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Abstract
Generative Adversarial Networks have shown re-
markable success in learning a distribution that
faithfully recovers a reference distribution in its
entirety. However, in some cases, we may want to
only learn some aspects (e.g., cluster or manifold
structure), while modifying others (e.g., style, ori-
entation or dimension). In this work, we propose
an approach to learn generative models across
such incomparable spaces, and demonstrate how
to steer the learned distribution towards target
properties. A key component of our model is
the Gromov-Wasserstein distance, a notion of dis-
crepancy that compares distributions relationally
rather than absolutely. While this framework sub-
sumes current generative models in identically
reproducing distributions, its inherent flexibility
allows application to tasks in manifold learning,
relational learning and cross-domain learning.

1. Introduction
Generative Adversarial Networks (GANs, Goodfellow et al.
(2014)) and its variations (Radford et al., 2016; Arjovsky
et al., 2017; Li et al., 2017) are powerful models for learning
complex distributions. Broadly, these methods rely on an
adversary that compares samples from the true and learned
distributions, giving rise to a notion of divergence between
them. The divergences implied by current methods require
the two distributions to be supported in sets that are identical
or at the very least comparable; examples include Optimal
Transport (OT) distances (Salimans et al., 2018; Genevay
et al., 2018) or Integral Probability Metrics (IPM) (Müller,
1997; Sriperumbudur et al., 2012; Mroueh et al., 2017). In
all of these cases, the spaces over which the distributions are
defined must have the same dimensionality (e.g., the space
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of 28× 28-pixel vectors for MNIST), and the generated dis-
tribution that minimizes the objective has the same support
as the reference one. This is of course desirable when the
goal is to generate samples that are indistinguishable from
those of the reference distribution.

Many other applications, however, require modeling only
topological or relational aspects of the reference distribution.
In such cases, the absolute location of the data manifold is
irrelevant (e.g., distributions over learned representations,
such as word embeddings, are defined only up to rotations),
or it is not available (e.g., if the data is accessible only as a
weighted graph indicating similarities among sample points).
Another reason for modeling only topological aspects is the
desire to, e.g., change the appearance or style of the samples,
or down-scale images. Divergences that directly compare
samples from the two distributions, and hence most current
generative models, do not apply to those settings.

In this work, we develop a novel class of generative mod-
els that can learn across incomparable spaces, e.g., spaces
of different dimensionality or data type. Here, the rela-
tional information between samples, i.e., the topology of
the reference data manifold, is preserved, but other char-
acteristics, such as the ambient dimension, can vary. A
key component of our approach is the Gromov-Wasserstein
(GW) distance (Mémoli, 2011), a generalization of classic
Optimal Transport distances to incomparable ground spaces.
Instead of directly comparing points in the two spaces, the
GW distance computes pairwise intra-space distances, and
compares those distances across spaces, greatly increasing
the modeling scope. Figure 1 illustrates the new model.

To realize this model, we address several challenges. First,
we enable the use of the Gromov-Wasserstein distance in
various learning settings by improving its robustness and
ensuring unbiased learning. Similar to existing OT-based
generative models (Salimans et al., 2018; Genevay et al.,
2018), we leverage the differentiability of this distance to
provide gradients for the generator. Second, for efficiency,
we further parametrize it via a learnable adversary. The
added flexibility of the GW distance necessitates to con-
strain the adversary. To this end, we propose a novel or-
thogonality regularization, which might be of independent
interest.

