|
"Probabilistic Logic Learning" - Tutorial
References
[Cus00]
|
J. Cussens.
Parameter estimation in stochastic logic programs. Machine Learning, 44(3):245-271, 2000.
|
[DK03]
|
L. De Raedt and K. Kersting.
Probabilistic Logic Learning.
ACM-SIGKDD
Explorations: Special issue on Multi-Relational Data Mining, 5(1):3148, 2003.
|
[FGKP99]
|
N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational
models.
In T. Dean, editor, Proceedings of the Sixteenth International Joint
Conferences on Artificial Intelligence (IJCAI-99), pages 13001309, Stockholm,
Sweden, 1999. Morgan Kaufmann.
|
[Get01]
|
L. Getoor. Learning Statistical Models from Relational Data. PhD thesis, Stanford
University, 2001.
|
[Hal89]
|
J. Y. Halpern. An analysis of first-order logics of probability. Artificial Intelli-
gence, 46:311350, 1989.
|
[Jae97]
|
M. Jaeger. Relational Bayesian networks. In D. Geiger and P. P. Shenoy, edi-
tors, Proceedings of the Thirteenth Annual Conference on Uncertainty in Artifi-
cial Intelligence (UAI-97), pages 266273, Providence, Rhode Island, USA, 1997.
Morgan Kaufmann.
|
[KD01a]
|
K. Kersting and L. De Raedt. Adaptive Bayesian Logic Programs. In C. Rou-
veirol and M. Sebag, editors, Proceedings of the Eleventh Conference on Inductive
Logic Programming (ILP-01), volume 2157 of LNCS, Strasbourg, France, 2001.
Springer. |
[KD01b]
|
K. Kersting and L. De Raedt. Towards Combining Inductive Logic Programming
and Bayesian Networks. In C. Rouveirol and M. Sebag, editors, Proceedings of
the Eleventh Conference on Inductive Logic Programming (ILP-01), volume 2157
of LNCS, Strasbourg, France, 2001. Springer.
|
[KRKD03]
|
K. Kersting, T. Raiko, S. Kramer, and L. De Raedt. Towards discovering struc-
tural signatures of protein folds based on logical hidden markov models. In R. B.
Altman, A. K. Dunker, L. Hunter, T. A. Jung, and T. E. Klein, editors, Proceed-
ings of the Pacific Symposium on Biocomputing, pages 192 203, Kauai, Hawaii,
USA, 2003. World Scientific.
|
[Mug96]
|
S. Muggleton. Stochastic logic programs. In L. De Raedt, editor, Advances in
Inductive Logic Programming. IOS Press, 1996.
|
[NH97]
|
L. Ngo and P. Haddawy. Answering queries from context-sensitive probabilistic
knowledge bases. Theoretical Computer Science, 171:147177, 1997.
|
[Pfe00]
|
A. J. Pfeffer. Probabilistic Reasoning for Complex Systems. PhD thesis, Stanford
University, 2000.
|
[Poo93]
|
D. Poole. Probabilistic Horn abduction and Bayesian networks. Artificial Intelli-
gence, 64:81129, 1993.
|
[Sat95]
|
T. Sato. A Statistical Learning Method for Logic Programs with Distribution
Semantics. In L. Sterling, editor, Proceedings of the Twelfth International Con-
ference on Logic Programming (ICLP-1995), pages 715 729, Tokyo, Japan, 1995.
MIT Press.
|
[SDW03]
|
S. Sanghai, P. Domingos, and D. Weld. Dynamic probabilistic relational mod-
els. In Proceedings of the Eighteenth International Joint Conference on Artificial
Intelligence (IJCAI-03), Acapulco, Mexico, 2003.
|
[SK01]
|
T. Sato and Y. Kameya.
Parameter learning of logic programs for symbolic-
statistical modeling. Journal of Artificial Intelligence Research, 15:391454, 2001
|
| |