A thread is a thread of execution in a program. The Java Virtual Machine allows an application to have multiple threads of execution running concurrently.

Every thread has a priority. Threads with higher priority are executed in preference to threads with lower priority. Each thread may or may not also be marked as a daemon. When code running in some thread creates a new Thread object, the new thread has its priority initially set equal to the priority of the creating thread, and is a daemon thread if and only if the creating thread is a daemon.

When a Java Virtual Machine starts up, there is usually a single non-daemon thread (which typically calls the method named main of some designated class). The Java Virtual Machine continues to execute threads until either of the following occurs:

There are two ways to create a new thread of execution. One is to declare a class to be a subclass of Thread. This subclass should override the run method of class Thread. An instance of the subclass can then be allocated and started. For example, a thread that computes primes larger than a stated value could be written as follows:


     class PrimeThread extends Thread {
         long minPrime;
         PrimeThread(long minPrime) {
             this.minPrime = minPrime;
         }
 
         public void run() {
             // compute primes larger than minPrime
              . . .
         }
     }
 

The following code would then create a thread and start it running:

     PrimeThread p = new PrimeThread(143);
     p.start();
 

The other way to create a thread is to declare a class that implements the Runnable interface. That class then implements the run method. An instance of the class can then be allocated, passed as an argument when creating Thread, and started. The same example in this other style looks like the following:


     class PrimeRun implements Runnable {
         long minPrime;
         PrimeRun(long minPrime) {
             this.minPrime = minPrime;
         }
 
         public void run() {
             // compute primes larger than minPrime
              . . .
         }
     }
 

The following code would then create a thread and start it running:

     PrimeRun p = new PrimeRun(143);
     new Thread(p).start();
 

Every thread has a name for identification purposes. More than one thread may have the same name. If a name is not specified when a thread is created, a new name is generated for it.

@author
unascribed
@version
1.155, 06/26/04
@since
JDK1.0
Allocates a new Thread object. This constructor has the same effect as Thread(null, null, gname), where gname is a newly generated name. Automatically generated names are of the form "Thread-"+n, where n is an integer.
Allocates a new Thread object. This constructor has the same effect as Thread(null, target, gname), where gname is a newly generated name. Automatically generated names are of the form "Thread-"+n, where n is an integer.
Parameters
targetthe object whose run method is called.
Allocates a new Thread object. This constructor has the same effect as Thread(group, target, gname), where gname is a newly generated name. Automatically generated names are of the form "Thread-"+n, where n is an integer.
Parameters
groupthe thread group.
targetthe object whose run method is called.
Throws
SecurityExceptionif the current thread cannot create a thread in the specified thread group.
Allocates a new Thread object. This constructor has the same effect as Thread(null, null, name).
Allocates a new Thread object. This constructor has the same effect as Thread(group, null, name)
Parameters
groupthe thread group.
namethe name of the new thread.
Throws
SecurityExceptionif the current thread cannot create a thread in the specified thread group.
Allocates a new Thread object. This constructor has the same effect as Thread(null, target, name).
Parameters
targetthe object whose run method is called.
namethe name of the new thread.
Allocates a new Thread object so that it has target as its run object, has the specified name as its name, and belongs to the thread group referred to by group.

If group is null and there is a security manager, the group is determined by the security manager's getThreadGroup method. If group is null and there is not a security manager, or the security manager's getThreadGroup method returns null, the group is set to be the same ThreadGroup as the thread that is creating the new thread.

If there is a security manager, its checkAccess method is called with the ThreadGroup as its argument.

In addition, its checkPermission method is called with the RuntimePermission("enableContextClassLoaderOverride") permission when invoked directly or indirectly by the constructor of a subclass which overrides the getContextClassLoader or setContextClassLoader methods. This may result in a SecurityException.

If the target argument is not null, the run method of the target is called when this thread is started. If the target argument is null, this thread's run method is called when this thread is started.

The priority of the newly created thread is set equal to the priority of the thread creating it, that is, the currently running thread. The method setPriority may be used to change the priority to a new value.

The newly created thread is initially marked as being a daemon thread if and only if the thread creating it is currently marked as a daemon thread. The method setDaemon may be used to change whether or not a thread is a daemon.