A final challenge —which doubles as one of the main ad-
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Figure 1. The Gromov-Wasserstein generative adversarial network (GW GAN) learns across incomparable spaces, such as different
dimensions or data type (from graphs to Euclidean space). The key idea is that its learning objective is purely based on intra-space
distances (e.g., pairwise distances d or shortest paths sp) in the generator and data space, respectively.

vantages of this approach— arises from the added flexibility
of the generator: it allows to freely alter superficial char-
acteristics of the generated distribution while still learning
the basic structure of the reference distribution. We show
examples how to steer these additional degrees of freedom
via regularization or adversaries in the model. The resulting
model subsumes the traditional (i.e., same-space) adversar-
ial models as a special case, but can do much more. For
example, it learns cluster structure across spaces of different
dimensionality and across different data types, e.g., from
graphs to Euclidean space. Thus, our GW GAN can also
be viewed as performing dimensionality reduction or man-
ifold learning, but, departing from classical approaches to
these problems, it recovers, in addition to the manifold struc-
ture of the data, the probability distribution defined over it.
Moreover, we propose a general framework for stylistic
modifications by integrating a style adversary; we demon-
strate its use by changing the thickness of learned MNIST
digits. In summary, this work provides a framework that sub-
stantially expands the potential applications of generative
adversarial learning.

Contributions. We make the following contributions:
i. We introduce a new class of generative models that can

learn distributions across different dimensionalities or
data types.

ii. We demonstrate the model’s range of applications by
deploying it to manifold learning, relational learning
and cross-domain learning tasks.

iii. More generally, our modifications of the Gromov-
Wasserstein discrepancy enable its use as a loss func-
tion in various machine learning applications.

iv. Our new approach to approximately enforce orthog-
onality in neural networks based on the orthogonal
Procrustes problem also applies beyond our model.

2. Model
Given a dataset of n observations {x1, ..., xn}, xi ∈ X
drawn from a reference distribution p ∈ P(X ), we aim
to learn a generative model gθ parametrized by θ purely
based on relational and intra-structural characteristics of the
dataset. The generative model gθ : Z → Y , typically a

neural network, maps random noise z ∈ Z to a generator
space Y that is independent of data space X .

2.1. Gromov-Wasserstein Discrepancy

Learning generative models typically relies on a statistical
divergence between the target distribution and the model’s
current estimate. Classical statistical divergences only apply
when comparing distributions whose supports lie in the
same metric space, or when at least a meaningful distance
between points in the two supports can be computed. When
the data space X and generator space Y are different, these
divergences no longer apply.

Hence, instead, we will use a more suitable divergence mea-
sure. Rather than relying on a metric across the spaces, the
Gromov-Wasserstein (GW) distance (Mémoli, 2011) com-
pares distributions by computing a discrepancy between
the metrics defined within each of the spaces. As a con-
sequence, it is oblivious to specific characteristics or the
dimensionality of the spaces.

Given n samples of the compared distributions p ∈ P(X )
and q ∈ P(Y), the discrete formulation of the GW distance
needs a similarity (or distance) matrix between the samples
and a probability vector for each space, say (D,p) and
(D̄,q), with (D,p) ∈ Rn×n × Σn, where Σn := {p ∈
R+
n ;
∑
i pi = 1} is the n-dimensional probability simplex.

Then, the GW discrepancy is

GW(D, D̄,p,q) := min
T∈Up,q

ED,D̄(T )

:= min
T∈Up,q

∑
ijkl

L(Dik, D̄jl)TijTkl,
(1)

where Up,q := {T ∈ (R+)n×n;T1n = p, T>1n = q}
is the set of all couplings T between p and q. The loss
function L in our case is L(a, b) = L2(a, b) := 1

2 |a − b|
2.

If L = L2, then GW1/2 defines a (true) distance (Mémoli,
2011).

2.2. Gromov-Wasserstein Generative Model

To learn across incomparable spaces, one key idea of our
model is to use the Gromov-Wasserstein distance as a loss
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Algorithm 1 Training Algorithm of the Gromov-Wasserstein Generative Model.
Require: α: learning rate, ng: the number of iterations of the generator per adversary iteration, m: mini-batch size,
N : number of training iterations, θ0: initial parameters of generator gθ, ω0 = (ω̌0, ω̂0): initial parameters of adversary fω
for t = 0 to N do

sample X = (xi)
m
i=1 from dataset

sample Z = (zj)
m
j=1 ∼ N (0, 1), Y = (yj)

m
j=1 = gθt((zj)

m
j=1)

