
Topic Modeling in Twitter:
Aggregating Tweets by Conversations

David Alvarez-Melis∗, Martin Saveski∗
Massachusetts Institute of Technology

Cambridge, MA, USA
{dalvmel, msaveski}@mit.edu

Abstract

We propose a new pooling technique for topic modeling
in Twitter, which groups together tweets occurring in
the same user-to-user conversation. Under this scheme,
tweets and their replies are aggregated into a single doc-
ument and the users who posted them are considered
co-authors. To compare this new scheme against exist-
ing ones, we train topic models using Latent Dirichlet
Allocation (LDA) and the Author-Topic Model (ATM)
on datasets consisting of tweets pooled according to the
different methods. Using the underlying categories of
the tweets in this dataset as a noisy ground truth, we
show that this new technique outperforms other pooling
methods in terms of clustering quality and document re-
trieval.

Introduction

The problem of characterizing text documents based on their
content is one of great importance in machine learning and
natural language processing. Although sometimes a goal by
itself, this characterization is often used as an input for tasks
that involve retrieving, classifying or even predicting docu-
ments. In the context of social media, studying the charac-
teristics of text in posts and messages is crucial for many
tasks such as breaking news detection, friend recommenda-
tion and sentiment analysis, among others.

When documents lack annotations or category labels—
as is often the case in practice, particularly for microblog-
ging feeds—one must rely on unsupervised approaches that
discover underlying topics directly from the raw text fea-
tures in the documents, such as Latent Dirichlet Allocation
(LDA) (Blei, Ng, and Jordan 2003) or the Author Topic
Model (ATM) (Rosen-Zvi et al. 2004). However, these meth-
ods are designed to be used on documents that are suffi-
ciently long to extract robust per-document statistics. When
applied directly on posts from microblogging platforms,
which are usually short and often noisy, these methods re-
sult in topics that are uninformative and hard to interpret.

An intuitive solution is aggregating related tweets (pool-
ing) and applying standard topic modeling techniques on
these pooled documents. This approach is appealing since

∗Both authors contributed equally to this work.
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.








Figure 1: Pooling by conversations. A document consists of
a seed tweet, the tweets written in reply to it, tweets written
in reply to these and so on.

it allows for the use of optimized off-the-shelf topic mod-
eling toolkits. Two of the most popular pooling techniques
involve merging into a single document all the tweets posted
by a user (Hong and Davison 2010) or those containing
the same hashtag (Mehrotra et al. 2013). These approaches
tend to improve upon running topic modeling on unpooled
tweets, yet often result in documents that are not topically
homogeneous, because their underlying assumptions about
topic consistency within users and hashtags are frequently
violated. In addition, pooling by hashtags results in consid-
erable duplication of tweets and thus longer training times.

In this study, we propose a new scheme for pooling tweets
into longer documents based on conversations. In this frame-
work, a document consists of a seed tweet, all the tweets
written in reply to it posted by other users and the replies of
the original poster to these (Figure 1). The motivation behind
this technique is that user-to-user interaction in Twitter tends
to revolve around a few related topics, so pooling tweets by
conversations can lead to a more coherent document aggre-
gation and hence more relevant topic extraction.

We evaluate this novel pooling technique by means of
a comprehensive empirical comparison against state-of-the-
art pooling techniques. For this purpose, we train both LDA
and ATM topic models and we construct a dataset in a way
that provides implicit topical labels for each tweet, allowing
us to assess the quality of the models. We evaluate the var-
ious pooling techniques in terms of clustering quality and
their performance on a document retrieval task.

The experimental results show that this new technique
performs favorably against alternative pooling schemes. In
particular, our method yields topics that perform better than
those derived by pooling by hashtags, but takes considerably
less time to train.