Parameters
groupthe thread group.
targetthe object whose run method is called.
namethe name of the new thread.
Throws
SecurityExceptionif the current thread cannot create a thread in the specified thread group or cannot override the context class loader methods.
Allocates a new Thread object so that it has target as its run object, has the specified name as its name, belongs to the thread group referred to by group, and has the specified stack size.

This constructor is identical to with the exception of the fact that it allows the thread stack size to be specified. The stack size is the approximate number of bytes of address space that the virtual machine is to allocate for this thread's stack. The effect of the stackSize parameter, if any, is highly platform dependent.

On some platforms, specifying a higher value for the stackSize parameter may allow a thread to achieve greater recursion depth before throwing a StackOverflowError . Similarly, specifying a lower value may allow a greater number of threads to exist concurrently without throwing an OutOfMemoryError (or other internal error). The details of the relationship between the value of the stackSize parameter and the maximum recursion depth and concurrency level are platform-dependent. On some platforms, the value of the stackSize parameter may have no effect whatsoever.

The virtual machine is free to treat the stackSize parameter as a suggestion. If the specified value is unreasonably low for the platform, the virtual machine may instead use some platform-specific minimum value; if the specified value is unreasonably high, the virtual machine may instead use some platform-specific maximum. Likewise, the virtual machine is free to round the specified value up or down as it sees fit (or to ignore it completely).

Specifying a value of zero for the stackSize parameter will cause this constructor to behave exactly like the Thread(ThreadGroup, Runnable, String) constructor.

Due to the platform-dependent nature of the behavior of this constructor, extreme care should be exercised in its use. The thread stack size necessary to perform a given computation will likely vary from one JRE implementation to another. In light of this variation, careful tuning of the stack size parameter may be required, and the tuning may need to be repeated for each JRE implementation on which an application is to run.

Implementation note: Java platform implementers are encouraged to document their implementation's behavior with respect to the stackSize parameter.

Parameters
groupthe thread group.
targetthe object whose run method is called.
namethe name of the new thread.
stackSizethe desired stack size for the new thread, or zero to indicate that this parameter is to be ignored.
Throws
SecurityExceptionif the current thread cannot create a thread in the specified thread group.
The maximum priority that a thread can have.
The minimum priority that a thread can have.
The default priority that is assigned to a thread.
Returns the number of active threads in the current thread's thread group.
Return
the number of active threads in the current thread's thread group.
Determines if the currently running thread has permission to modify this thread.

If there is a security manager, its checkAccess method is called with this thread as its argument. This may result in throwing a SecurityException.

Note: This method was mistakenly non-final in JDK 1.1. It has been made final in the Java 2 Platform.

Throws
SecurityExceptionif the current thread is not allowed to access this thread.
Counts the number of stack frames in this thread. The thread must be suspended.
Return
the number of stack frames in this thread.
Throws
IllegalThreadStateExceptionif this thread is not suspended.
@deprecated
The definition of this call depends on {@link #suspend}, which is deprecated. Further, the results of this call were never well-defined.
Returns a reference to the currently executing thread object.
Return
the currently executing thread.
Throws
NoSuchMethodErroralways
@deprecated
This method was originally designed to destroy this thread without any cleanup. Any monitors it held would have remained locked. However, the method was never implemented. If if were to be implemented, it would be deadlock-prone in much the manner of {@link #suspend}. If the target thread held a lock protecting a critical system resource when it was destroyed, no thread could ever access this resource again. If another thread ever attempted to lock this resource, deadlock would result. Such deadlocks typically manifest themselves as "frozen" processes. For more information, see Why are Thread.stop, Thread.suspend and Thread.resume Deprecated?.
Prints a stack trace of the current thread. This method is used only for debugging.
Copies into the specified array every active thread in the current thread's thread group and its subgroups. This method simply calls the enumerate method of the current thread's thread group with the array argument.

First, if there is a security manager, that enumerate method calls the security manager's checkAccess method with the thread group as its argument. This may result in throwing a SecurityException.

Parameters
tarrayan array of Thread objects to copy to
Return
the number of threads put into the array
Throws
SecurityExceptionif a security manager exists and its checkAccess method doesn't allow the operation.
Indicates whether some other object is "equal to" this one.