∀(i, j), Dω̌
ij := ‖fω̌(xi)− fω̌(xj)‖2 and Dω̂

ij := ‖fω̂(yi)− fω̂(yj)‖2
L = GWε(D

ω̌, Dω̂,p,q), where p,q are uniform distributions . GWε is defined in Eq. (7)
if t mod ng + 1 = 0 then
Lreg ← L−Rβ(fω̌(X), X)−Rβ(fω̂(Y ), Y ) . Rβ is defined in Eq. (5)
ωt+1 ← ωt + α×∇ωt

Lreg

else
θt+1 ← θt − α×∇θtL

end if
end for

function to compare the generated and true distribution. As
in traditional adversarial approaches, we parametrize the
generator gθ : Z → Y as a neural network that maps noise
samples z to features y. We train gθ by using GW as a loss,
i.e., for mini-batches X and Y of reference and generated
samples, respectively, we compute pairwise distance matri-
ces D and D̄ and solve the GW problem, taking p and q as
uniform distributions.

While this procedure alone is often sufficient for simple
problems, in high dimensions, the statistical efficiency of
classical divergence measures can be poor and a large num-
ber of input samples is needed to achieve good discrimi-
nation between generated and data distribution (Salimans
et al., 2018). To improve discriminability, we learn the intra-
space metrics adversarially. An adversary fω parametrized
by ω maps data and generator samples into feature spaces
in which we compute Euclidean intra-space distances:

Dω
ij := ‖fω(xi)− fω(xj)‖2 , where fω : X → Rs (2)

with fω modeled by a neural network. The feature map-
ping may, for instance, reduce the dimensionality of X and
extract important features. The original loss minimization
problem of the generator thus becomes a minimax problem

min
θ

max
ω=(ω̌,ω̂)

GW(Dω̌, Dω̂,p,q), (3)

where Dω̌ and Dω̂ denote pairwise distance matrices of
samples originating from the generator and reference do-
main, respectively, mapped into the feature space via fω
(Eq. (2)). We refer to our model as GW GAN.

3. Training
We optimize the adversary fω and generator gθ in an alternat-
ing scheme, where we train the generator more frequently
than the adversary to avoid the adversarially-learned dis-

tance function to become degenerate (Salimans et al., 2018).
Algorithm 1 shows the GW GAN training algorithm.

While training of standard GANs suffers from undamped
oscillations and mode collapse (Metz et al., 2017; Sali-
mans et al., 2016), following an argument of Salimans et al.
(2018), the GW objective is well defined and statistically
consistent if the adversarially learned intra-space distances
Dω are non-degenerate. Trained with the GW loss, the gen-
erator thus does not diverge even when adversary fω is kept
fixed. Empirical validation (see Appendix A) confirms this:
we stopped updating the adversary fω while continuing to
update the generator. Even with fixed adversary, the gen-
erator further improved its learned distribution and did not
diverge.

Note that Problem (3) makes very few assumptions on the
spaces X and Y , requiring only that a metric be defined
on them. This remarkable flexibility can be exploited to
enforce various characteristics on the generated distribution.
We discuss examples in Section 3.1. However, this same
flexibility combined with the added degrees of freedom due
to the learned metric, demands to regularize the adversary
to ensure stable training and prevent it from overpowering
the generator. We propose an effective method to do so in
Section 3.2.

Moreover, using the Gromov-Wasserstein distance as a dif-
ferentiable loss function for training a generative model
requires modifying its original formulation to ensure robust
and fast computation, unbiased gradients, and numerical
stability, as described in detail in Section 3.3.

3.1. Constraining the Generator

The GW loss encourages the generator to recover the re-
lational and geometric properties of the reference dataset,
but leaves other global aspects undetermined. We can thus
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shape the generated distribution by enforcing desired proper-
ties through constraints. For example, while any translation
of a distribution would achieve the same GW loss, we can
enforce centering around the origin by penalizing the norm
of the generated samples. Figure 2a illustrates an example.