Proceedings of the Tenth International AAAI Conference on
Web and Social Media (ICWSM 2016)

519



Tweet-pooling Schemes

Topic modeling techniques such as LDA and ATM have
been most successfully applied to corpora composed of
long documents with regular vocabulary and grammatical
structure, such as news and scientific articles. Tweets, on
the other hand, are: (i) short, less than 140 characters; (ii)
mixed with contextual clues, such as URLs, hashtags, or
Twitter names; and (iii) use informal language with mis-
spellings, acronyms, emoticons, and nonstandard abbrevia-
tions. While applying linguistic preprocessing may some-
what help (Han, Cook, and Baldwin 2012) (addressing prob-
lems (ii) and (iii)), the essential problem, the size of the
documents, remains. Tweets, when considered as individ-
ual documents, are too short to produce robust per-document
term co-occurrence statistics. Indeed, previous studies show
that standard topic modeling techniques fail to identify the
essential information in tweet collections, discovering topics
that are noisy and hard to interpret (Zhao et al. 2011).

An intuitive solution to address the issue of short doc-
uments in Twitter is tweet pooling: merging related tweets
together and applying standard topic modeling techniques
on the resulting pooled documents. The goal of a pooling
scheme is to aggregate tweets that are topically similar, ob-
taining documents that are not only longer but are also topi-
cally coherent. This allows for the discovery of better topics
without modifying the existing topic modeling techniques.

Drawing upon existing work we consider two different
pooling schemes based on users (Hong and Davison 2010)
and hashtags (Mehrotra et al. 2013). Other possible pooling
techniques have been proposed in the literature, but the em-
pirical evidence of their advantage over unpooled tweets is
less compelling (Mehrotra et al. 2013), so we do not con-
sider them in this study. These two standard pooling tech-
niques and the conversation-based scheme proposed here are
explained below in detail.

Tweet-pooling (Unpooled). The default approach that treats
each tweet as a single document. This serves as our baseline
for comparison to pooled schemes.

User-pooling. In this scheme a document consists of all
tweets posted by a single user, so there are as many docu-
ments as users. This popular technique has been shown to
be superior to tweet-pooling (Hong and Davison 2010).

Hashtag-pooling. A document consists of all tweets that
contain a given hashtag. There are as many documents as
hashtags, but since tweets may have multiple hashtags, a
tweet may appear in several documents. Tweets that do
not contain any hashtags are considered as individual doc-
uments, i.e., as if they contain a hashtag that does not ap-
pear in any other tweet. There is some empirical evidence
that this pooling scheme yields better topics than pooling by
users (Mehrotra et al. 2013), but training times tend to be
much longer.

Conversation-pooling. A document consists of a tweet, all
the tweets written in reply to it, the replies of the replies, and
so on (Figure 1). Since a tweet may have multiple replies
and each of those may in turn have many replies, the result-
ing conversation tree can span several tweets and authors.

0 5000 10000 15000 20000 25000 30000 35000 40000 

Food 
Science 

Books 
Business 

Technology 
Art 

Health 
Fashion 
Charity 

Entertainment 
Politics 

News 
Music 
Sports 

Number of Documents

Figure 2: Distribution of latent categories in the dataset.

Tweets that are not replies or do not have any replies (single
node trees) are considered as individual documents. Since
these conversation trees tend to be on the same (or at least
related) topics, we expect the documents constructed in this
way to be more homogeneous than those obtained with pre-
vious approaches.

Experimental Setup

Data collection. We construct a dataset that attempts to cap-
ture a wide range of topics. Similar to (Hong and Davison
2010), we start with a set of 14 topics (Figure 2) and for
each topic we select the top 25 most influential users. To
identify them we use the website http://www.wefollow.com,
which ranks users per topic according to a pagerank-like
score. Next, we use the GNIP Historical API to retrieve all
public tweets posted by these users as well as all tweets that
mention them during a period of one week in April 2014.
We chose this strategy because of two reasons: (i) Query-
ing for user mentions allows us to recover most of the con-
versations in which these users participated, although some
conversation trees may be broken down if the replies do not
mention the seed users (e.g., if there is a conversation tree
t1 ← t2 ← t3, and t2 is not in the database, we have no
way of connecting t1 and t3). (ii) Retrieving tweets posted
by users who are influential in certain topics provides a cat-
egory for the tweets. Even though not all the tweets writ-
ten by the seed authors will be on their associated topic,
these latent categories give us a rough notion of the true
topic and allows us to evaluate and compare the different
pooling techniques and topic models. Using this strategy we
retrieved 161,607 tweets. To build conversation trees (as in
Figure 1) and aggregate tweets by conversations, we use the
in_reply_to_status_id field returned by the API.

