Next: Tensors, Previous: Matrix Parts, Up: Matrices and Tensors [Contents][Index]
Computes the transpose of (matrix)
.
The Jacal command determinant
computes the determinant of a
square matrix. Attempting to take the determinant of a non-square
matrix will produce an error message.
e1 : a:[[1,2],[6,7]]; [1 2] e1: [ ] [6 7] e2 : determinant(a); e2: -5
The characteristic polynomial of matrix:
determinant(matrix - I var)
Matrix multiplication.
e1 : a:[[1, 2, 3], [5, 2, 7]]; [1 2 3] e1: [ ] [5 2 7] e2 : b:[[3, 2], [6, 4]]; [3 2] e2: [ ] [6 4] e3 : b . a; [13 10 23] e3: [ ] [26 20 46]
The infix operator ^^
is used for raising a square matrix to an
integral power.
e8 : a:[[1, 0], [-1, 1]]; [1 0] e8: [ ] [-1 1] e9 : a^^3; [1 0] e9: [ ] [-3 1]
Negative exponents raise the inverse matrix to a power.
e8 : [[a, b], [c, d]]; [a b] e8: [ ] [c d] e9 : e8^^-1; [ d - b ] [----------- -----------] [- b c + a d - b c + a d] [ ] e9: [ - c a ] [----------- -----------] [- b c + a d - b c + a d] e10 : e8^^-2; [ 2 - a b - b d ] [ b c + d -------------------------] [------------------------- 2 2 2 2] [ 2 2 2 2 b c - 2 a b c d + a d ] [b c - 2 a b c d + a d ] [ 2 ] e10: [ - a c - c d a + b c ] [------------------------- -------------------------] [ 2 2 2 2 2 2 2 2] [b c - 2 a b c d + a d b c - 2 a b c d + a d ]
e11 : e8 . e9; [1 0] e11: [ ] [0 1] e12 : e9 . e8; [1 0] e12: [ ] [0 1] e13 : e10 . e8 . e8; [1 0] e13: [ ] [0 1]
The Jacal function dotproduct
returns the dot product of two
row vectors of the same length. It will also give the dot product of
two matrices of the same size by computing the sum of the dot products
of the corresponding rows or, what is the same, the trace of one
matrix times the transpose of the other one.
e28 : a:[1,2,3]; b:[3,1,5]; e28: [1, 2, 3] e29 : e29: [3, 1, 5] e30 : dotproduct(a,b); e30: 20
The Jacal command crossproduct
computes the cross product of two
vectors. By definition, the two vectors must each have three
components.
e25 : crossproduct([1,2,3],[4,2,5]); e25: [4, 7, -6]
Next: Tensors, Previous: Matrix Parts, Up: Matrices and Tensors [Contents][Index]