An ImageFilter class for scaling images using a simple area averaging algorithm that produces smoother results than the nearest neighbor algorithm.

This class extends the basic ImageFilter Class to scale an existing image and provide a source for a new image containing the resampled image. The pixels in the source image are blended to produce pixels for an image of the specified size. The blending process is analogous to scaling up the source image to a multiple of the destination size using pixel replication and then scaling it back down to the destination size by simply averaging all the pixels in the supersized image that fall within a given pixel of the destination image. If the data from the source is not delivered in TopDownLeftRight order then the filter will back off to a simple pixel replication behavior and utilize the requestTopDownLeftRightResend() method to refilter the pixels in a better way at the end.

It is meant to be used in conjunction with a FilteredImageSource object to produce scaled versions of existing images. Due to implementation dependencies, there may be differences in pixel values of an image filtered on different platforms.

@version
1.15 12/19/03
@author
Jim Graham
Constructs an AreaAveragingScaleFilter that scales the pixels from its source Image as specified by the width and height parameters.
Parameters
widththe target width to scale the image
heightthe target height to scale the image
Clones this object.
Indicates whether some other object is "equal to" this one.

The equals method implements an equivalence relation on non-null object references:

  • It is reflexive: for any non-null reference value x, x.equals(x) should return true.
  • It is symmetric: for any non-null reference values x and y, x.equals(y) should return true if and only if y.equals(x) returns true.
  • It is transitive: for any non-null reference values x, y, and z, if x.equals(y) returns true and y.equals(z) returns true, then x.equals(z) should return true.
  • It is consistent: for any non-null reference values x and y, multiple invocations of x.equals(y) consistently return true or consistently return false, provided no information used in equals comparisons on the objects is modified.
  • For any non-null reference value x, x.equals(null) should return false.

The equals method for class Object implements the most discriminating possible equivalence relation on objects; that is, for any non-null reference values x and y, this method returns true if and only if x and y refer to the same object (x == y has the value true).

Note that it is generally necessary to override the hashCode method whenever this method is overridden, so as to maintain the general contract for the hashCode method, which states that equal objects must have equal hash codes.

Parameters
objthe reference object with which to compare.
Return
true if this object is the same as the obj argument; false otherwise.
Returns the runtime class of an object. That Class object is the object that is locked by static synchronized methods of the represented class.
Return
The java.lang.Class object that represents the runtime class of the object. The result is of type {@code Class} where X is the erasure of the static type of the expression on which getClass is called.
Returns a unique instance of an ImageFilter object which will actually perform the filtering for the specified ImageConsumer. The default implementation just clones this object.

Note: This method is intended to be called by the ImageProducer of the Image whose pixels are being filtered. Developers using this class to filter pixels from an image should avoid calling this method directly since that operation could interfere with the filtering operation.

Parameters
icthe specified ImageConsumer
Return
an ImageFilter used to perform the filtering for the specified ImageConsumer.
Returns a hash code value for the object. This method is supported for the benefit of hashtables such as those provided by java.util.Hashtable.

The general contract of hashCode is:

  • Whenever it is invoked on the same object more than once during an execution of a Java application, the hashCode method must consistently return the same integer, provided no information used in equals comparisons on the object is modified. This integer need not remain consistent from one execution of an application to another execution of the same application.
  • If two objects are equal according to the equals(Object) method, then calling the hashCode method on each of the two objects must produce the same integer result.
  • It is not required that if two objects are unequal according to the method, then calling the hashCode method on each of the two objects must produce distinct integer results. However, the programmer should be aware that producing distinct integer results for unequal objects may improve the performance of hashtables.

As much as is reasonably practical, the hashCode method defined by class Object does return distinct integers for distinct objects. (This is typically implemented by converting the internal address of the object into an integer, but this implementation technique is not required by the JavaTM programming language.)

Return
a hash code value for this object.
Filters the information provided in the imageComplete method of the ImageConsumer interface.

Note: This method is intended to be called by the ImageProducer of the Image whose pixels are being filtered. Developers using this class to filter pixels from an image should avoid calling this method directly since that operation could interfere with the filtering operation.

Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the discretion of the implementation. A thread waits on an object's monitor by calling one of the wait methods.

The awakened thread will not be able to proceed until the current thread relinquishes the lock on this object. The awakened thread will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened thread enjoys no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. A thread becomes the owner of the object's monitor in one of three ways:

  • By executing a synchronized instance method of that object.
  • By executing the body of a synchronized statement that synchronizes on the object.
  • For objects of type Class, by executing a synchronized static method of that class.

Only one thread at a time can own an object's monitor.

Throws
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
Wakes up all threads that are waiting on this object's monitor. A thread waits on an object's monitor by calling one of the wait methods.

The awakened threads will not be able to proceed until the current thread relinquishes the lock on this object. The awakened threads will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened threads enjoy no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.

Throws
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
Responds to a request for a TopDownLeftRight (TDLR) ordered resend of the pixel data from an ImageConsumer. When an ImageConsumer being fed by an instance of this ImageFilter requests a resend of the data in TDLR order, the FilteredImageSource invokes this method of the ImageFilter.

An ImageFilter subclass might override this method or not, depending on if and how it can send data in TDLR order. Three possibilities exist:

  • Do not override this method. This makes the subclass use the default implementation, which is to forward the request to the indicated ImageProducer using this filter as the requesting ImageConsumer. This behavior is appropriate if the filter can determine that it will forward the pixels in TDLR order if its upstream producer object sends them in TDLR order.
  • Override the method to simply send the data. This is appropriate if the filter can handle the request itself — for example, if the generated pixels have been saved in some sort of buffer.
  • Override the method to do nothing. This is appropriate if the filter cannot produce filtered data in TDLR order.
Parameters
ipthe ImageProducer that is feeding this instance of the filter - also the ImageProducer that the request should be forwarded to if necessary
Throws
NullPointerExceptionif ip is null
Filter the information provided in the setColorModel method of the ImageConsumer interface.

Note: This method is intended to be called by the ImageProducer of the Image whose pixels are being filtered. Developers using this class to filter pixels from an image should avoid calling this method directly since that operation could interfere with the filtering operation.

Override the dimensions of the source image and pass the dimensions of the new scaled size to the ImageConsumer.

Note: This method is intended to be called by the ImageProducer of the Image whose pixels are being filtered. Developers using this class to filter pixels from an image should avoid calling this method directly since that operation could interfere with the filtering operation.

See Also
Detect if the data is being delivered with the necessary hints to allow the averaging algorithm to do its work.

Note: This method is intended to be called by the ImageProducer of the Image whose pixels are being filtered. Developers using this class to filter pixels from an image should avoid calling this method directly since that operation could interfere with the filtering operation.

Combine the components for the delivered byte pixels into the accumulation arrays and send on any averaged data for rows of pixels that are complete. If the correct hints were not specified in the setHints call then relay the work to our superclass which is capable of scaling pixels regardless of the delivery hints.

Note: This method is intended to be called by the ImageProducer of the Image whose pixels are being filtered. Developers using this class to filter pixels from an image should avoid calling this method directly since that operation could interfere with the filtering operation.

Combine the components for the delivered int pixels into the accumulation arrays and send on any averaged data for rows of pixels that are complete. If the correct hints were not specified in the setHints call then relay the work to our superclass which is capable of scaling pixels regardless of the delivery hints.

Note: This method is intended to be called by the ImageProducer of the Image whose pixels are being filtered. Developers using this class to filter pixels from an image should avoid calling this method directly since that operation could interfere with the filtering operation.

Passes along the properties from the source object after adding a property indicating the scale applied. This method invokes super.setProperties, which might result in additional properties being added.

Note: This method is intended to be called by the ImageProducer of the Image whose pixels are being filtered. Developers using this class to filter pixels from an image should avoid calling this method directly since that operation could interfere with the filtering operation.

Returns a string representation of the object. In general, the toString method returns a string that "textually represents" this object. The result should be a concise but informative representation that is easy for a person to read. It is recommended that all subclasses override this method.