Preprocessing. We preprocess the tweets by lower-casing
and removing all URLs, mentions (tags of other Twitter
users) and stop-words. We also remove all tokens that con-
sist only of non-alphanumeric characters (this includes all
emoticons) and all short tokens (<3 characters). We then fil-
ter out all non-English and very short tweets (<3 tokens).
We also remove tweets by extremely active users (>200
tweets/week) and very long conversations (>200 tweets) to
avoid excessively long documents. Finally, we filter out all
re-tweets (i.e., reposting tweets posted by other users), since
they serve more as an endorsement rather than an original
content. After these preprocessing steps, we end up with
101,522 tweets.

520



Pooling Technique Documents Authors Tokens

Train Conversations 61,795 59,596 510,605
Hashtags 64,789 59,596 643,746
Users 59,596 59,596 510,605
Tweets (not pooled) 81,218 59,596 510,605

Test Tweets (not pooled) 20,304 12,371 120,751

Table 1: Dataset statistics.

Data Splits. We randomly split the tweet corpus into train-
ing (80%) and test sets (20%), preserving the same distri-
bution of tweet categories in both splits. Due to the long
training times of some models we were unable to run cross-
validation (see Section “Run Times”). To be able to compute
the topics of unseen documents using ATM we ensure that
all users in the test set also appear in the training set. We
then aggregate the tweets in the training set using the four
pooling schemes, resulting in four different training sets.

Data Statistics. Table 1 shows various statistics of the train-
ing sets obtained by applying the different pooling schemes,
and of the (unpooled) test set. Since tweets often contain
multiple hashtags, pooling by hashtags results in a dataset
containing 26% more tokens than the other schemes. Fig-
ure 2 shows the distribution of categories in the tweets. Al-
though we have considered the same number of users for all
categories (25), some categories are more represented than
others, indicating that users associated with these categories
tend to tweet more.

Training Configuration. We ran ATM and LDA using
a popular topic modeling toolbox1, which uses Markov
Chain Monte Carlo sampling for inference. As suggested
in (Rosen-Zvi et al. 2004), we set the Dirichlet priors to
α = 50/T and β = 0.01. For each model, we ran 10 inde-
pendent chains, using a burn-in time of 2,000 iterations, and
then took samples every 100 iterations, until we collected 10
samples for each chain. When computing word probabilities
per topic, we average the parameters learned across chains.

Results

Evaluating unsupervised topic models is usually challeng-
ing. In our setup, however, we can do so by exploiting the
particular way in which the data was collected. Since our
corpus was retrieved by querying for conversations involv-
ing a set of seed authors, each of which is associated with
one of 14 categories, we have a raw notion of topic label for
each document. We leverage these noisy labels to evaluate
the topics produced by each model from two perspectives:
clustering quality and document retrieval. Finally, we com-
pare their efficiency in terms of running times.

Clustering Evaluation

In our first experiment, we cluster the test tweets by as-
signing the most likely topic predicted by our models, and
compare these clusters with those implied by the underlying
categories. To avoid having to directly map topics to cate-
gories, we use instead two standard clustering measures that

1http://psiexp.ss.uci.edu/research/programs data/toolbox.htm

(Scale: ×102) T = 20 T = 50 T = 100 T = 200 T = 300 T = 400

N
M

I A
T

M

Conversations 7.819∗ 7.420 8.021 8.502∗ 9.489∗ 9.967∗
Hashtags 6.668 7.810∗ 7.850 8.230 8.846 9.835
Users 7.500 6.812 7.968 7.769 9.200 9.842
Tweets 7.031 6.819 7.456 8.445 9.213 9.595