For computer vision tasks, we need to ensure that the gener-
ated samples still look like natural images. We found that
a total variation regularization (Rudin et al., 1992) induces
the right bias here and hence greatly improves the results
(see Figures 2b, c, and d).

Moreover, the invariances of the GW loss allow for shaping
stylistic characteristics of the generated samples by integrat-
ing design constraints into the learning process. In contrast,
current generative models (Arjovsky et al., 2017; Salimans
et al., 2018; Genevay et al., 2018; Li et al., 2017) cannot per-
form style transfer as modifications in surface-level features
of the generated samples conflict with their adversarially
computed loss used for training the generator. We propose
a modular framework, which enables style transfer to the
generated samples when given an additional style reference
besides the provided data samples. We incorporate design
constraints into the generator’s objective via a style adver-
sary c, i.e., any function that quantifies a certain style and
thereby, as a penalty, enforces this style on the generated
samples. The resulting objective is

min
θ

max
ω=(ω̌,ω̂)

GW(Dω̌, Dω̂,p,q)− λ× c(gθ(z)). (4)

As a result, the generator learns structural content of the
target distribution via the adversarially learned GW loss,
and stylistic characteristics via the style adversary. We
demonstrate this framework via the example of stylistic
changes to learned MNIST digits in Section 4.4 and in
Appendix G.

3.2. Regularizing the Adversary

During training, the adversary maximizes the objective func-
tion (3). However, the GW distance is easily maximized
by stretching the space and thus distorting the intra-space
distances used for its computation. To avoid such arbitrary
distortion of the space, we propose to regularize the adver-
sary fω by (approximately) enforcing it to define a unitary
transformation, thus restricting the magnitude of stretching
it can do. Note that directly parametrizing fω as an or-
thogonal matrix would defeat its purpose, as the Frobenius
norm is unitarily invariant. Instead, we allow fω to take a
more general form, but limit its expansivity and contractivity
through approximate orthogonality.

Previous work has explored various orthogonality-based
regularization methods to stabilize neural networks train-
ing(Vorontsov et al., 2017). Saxe et al. (2014) introduced
a new class of random orthogonal initial conditions on the

weights of neural networks stabilizing the initial training
phase. By enforcing the weight matrices to be Parseval
tight frames, layerwise orthogonality constraints are intro-
duced in Cisse et al. (2017); Brock et al. (2017; 2019); they
penalize deviations of the weights from orthogonality via
Rβ(Wk) := β‖W>k Wk − I‖2F , where Wk are weights of
layer k and ‖ · ‖F is the Frobenius norm.

However, these approaches enforce orthogonality on the
weights of each layer rather than constraining the network
fω in its entirety to function as an approximately orthogonal
operator. An empirical comparison to these layerwise ap-
proaches (shown in Appendix D) reveals that, for GW GAN,
regularizing the full network is desirable. To enforce the ap-
proximation of fω as an orthogonal operator, we introduce
a new orthogonal regularization approach, which ensures
orthogonality of a network by minimizing the distance to
the closest orthogonal matrix P ∗. The regularization term
is defined as

Rβ(fω(X), X) := β‖fω(X)−XP ∗>‖2F , (5)

where P ∗ is an orthogonal matrix that most closely maps
X to fω(X), and β is a hyperparameter. The matrix
P ∗ = arg minP∈O(s) ‖fω(X) −XP>‖F , where O(s) ={
P ∈ Rs×s | P>P = I

}
and s is the dimensionality of the

feature space, can be obtained by solving an orthogonal Pro-
crustes problem. If the dimensionality s of the feature space
equals the input dimension, then P ∗ has a closed-form solu-
tion P ∗ = UV >, whereU and V are the left and right singu-
lar vectors of fω(X)>X , i.e. UΣV > = SVD(fω(X)>X)
(Schönemann, 1966). Otherwise, we need to solve for P ∗

with an iterative optimization method.