The equals method implements an equivalence relation on non-null object references:

  • It is reflexive: for any non-null reference value x, x.equals(x) should return true.
  • It is symmetric: for any non-null reference values x and y, x.equals(y) should return true if and only if y.equals(x) returns true.
  • It is transitive: for any non-null reference values x, y, and z, if x.equals(y) returns true and y.equals(z) returns true, then x.equals(z) should return true.
  • It is consistent: for any non-null reference values x and y, multiple invocations of x.equals(y) consistently return true or consistently return false, provided no information used in equals comparisons on the objects is modified.
  • For any non-null reference value x, x.equals(null) should return false.

The equals method for class Object implements the most discriminating possible equivalence relation on objects; that is, for any non-null reference values x and y, this method returns true if and only if x and y refer to the same object (x == y has the value true).

Note that it is generally necessary to override the hashCode method whenever this method is overridden, so as to maintain the general contract for the hashCode method, which states that equal objects must have equal hash codes.

Parameters
objthe reference object with which to compare.
Return
true if this object is the same as the obj argument; false otherwise.
Returns a map of stack traces for all live threads. The map keys are threads and each map value is an array of StackTraceElement that represents the stack dump of the corresponding Thread. The returned stack traces are in the format specified for the getStackTrace method.

The threads may be executing while this method is called. The stack trace of each thread only represents a snapshot and each stack trace may be obtained at different time. A zero-length array will be returned in the map value if the virtual machine has no stack trace information about a thread.

If there is a security manager, then the security manager's checkPermission method is called with a RuntimePermission("getStackTrace") permission as well as RuntimePermission("modifyThreadGroup") permission to see if it is ok to get the stack trace of all threads.

Return
a Map from Thread to an array of StackTraceElement that represents the stack trace of the corresponding thread.
Throws
SecurityException if a security manager exists and its checkPermission method doesn't allow getting the stack trace of thread.
@since
1.5
Returns the runtime class of an object. That Class object is the object that is locked by static synchronized methods of the represented class.
Return
The java.lang.Class object that represents the runtime class of the object. The result is of type {@code Class} where X is the erasure of the static type of the expression on which getClass is called.
Returns the context ClassLoader for this Thread. The context ClassLoader is provided by the creator of the thread for use by code running in this thread when loading classes and resources. If not set, the default is the ClassLoader context of the parent Thread. The context ClassLoader of the primordial thread is typically set to the class loader used to load the application.

First, if there is a security manager, and the caller's class loader is not null and the caller's class loader is not the same as or an ancestor of the context class loader for the thread whose context class loader is being requested, then the security manager's checkPermission method is called with a RuntimePermission("getClassLoader") permission to see if it's ok to get the context ClassLoader..

Return
the context ClassLoader for this Thread
Throws
SecurityException if a security manager exists and its checkPermission method doesn't allow getting the context ClassLoader.
@since
1.2
Returns the default handler invoked when a thread abruptly terminates due to an uncaught exception. If the returned value is null, there is no default.
Returns the identifier of this Thread. The thread ID is a positive long number generated when this thread was created. The thread ID is unique and remains unchanged during its lifetime. When a thread is terminated, this thread ID may be reused.
Return
this thread's ID.
@since
1.5
Returns this thread's name.
Return
this thread's name.
Returns this thread's priority.
Return
this thread's priority.
Returns an array of stack trace elements representing the stack dump of this thread. This method will return a zero-length array if this thread has not started or has terminated. If the returned array is of non-zero length then the first element of the array represents the top of the stack, which is the most recent method invocation in the sequence. The last element of the array represents the bottom of the stack, which is the least recent method invocation in the sequence.

If there is a security manager, and this thread is not the current thread, then the security manager's checkPermission method is called with a RuntimePermission("getStackTrace") permission to see if it's ok to get the stack trace.

Some virtual machines may, under some circumstances, omit one or more stack frames from the stack trace. In the extreme case, a virtual machine that has no stack trace information concerning this thread is permitted to return a zero-length array from this method.

