This class extends the basic ImageFilter Class to scale an existing image and provide a source for a new image containing the resampled image. The pixels in the source image are blended to produce pixels for an image of the specified size. The blending process is analogous to scaling up the source image to a multiple of the destination size using pixel replication and then scaling it back down to the destination size by simply averaging all the pixels in the supersized image that fall within a given pixel of the destination image. If the data from the source is not delivered in TopDownLeftRight order then the filter will back off to a simple pixel replication behavior and utilize the requestTopDownLeftRightResend() method to refilter the pixels in a better way at the end.
It is meant to be used in conjunction with a FilteredImageSource object to produce scaled versions of existing images. Due to implementation dependencies, there may be differences in pixel values of an image filtered on different platforms.
The equals
method implements an equivalence relation
on non-null object references:
x
, x.equals(x)
should return
true
.
x
and y
, x.equals(y)
should return true
if and only if
y.equals(x)
returns true
.
x
, y
, and z
, if
x.equals(y)
returns true
and
y.equals(z)
returns true
, then
x.equals(z)
should return true
.
x
and y
, multiple invocations of
x.equals(y) consistently return true
or consistently return false
, provided no
information used in equals
comparisons on the
objects is modified.
x
,
x.equals(null)
should return false
.
The equals method for class Object
implements
the most discriminating possible equivalence relation on objects;
that is, for any non-null reference values x
and
y
, this method returns true
if and only
if x
and y
refer to the same object
(x == y
has the value true
).
Note that it is generally necessary to override the hashCode method whenever this method is overridden, so as to maintain the general contract for the hashCode method, which states that equal objects must have equal hash codes.
Note: This method is intended to be called by the ImageProducer of the Image whose pixels are being filtered. Developers using this class to filter pixels from an image should avoid calling this method directly since that operation could interfere with the filtering operation.
java.util.Hashtable
.
The general contract of hashCode
is:
hashCode
method on each of
the two objects must produce the same integer result.
As much as is reasonably practical, the hashCode method defined by class Object does return distinct integers for distinct objects. (This is typically implemented by converting the internal address of the object into an integer, but this implementation technique is not required by the JavaTM programming language.)
Note: This method is intended to be called by the ImageProducer of the Image whose pixels are being filtered. Developers using this class to filter pixels from an image should avoid calling this method directly since that operation could interfere with the filtering operation.
wait
methods.
The awakened thread will not be able to proceed until the current thread relinquishes the lock on this object. The awakened thread will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened thread enjoys no reliable privilege or disadvantage in being the next thread to lock this object.
This method should only be called by a thread that is the owner of this object's monitor. A thread becomes the owner of the object's monitor in one of three ways:
synchronized
statement
that synchronizes on the object.
Class,
by executing a
synchronized static method of that class.
Only one thread at a time can own an object's monitor.
wait
methods.
The awakened threads will not be able to proceed until the current thread relinquishes the lock on this object. The awakened threads will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened threads enjoy no reliable privilege or disadvantage in being the next thread to lock this object.
This method should only be called by a thread that is the owner
of this object's monitor. See the notify
method for a
description of the ways in which a thread can become the owner of
a monitor.
ImageConsumer
.
When an ImageConsumer
being fed
by an instance of this ImageFilter
requests a resend of the data in TDLR order,
the FilteredImageSource
invokes this method of the ImageFilter
.
An ImageFilter
subclass might override this method or not,
depending on if and how it can send data in TDLR order.
Three possibilities exist:
ImageProducer
using this filter as the requesting ImageConsumer
.
This behavior
is appropriate if the filter can determine
that it will forward the pixels
in TDLR order if its upstream producer object
sends them in TDLR order.
Note: This method is intended to be called by the ImageProducer of the Image whose pixels are being filtered. Developers using this class to filter pixels from an image should avoid calling this method directly since that operation could interfere with the filtering operation.
Note: This method is intended to be called by the
ImageProducer
of the Image
whose pixels
are being filtered. Developers using
this class to filter pixels from an image should avoid calling
this method directly since that operation could interfere
with the filtering operation.