L
D

A

Conversations 4.998 5.937 6.532 7.276 8.066 8.837
Hashtags 6.559 5.995 7.011 7.532 8.595 9.270
Users 7.537 6.983 6.933 7.734 8.399 9.313
Tweets 4.562 5.363 5.946 6.636 7.513 8.201

A
dj

. R
an

d
In

de
x

A
T

M

Conversations 4.514 1.828 1.170 0.654∗ 0.542∗ 0.390
Hashtags 2.875 1.965∗ 1.173 0.583 0.406 0.376
Users 4.407 1.702 1.195 0.517 0.478 0.399∗
Tweets 3.637 1.549 0.973 0.628 0.464 0.351

L
D

A

Conversations 2.551 1.469 0.867 0.515 0.332 0.297
Hashtags 3.361 1.705 1.035 0.632 0.471 0.373
Users 4.508 1.614 0.879 0.522 0.374 0.332
Tweets 2.374 1.339 0.761 0.441 0.297 0.254

Table 2: Clustering metrics for various model/topic configu-
rations. The numbers correspond to the means (×102) over
10 independent samples. The best result for each value of
T is highlighted in bold. Asterisks denote values where the
difference between the first and second best configurations is
statistically significant (p < 0.05) using a two-sample t-test.

quantify clustering quality against reference classes, Nor-
malized Mutual Information (NMI) and Adjusted Rand In-
dex (ARI) (Manning et al. 2008).

Table 2 shows ARI and NMI scores for several topic
model sizes. For each model/topic configuration we present
the mean computed over ten samples of the Monte Carlo
chain. As expected, NMI increases with the number of top-
ics, since this amounts to creating smaller clusters which
are more likely to be homogeneous. The ARI, on the other
hand, decreases as T increases since it penalizes for the dis-
crepancy between the size of the clusters and the reference
categories. In general, ATM models outperform their LDA
counterparts in both metrics, with pooling by conversations
and hashtags frequently achieving the best or second best re-
sult. ATM-Conversations has a clear advantage over ATM-
Hashtags for T ≥ 100.

Document Retrieval Evaluation

Next, we evaluate the topics discovered by the different
pooling techniques on a document retrieval task. We treat ev-
ery tweet in the test set as a query and return tweets from the
training set according to their topic similarity to the query.
Retrieved tweets are considered relevant if they have the
same underlying category as the query tweet.

We proceed as follows. We use the topics learnt by the
different pooling schemes to infer the topics of all train and
test tweets2. For every test tweet (i.e., query tweet), we com-
pute the cosine similarity between its topics and the topics
of all train tweets, and we retrieve the top 10 most similar
train tweets. Finally, we compare whether the categories of
the retrieved tweets match the category of the test tweet.

Figures 3A and 3B show Precision and Recall at 10 for
all model configurations on this retrieval task. Note that this
evaluation procedure accounts for the soft membership of

2Note that for all pooling schemes except for tweets, the models
are tested on documents in a different format (individual tweets, i.e.
not pooled) from what they were trained on (pooled).

521



Number of Topics
50 100 150 200 250 300 350 400

P
re

c
is

io
n

 @
 1

0

0.28

0.3

0.32

0.34

0.36

0.38

0.4

ATM - Conversations
ATM - Hashtags
ATM - Users
ATM - Tweets
LDA - Conversations
LDA - Hashtags
LDA - Users
LDA - Tweets

Number of Topics
50 100 150 200 250 300 350 400

R
e
c
a
ll
 @

 1
0

×10
-4

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

ATM - Conversations
ATM - Hashtags
ATM - Users
ATM - Tweets
LDA - Conversations
LDA - Hashtags
LDA - Users
LDA - Tweets

Number of Topics
50 100 150 200 250 300 350 400

R
u

n
n

in
g

 T
im

e
 (

S
e
c
o

n
d

s
)

0

20

40

60

80

100

120

ATM - Conversations
ATM - Hashtags
ATM - Users
ATM - Tweets
LDA - Conversations
LDA - Hashtags
LDA - Users
LDA - Tweets