This novel Procrustes-based regularization principle for neu-
ral networks is remarkably flexible since it constrains global
input-output behavior without making assumptions about
specific layers or activations. It preserves the expressibil-
ity of the network while efficiently enforcing orthogonality.
We use this orthogonal regularization principle for training
the adversary of the GW generative model across different
applications and network architectures.

3.3. Gromov-Wasserstein as a Loss Function

To serve as a robust training objective for general machine
learning settings we modify the naı̈ve formulation of the
Gromov-Wasserstein discrepancy in various ways.

Regularization of Gromov-Wasserstein Optimal trans-
port metrics and extensions such as the Gromov-Wasserstein
distance are particularly appealing because they take into
account the underlying geometry of the data when com-
paring distributions. However, their computational cost is
prohibitive for large-scale machine learning problems. More
precisely, Problem (1) is a quadratic programming problem,



Learning Generative Models across Incomparable Spaces

and solving it directly is intractable for large n. Regularizing
this objective with an entropy term results in significantly
more efficient optimization (Peyré et al., 2016). The re-
sulting smoothed problem can be solved through projected
gradient descent methods, where the projection steps rely
on the Sinkhorn-Knopp scaling algorithm (Cuturi, 2013).
Concretely, the entropy-regularized version of the Gromov-
Wasserstein discrepancy proposed by Peyré et al. (2016) has
the form

GWε(D, D̄,p,q) = min
T∈Up,q

ED,D̄(T )− εH(T ), (6)

where ED,D̄(T ) is defined in Equation (1), H(T ) :=
−
∑
ij Tij(log(Tij)− 1) is the entropy of coupling T , and

ε a parameter controlling the strength of regularization. Be-
sides leading to significant speedups, entropy smoothing
of optimal transport discrepancies results in distances that
are differentiable with respect to their inputs, making them
a more convenient choice as loss functions for machine
learning algorithms. Since the Gromov-Wasserstein dis-
tance as loss function in generative models compares noisy
features of the generator and the data by computing corre-
spondences between intra-space distances, a soft rather than
a hard alignment T might be a desirable property. The en-
tropy smoothing yields couplings that are sparser than their
non-regularized counterparts, ideal for applications where
soft alignments are desired (Cuturi & Peyré, 2016).

The effectiveness of entropy smoothing of the Gromov-
Wasserstein discrepancy has been shown in other down-
stream application such as shape correspondences (Solomon
et al., 2016) or the alignment of word embedding spaces
(Alvarez-Melis & Jaakkola, 2018).

Motivated by Salimans et al. (2018) and justified by the
envelope theorem (Carter, 2001), we do not backpropagate
the gradient through the iterative computation of the GWε

coupling T (Problem (6)).

Normalization of Gromov-Wasserstein With entropy
regularization, GWε is not a distance any more, as the
discrepancy of identical metric measure spaces is then no
longer zero. Similar to the Wasserstein metric (Bellemare
et al., 2017), the estimation of GWε from samples yields
biased gradients. Inspired by Bellemare et al. (2017), we
use a normalized entropy-regularized Gromov-Wasserstein
discrepancy defined as

GWε(D, D̄,p,q) := 2× GWε(D, D̄,p,q)

−GWε(D,D,p,p)− GWε(D̄, D̄,q,q).
(7)

Numerical Stability of Gromov-Wasserstein Comput-
ing the entropy-regularized Gromov-Wasserstein formula-
tion relies on a projected gradient algorithm (Peyré et al.,

2016), in which each iteration involves a projection into
the transportation polytope, efficiently computed with the
Sinkhorn-Knopp algorithm (Cuturi, 2013), a matrix-scaling
procedure that alternatingly updates marginal scaling vari-
ables. In the limit of vanishing regularization (ε→ 0) these
scaling factors diverge, resulting in numerical instabilities.

To improve the numerical stability, we compute GWε using
a stabilized version of the Sinkhorn algorithm (Schmitzer,
2016). This significantly increases the robustness of the
Gromov-Wasserstein computation. Performing Sinkhorn
updates in the log-domain further increases the stability
of the algorithm, by avoiding numerical overflow while
preserving its efficient matrix multiplication structure.