The toString method for class Object returns a string consisting of the name of the class of which the object is an instance, the at-sign character `@', and the unsigned hexadecimal representation of the hash code of the object. In other words, this method returns a string equal to the value of:

 getClass().getName() + '@' + Integer.toHexString(hashCode())
 
Return
a string representation of the object.
Causes current thread to wait until another thread invokes the method or the method for this object. In other words, this method behaves exactly as if it simply performs the call wait(0).

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until another thread notifies threads waiting on this object's monitor to wake up either through a call to the notify method or the notifyAll method. The thread then waits until it can re-obtain ownership of the monitor and resumes execution.

As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait();
         ... // Perform action appropriate to condition
     }
 
This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.
Throws
IllegalMonitorStateExceptionif the current thread is not the owner of the object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.
Causes current thread to wait until either another thread invokes the method or the method for this object, or a specified amount of time has elapsed.

The current thread must own this object's monitor.

This method causes the current thread (call it T) to place itself in the wait set for this object and then to relinquish any and all synchronization claims on this object. Thread T becomes disabled for thread scheduling purposes and lies dormant until one of four things happens:

  • Some other thread invokes the notify method for this object and thread T happens to be arbitrarily chosen as the thread to be awakened.
  • Some other thread invokes the notifyAll method for this object.
  • Some other thread interrupts thread T.
  • The specified amount of real time has elapsed, more or less. If timeout is zero, however, then real time is not taken into consideration and the thread simply waits until notified.
The thread T is then removed from the wait set for this object and re-enabled for thread scheduling. It then competes in the usual manner with other threads for the right to synchronize on the object; once it has gained control of the object, all its synchronization claims on the object are restored to the status quo ante - that is, to the situation as of the time that the wait method was invoked. Thread T then returns from the invocation of the wait method. Thus, on return from the wait method, the synchronization state of the object and of thread T is exactly as it was when the wait method was invoked.

A thread can also wake up without being notified, interrupted, or timing out, a so-called spurious wakeup. While this will rarely occur in practice, applications must guard against it by testing for the condition that should have caused the thread to be awakened, and continuing to wait if the condition is not satisfied. In other words, waits should always occur in loops, like this one:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait(timeout);
         ... // Perform action appropriate to condition
     }
 
(For more information on this topic, see Section 3.2.3 in Doug Lea's "Concurrent Programming in Java (Second Edition)" (Addison-Wesley, 2000), or Item 50 in Joshua Bloch's "Effective Java Programming Language Guide" (Addison-Wesley, 2001).

If the current thread is interrupted by another thread while it is waiting, then an InterruptedException is thrown. This exception is not thrown until the lock status of this object has been restored as described above.

Note that the wait method, as it places the current thread into the wait set for this object, unlocks only this object; any other objects on which the current thread may be synchronized remain locked while the thread waits.

This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.

Parameters
timeoutthe maximum time to wait in milliseconds.
Throws
IllegalArgumentExceptionif the value of timeout is negative.
IllegalMonitorStateExceptionif the current thread is not the owner of the object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.
Causes current thread to wait until another thread invokes the method or the method for this object, or some other thread interrupts the current thread, or a certain amount of real time has elapsed.

This method is similar to the wait method of one argument, but it allows finer control over the amount of time to wait for a notification before giving up. The amount of real time, measured in nanoseconds, is given by:

 1000000*timeout+nanos

In all other respects, this method does the same thing as the method of one argument. In particular, wait(0, 0) means the same thing as wait(0).

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until either of the following two conditions has occurred:

  • Another thread notifies threads waiting on this object's monitor to wake up either through a call to the notify method or the notifyAll method.
  • The timeout period, specified by timeout milliseconds plus nanos nanoseconds arguments, has elapsed.

The thread then waits until it can re-obtain ownership of the monitor and resumes execution.

As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait(timeout, nanos);
         ... // Perform action appropriate to condition
     }
 
This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.
Parameters
timeoutthe maximum time to wait in milliseconds.
nanosadditional time, in nanoseconds range 0-999999.
Throws
IllegalArgumentExceptionif the value of timeout is negative or the value of nanos is not in the range 0-999999.
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.