above chance for 5 
out of 9 students and student-independent classifier performed significantly above 
chance for 2 out of 9 students.  

 
Fig. 1. Detect a) predefined, and b) user-defined confusion level 
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4 Can EEG detect confusion better than human observers? 

To determine if EEG can detect confusion better than human observers of body lan-
guage, we compared the scores from the observers, the classifier, and the students, 
with the label of videos. For each student, we used the average scores of the observers 
as the ‘observer rating’. We used the classifier trained in Section 3 to predict prede-
fined confusion level and linearly mapped the classifier’s estimate of class probability 
(0-100%) to a scale of 1-7 and labeled it as the ‘classifier rating’. 

Fig. 2 shows the scatter plot of a) student vs. observer rating, and b) student vs. 
classifier rating. The classifier rating had a low, but positive correlation (0.17) with 
the students’ rating, while the observer rating had a low, but positive correlation of 
(0.17) with the students’ rating. This shows that the classifier performed comparably 
to the human observers who monitored student body language and rated the students’ 
confusion levels. 

 

Fig. 2. Scatter plot of a) classifier vs. student rating, and b) observer vs. student rating  

5 Conclusions and Future Work 
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Since the experiment was based on a class project run by a group of graduate stu-
dents, there were many limitations to the experiment. We now discuss the major limi-
tations and how we plan to address them in future work. 

One of the most critical limitations is the definition of experimental construct. 
Specifically, our pre-defined “confusing” videos could be confounded. For example, a 
student may not find a video clip on Stem Cell to be confusing when the instructor 
clearly explains the topic. Also, the predefined confusion level may be confounded 
with increased mental effort / concentration. To explore this issue, we examined the 
relationship between the predefined confusion level and the subjective user-defined 
confusion level. The students’ subjective evaluation of the confusion level and our 
predefined label has a modest correlation of 0.30. Next, we performed a feature selec-
tion experiment among all combinations of 11 features; we used cross validation 
through all the experiments and sorted the combinations according to accuracy. Then 
we found that the user-specific model Theta signal played an important role in all the 
leading combinations. Theta signal corresponds to errors, correct responses and feed-
back, suggesting the experimental construct is indeed related to confusion. 

Another limitation is due to the lack of psychological professionalism. For exam-
ple, the observers in our experiment were not formally trained. As a result, the current 
scheme allowed each observer to interpret a student’s confusion level based on his/her 
own interpretation. A precise labeling scheme would yield more details that could be 
compared among raters and, thereby, improve our rating procedure. 

Another limitation is the scale of our experiment as we only performed the exper-
iments with 10 students, and each student only watched 10 two-minute video clips. 
The limited amount of data points prevents us from drawing any strong conclusions 
about the study. We hope to scale up the experiment and collect more data. 

Finally, this pilot study shows positive, but weak classifier performance in detect-
ing confusion. The weak classifier performance may have many false-alarms and 
thereby frustrate a student. In addition, a student may not be willing to share their 
brain activity data due to privacy concerns. We are hopeful that the classifier accuracy 
can be improved once we conduct a more rigorous experiment, by increasing the 
study size, and improve the classifier with better feature selection and by applying 
denoising techniques to improve signal-to-noise ratio. Lastly, the classifiers are sup-
posed to help students, so the students should be able to choose not to use EEG if they 
think the device is hindering. 
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