Normalizing the intra-space distances of the generated and
the data samples, respectively, further improves the numeri-
cal stability of the Gromov-Wasserstein computation. How-
ever, to preserve information on the scale of the samples,
we use normalized distances for the Sinkhorn iterates, while
the final loss is calculated using the original distances.

4. Empirical Results
In this section, we empirically demonstrate the effective-
ness of the GW GAN formulation and regularization, and
illustrate its versatility by tackling various novel settings for
generative modeling, including learning distributions across
different dimensionalities, data types and styles.

4.1. Learning across Identical Spaces

As a sanity check, we first consider the special case where
the two distributions are defined on identical spaces (i.e.,
the usual GAN setting). Specifically, we test the model’s
ability to recover 2D mixtures of Gaussians, a common
proof of concept task for mode recovery (Che et al., 2017;
Metz et al., 2017; Li et al., 2018). For the experiments on
synthetic datasets, generator and adversary architectures
are multilayer perceptrons (MLPs) with ReLU activation
functions. Figure 2a shows that the GW GAN reproduces a
mixture of Gaussians with learned adversary fω that stabi-
lizes the learning. We observe that `1-regularization indeed
helps position the learned distributions around the origin.
Comparative results with and without `1-regularization are
shown in Appendix B. As opposed to the OT GAN pro-
posed by Salimans et al. (2016), our model robustly learns
Gaussian mixtures with differing number of modes and ar-
rangements (see Appendix E). The Appendix shows several
training runs. While the generated distributions vary in
orientation in the Euclidean plane, the cluster structure is
clearly preserved.

To illustrate the ability of the GW GAN to generate im-
ages, we train the model on MNIST (LeCun et al., 1998),
fashion-MNIST (Xiao et al., 2017) and gray-scale CIFAR-
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b.

a.

epoch 75epoch 1 epoch 2 epoch 5 epoch 35targetc.

epoch 25epoch 1 epoch 2 epoch 5 epoch 20target

epoch 750epoch 10 epoch 50 epoch 100 epoch 500target
d.

Figure 2. The Gromov-Wasserstein GAN can learn distributions of different dimensionality. a. Results of learning a mixture of Gaussian
distributions with adversary fω (β = 1). `1-regularization allows centering the distribution across the origin (`1-penalty: λ = 0.001).
Each plot shows 1000 generated samples. Learning to generate b. MNIST digits (β = 32), c. fashion-MNIST (β = 35) and d. gray-scale
CIFAR10 (β = 40). Trained with total variation denoising (λ = 0.5).

10 (Krizhevsky et al., 2014). Both generator and adversary
follow the deep convolutional architecture introduced by
Chen et al. (2016), whereby the adversary fω maps into Rs
rather than applying a final tanh. To stabilize the initial
training phase, the weights of the adversary network were
initialized with random orthogonal matrices as proposed
by Saxe et al. (2014). We train the model using Adam
with a learning rate of 2 × 10−4, β1 = 0.5, β2 = 0.99
(Kingma & Ba, 2015). Figure 2b, c and d display generated
images throughout the training process. The adversary was
constrained to approximate an orthogonal operator. The
results highlight the effectiveness of the orthogonal Pro-
crustes regularization, which allows successful learning of
complex distributions using different network architectures.
Additional experiments on the influence of adversary fω are
provided in Appendix C.

Having validated the overall soundness of the GW GAN
on traditional settings, we now demonstrate its usefulness
in tasks that go beyond the scope of traditional generative
adversarial models, namely, learning across spaces that are
not directly comparable.

4.2. Learning across Dimensionalities

Arguably, the simplest instance of incomparable spaces
are Euclidean spaces of different dimensionality. In this
section, we investigate whether the Gromov-Wasserstein
GAN can learn to generate a distribution defined on a space
of different dimensionality than that of the reference. We
consider both directions: learning to a smaller and higher
dimensional space. In this experimental setup, we compute
intra-space distances using the Euclidean distance without
a parametrized adversary. The generator network follows
an MLP architecture with ReLU activation functions. The
training task consists of translating between a mixture of
Gaussian distributions in two and three dimensions. The
results, shown in Figure 3, demonstrate that our model suc-
cessfully recovers the global structure and relative distances
of the modes of the reference distribution, despite the differ-
ent dimensionality.