Note: This method is intended to be called by the
ImageProducer
of the Image
whose
pixels are being filtered. Developers using
this class to filter pixels from an image should avoid calling
this method directly since that operation could interfere
with the filtering operation.
Note: This method is intended to be called by the
ImageProducer
of the Image
whose pixels are being filtered. Developers using
this class to filter pixels from an image should avoid calling
this method directly since that operation could interfere
with the filtering operation.
Note: This method is intended to be called by the
ImageProducer
of the Image
whose pixels are being filtered. Developers using
this class to filter pixels from an image should avoid calling
this method directly since that operation could interfere
with the filtering operation.
super.setProperties
,
which might result in additional properties being added.
Note: This method is intended to be called by the
ImageProducer
of the Image
whose pixels
are being filtered. Developers using
this class to filter pixels from an image should avoid calling
this method directly since that operation could interfere
with the filtering operation.
toString
method returns a string that
"textually represents" this object. The result should
be a concise but informative representation that is easy for a
person to read.
It is recommended that all subclasses override this method.
The toString
method for class Object
returns a string consisting of the name of the class of which the
object is an instance, the at-sign character `@
', and
the unsigned hexadecimal representation of the hash code of the
object. In other words, this method returns a string equal to the
value of:
getClass().getName() + '@' + Integer.toHexString(hashCode())
The current thread must own this object's monitor. The thread
releases ownership of this monitor and waits until another thread
notifies threads waiting on this object's monitor to wake up
either through a call to the notify
method or the
notifyAll
method. The thread then waits until it can
re-obtain ownership of the monitor and resumes execution.
As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:
synchronized (obj) { while (<condition does not hold>) obj.wait(); ... // Perform action appropriate to condition }This method should only be called by a thread that is the owner of this object's monitor. See the
notify
method for a
description of the ways in which a thread can become the owner of
a monitor.The current thread must own this object's monitor.
This method causes the current thread (call it T) to place itself in the wait set for this object and then to relinquish any and all synchronization claims on this object. Thread T becomes disabled for thread scheduling purposes and lies dormant until one of four things happens:
A thread can also wake up without being notified, interrupted, or timing out, a so-called spurious wakeup. While this will rarely occur in practice, applications must guard against it by testing for the condition that should have caused the thread to be awakened, and continuing to wait if the condition is not satisfied. In other words, waits should always occur in loops, like this one:
synchronized (obj) { while (<condition does not hold>) obj.wait(timeout); ... // Perform action appropriate to condition }(For more information on this topic, see Section 3.2.3 in Doug Lea's "Concurrent Programming in Java (Second Edition)" (Addison-Wesley, 2000), or Item 50 in Joshua Bloch's "Effective Java Programming Language Guide" (Addison-Wesley, 2001).
If the current thread is interrupted by another thread while it is waiting, then an InterruptedException is thrown. This exception is not thrown until the lock status of this object has been restored as described above.
Note that the wait method, as it places the current thread into the wait set for this object, unlocks only this object; any other objects on which the current thread may be synchronized remain locked while the thread waits.
This method should only be called by a thread that is the owner
of this object's monitor. See the notify
method for a
description of the ways in which a thread can become the owner of
a monitor.
This method is similar to the wait
method of one
argument, but it allows finer control over the amount of time to
wait for a notification before giving up. The amount of real time,
measured in nanoseconds, is given by:
1000000*timeout+nanos
In all other respects, this method does the same thing as the method of one argument. In particular, wait(0, 0) means the same thing as wait(0).
The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until either of the following two conditions has occurred:
notify
method
or the notifyAll
method.
timeout
milliseconds plus nanos
nanoseconds arguments, has
elapsed.
The thread then waits until it can re-obtain ownership of the monitor and resumes execution.
As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:
synchronized (obj) { while (<condition does not hold>) obj.wait(timeout, nanos); ... // Perform action appropriate to condition }This method should only be called by a thread that is the owner of this object's monitor. See the
notify
method for a
description of the ways in which a thread can become the owner of
a monitor.