100 200 300 400
0

500

1000

1500
ATM - Hashtags

BA C

Figure 3: A-B: Evaluation of the topics discovered by the different pooling techniques on a document retrieval task. We measure
precision (A) and recall (B) at 10. Pooling by conversations combined with ATM outperforms all other methods. C: Run times
for 10 Gibbs-sampling iterations. ATM models take longer to train, with ATM-Hashtags requiring an order of magnitude longer
sampling times than all other models. Figures best seen in color.

documents to topics, as opposed to the clustering evaluation
in the previous section where every document was assigned
to the most likely topic. ATM performs better than LDA
across pooling techniques in terms of both precision and
recall. When running ATM, pooling by conversations out-
performs all other pooling techniques, which have roughly
the same performance. When running LDA, the user and
hashtag pooling schemes perform best, followed by conver-
sations and tweets. Overall, ATM-Conversations leads to the
best performance.

Run Times

Finally, we compare the models in terms of the running
time of their Gibbs-sampling sub-routine (Figure 3C). As
expected, run times grow with the number of topics and
training ATM models is generally slower than training their
LDA counterparts, due to the additional inference over au-
thors across documents. For LDA, the differences in train-
ing times between pooling techniques can be explained by
the number of tokens in the corpus. Pooling by hashtags
causes duplication of tweets and thus longer training times.
For ATM, on the other hand, there is the additional impact
of the number of authors per document. Pooling by conver-
sations and by hashtags yields an average of 1.29 and 1.34
authors per document, respectively, while pooling by tweets
or users results in only one author per document. Note that
training ATM with pooling by hashtags is one order of mag-
nitude slower than with any of the other pooling techniques.

Discussion

The experimental results shown here illustrate the advantage
of aggregating tweets into longer documents as a preprocess-
ing step for topic modeling. However, they also highlight
two key challenges faced by these aggregation schemes: (i)
modeling authorship information and (ii) producing topi-
cally coherent pooled documents.

The first of these challenges arises from the fact that
pooled documents are very often composed of text written
by multiple users. Using ATM to model this variation al-

most always leads to improvements over LDA (which ig-
nores authorship information) across all pooling schemes,
both on clustering (Table 2) and document retrieval (Fig-
ures 3A, 3B). An exception is pooling by users, which pro-
duces single-author documents and therefore does not bene-
fit significantly from the additional flexibility of ATM.

The pooling method proposed here addresses challenge
(ii) by leveraging the intuition that user-to-user conversa-
tions tend to be topically homogeneous. The empirical re-
sults support this hypothesis: overall, pooling by conversa-
tions combined with ATM outperforms all other configu-
rations in both clustering (Table 2) and document retrieval
(Figures 3A, 3B). This method and the best alternative,
pooling by hashtags, perform comparably on clustering, but
pooling by conversations yields considerably better results
on document retrieval. Besides having better performance,
the proposed method results in considerably lower training
times than pooling by hashtags (Figure 3C).

References
Blei, D. M.; Ng, A. Y.; and Jordan, M. I. 2003. Latent dirichlet
allocation. Journal of Machine Learning Research.
Han, B.; Cook, P.; and Baldwin, T. 2012. Automatically construct-
ing a normalisation dictionary for microblogs. In EMNLP.
Hong, L., and Davison, B. D. 2010. Empirical study of topic mod-
eling in twitter. In Workshop on Social Media Analytics.
Manning, C. D.; Raghavan, P.; Schütze, H.; et al. 2008. Introduc-
tion to information retrieval. Cambridge Press.
Mehrotra, R.; Sanner, S.; Buntine, W.; and Xie, L. 2013. Improving
lda topic models for microblogs via tweet pooling and automatic
labeling. In SIGIR.
Rosen-Zvi, M.; Griffiths, T.; Steyvers, M.; and Smyth, P. 2004. The
author-topic model for authors and documents. UAI.
Zhao, W. X.; Jiang, J.; Weng, J.; He, J.; Lim, E.-P.; Yan, H.; and
Li, X. 2011. Comparing twitter and traditional media using topic
models. In Advances in Information Retrieval.

522