4.3. Learning across Data Modalities and Manifolds

Next, we consider distributions with more complex structure,
and test whether our model is able to recover manifold
structure on the generated distribution. Using the popular
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a.

b.

Figure 3. The GW GAN can be applied to generate samples of a. reduced and b. increased dimensionality compared to the target
distribution. All plots show 1000 samples.

target generated

graph
x

y
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target generateda. b.

Figure 4. By learning from intra-space distances, the GW GAN learns the manifold structure of the data. a. The model can be applied to
dimensionality reduction tasks and reproduce a three-dimensional S-curve in two-dimensions. Intra-space distances of the data samples
are Floyd-Warshall shortest paths of the corresponding k-nearest neighbor graph. b. Similarly, it can map a graph into R2. The plots
display 500 samples.

three-dimensional S-shaped dataset as example, we define
distances between the samples via shortest paths on their k-
nearest neighbor graph, computed using the Floyd-Warshall
algorithm (Floyd, 1962). For the generated distribution we
use a space of the same intrinsic dimensionality (two) as
the reference manifold. The results in Figure 4a show that
the generated distribution learnt with GW GAN successfully
recovers the manifold structure of the data.

Taking the notion of incomparability further, we next con-
sider a setting when the reference distribution is accessible
only through relational information, i.e., a weighted graph
without absolute representations of the samples. While con-
ceptually very different from previous scenarios, applying
our model to this setting is just as simple as previous scenar-
ios. Once a notion of distance is defined over the reference
graph, our model learns the distribution based on pairwise
relations as before. Given merely a graph, we use pairwise
shortest paths as the intra-space distance metric, and use
the 2D Euclidean space for the generated distribution. Fig-
ure 4b shows that GW GAN is able to successfully learn a
distribution that approximately recovers the neighborhood
structure of the reference graph.

4.4. Shaping Learned Distributions

The Gromov-Wasserstein GAN enjoys remarkable flexibil-
ity, allowing us to actively influence stylistic characteristics
of the generated distribution.

While structure and content of the distribution are learned
via the adversary fω, stylistic features can be introduced
via a style adversary as outlined in Section 3.1. As a proof
of concept of this modular framework, we learn MNIST
digits and enforce their font style to be bold via additional
design constraints. The style adversary is parametrized by
a binary classifier trained on handwritten letters of the EM-
NIST dataset (Cohen et al., 2017) which were assigned thin
and bold class labels l ∈ {0, 1}. The training objective of
the generator gθ is augmented with the classification result
of the trained binary classifier (Eq. (4)). Further details are
provided in Appendix G. After the generator has satisfacto-
rily learnt the data distribution based on training with loss
GWε, the style adversary c is activated. Figure 5 shows
that the style adversary affects the generator to increase the
thickness of the MNIST digits, while the structural content
learned in the first stage is retained.
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epochs

switch from adversary fω to style adversary c
Figure 5. Cross-Style Generation. By decoupling topological in-
formation from superficial characteristics, our method allows for
stylistic aspects to be enforced (boldness in this case, enforced with
a style adversary) upon the generated distribution while preserving
the principal characteristics of the reference distribution (MNIST).

5. Related Work
Generative adversarial models have been extensively stud-
ied and applied in various fields including image synthesis
(Brock et al., 2019), semantic image editing (Wang et al.,
2018), style transfer (Zhu et al., 2017), and semi-supervised
learning (Kingma et al., 2014). As the literature is extensive,
we provide a brief overview on GANs and focus on selected
approaches targeting tasks in cross-domain learning.

Generative Adversarial Networks Goodfellow et al.
(2014) proposed generative adversarial networks (GANs)
as a zero-sum game between a generator and a discrimi-
nator, which learns to distinguish between generated and
data samples. Despite their success and improvements in
optimization, the training of GANs is difficult and unsta-
ble (Salimans et al., 2016; Arjovsky & Bottou, 2017). To
remedy these issues, various extensions of this framework
have been proposed, most of which seek to replace the
game objective with more stable or general losses. These
include using Maximum Mean Discrepancy (MMD) (Dzi-
ugaite et al., 2015; Li et al., 2017; Bińkowski et al., 2018),
other IPMs (Mroueh et al., 2017; 2018), or Optimal Trans-
port distances (Arjovsky et al., 2017; Salimans et al., 2018;
Genevay et al., 2018). Due to their relevance, we discuss
the latter in detail below. A crucial characteristic that dis-
tinguishes our approach from other generative models is its
ability to learn across different domains and modalities.

GANs and Optimal Transport (OT) To compare proba-
bility distributions supported on low dimensional manifolds
in high dimensional spaces, recent GAN variants integrate
OT metrics in their training objective (Arjovsky et al., 2017;
Salimans et al., 2018; Genevay et al., 2018; Gulrajani et al.,
2017). Since OT metrics are computationally expensive,
Arjovsky et al. (2017) use the dual formulation of the 1-
Wasserstein distance. Other approaches approximate the pri-
mal via entropically smoothed generalizations of the Wasser-
stein distance (Salimans et al., 2018; Genevay et al., 2018).
Our work departs from these methods in that it relies on
a much more general instance of Optimal Transport (the

Gromov-Wasserstein distance) as a loss function, which
allows us to compare distributions even if cross-domain
pairwise distances are not available.

GANs for Cross-Domain Learning GANs have been
successfully applied to style transfer between images (Isola
et al., 2017; Karacan et al., 2016; Zhu et al., 2017), text-
to-image synthesis (Reed et al., 2016; Zhang et al., 2017),
visual manipulation (Zhu et al., 2016; Engel et al., 2018) or
font style transfer (Azadi et al., 2018). However, to achieve
this, these methods depend on conditional variables, training
sets of aligned data pairs or cycle consistency constraints.
Kim et al. (2017) utilize two different, coupled GANs to
discover cross-domain relations given unpaired data. How-
ever, the method’s applicability is limited as all images in
one domain need to be representable by images in the other
domain.

Gromov-Wasserstein Learning Since its introduction
by Mémoli (2011), the Gromov-Wasserstein discrepancy
has found applications in many learning problems that rely
on a coupling between different metric spaces. Being an
effective method to solve matching problems, it has been
used in shape and object matching (Mémoli, 2009; 2011;
Solomon et al., 2016; Ezuz et al., 2017), for aligning word
embedding spaces (Alvarez-Melis & Jaakkola, 2018) and
for matching weighted directed networks (Chowdhury &
Mémoli, 2018). Other recent applications of the GW dis-
tance include the computation of barycenters of a set of
distance or kernel matrices (Peyré et al., 2016) and heteroge-
neous domain adaptation where source and target samples
are represented in different feature spaces (Yan et al., 2018).
While relying on a shared tool —the GW discrepancy— this
paper leverages it in a very different framework, generative
modeling, where questions of efficiency, degrees of freedom,
minimax objectives and end-to-end learning pose various
challenges that need to be addressed to successfully use this
tool.

6. Conclusion
In this paper, we presented a new generative model that
can learn a distribution in a space that is different from,
and even incomparable to, that of the reference distribu-
tion. Our model accomplishes this by relying on relational
—rather than absolute— comparisons of samples via the
Gromov-Wasserstein distance. Such disentanglement of
data and generator spaces opens up a wide array of novel
possibilities for generative modeling, as portrayed by our
experiments on learning across different dimensional repre-
sentations and learning across modalities (weighted graph to
Euclidean representations). Validated here through simple
experiments on digit thickness control, the use of crafted reg-
ularization losses on the generator to impose certain stylistic
characteristics makes for an exciting avenue of future work.
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