Return
an array of StackTraceElement, each represents one stack frame.
Throws
SecurityException if a security manager exists and its checkPermission method doesn't allow getting the stack trace of thread.
@since
1.5
Returns the state of this thread. This method is designed for use in monitoring of the system state, not for synchronization control.
Return
this thread's state.
@since
1.5
Returns the thread group to which this thread belongs. This method returns null if this thread has died (been stopped).
Return
this thread's thread group.
Returns the handler invoked when this thread abruptly terminates due to an uncaught exception. If this thread has not had an uncaught exception handler explicitly set then this thread's ThreadGroup object is returned, unless this thread has terminated, in which case null is returned.
@since
1.5
Returns a hash code value for the object. This method is supported for the benefit of hashtables such as those provided by java.util.Hashtable.

The general contract of hashCode is:

  • Whenever it is invoked on the same object more than once during an execution of a Java application, the hashCode method must consistently return the same integer, provided no information used in equals comparisons on the object is modified. This integer need not remain consistent from one execution of an application to another execution of the same application.
  • If two objects are equal according to the equals(Object) method, then calling the hashCode method on each of the two objects must produce the same integer result.
  • It is not required that if two objects are unequal according to the method, then calling the hashCode method on each of the two objects must produce distinct integer results. However, the programmer should be aware that producing distinct integer results for unequal objects may improve the performance of hashtables.

As much as is reasonably practical, the hashCode method defined by class Object does return distinct integers for distinct objects. (This is typically implemented by converting the internal address of the object into an integer, but this implementation technique is not required by the JavaTM programming language.)

Return
a hash code value for this object.
Returns true if and only if the current thread holds the monitor lock on the specified object.

This method is designed to allow a program to assert that the current thread already holds a specified lock:

     assert Thread.holdsLock(obj);
 
Parameters
objthe object on which to test lock ownership
Return
true if the current thread holds the monitor lock on the specified object.
Throws
NullPointerExceptionif obj is null
@since
1.4
Interrupts this thread.

Unless the current thread is interrupting itself, which is always permitted, the checkAccess method of this thread is invoked, which may cause a SecurityException to be thrown.

If this thread is blocked in an invocation of the wait() , wait(long) , or wait(long, int) methods of the Object class, or of the #join() , #join(long) , #join(long, int) , #sleep(long) , or #sleep(long, int) , methods of this class, then its interrupt status will be cleared and it will receive an InterruptedException .

If this thread is blocked in an I/O operation upon an interruptible channel then the channel will be closed, the thread's interrupt status will be set, and the thread will receive a java.nio.channels.ClosedByInterruptException .

If this thread is blocked in a java.nio.channels.Selector then the thread's interrupt status will be set and it will return immediately from the selection operation, possibly with a non-zero value, just as if the selector's wakeup method were invoked.

If none of the previous conditions hold then this thread's interrupt status will be set.

Throws
SecurityException if the current thread cannot modify this thread
@revised
1.4
@spec
JSR-51
Tests whether the current thread has been interrupted. The interrupted status of the thread is cleared by this method. In other words, if this method were to be called twice in succession, the second call would return false (unless the current thread were interrupted again, after the first call had cleared its interrupted status and before the second call had examined it).
Return
true if the current thread has been interrupted; false otherwise.
Tests if this thread is alive. A thread is alive if it has been started and has not yet died.
Return
true if this thread is alive; false otherwise.
Tests if this thread is a daemon thread.
Return
true if this thread is a daemon thread; false otherwise.
Tests whether this thread has been interrupted. The interrupted status of the thread is unaffected by this method.
Return
true if this thread has been interrupted; false otherwise.
Waits for this thread to die.
Throws
InterruptedExceptionif another thread has interrupted the current thread. The interrupted status of the current thread is cleared when this exception is thrown.
Waits at most millis milliseconds for this thread to die. A timeout of 0 means to wait forever.
Parameters
millisthe time to wait in milliseconds.
Throws
InterruptedExceptionif another thread has interrupted the current thread. The interrupted status of the current thread is cleared when this exception is thrown.
Waits at most millis milliseconds plus nanos nanoseconds for this thread to die.
Parameters
millisthe time to wait in milliseconds.
nanos0-999999 additional nanoseconds to wait.
Throws
IllegalArgumentExceptionif the value of millis is negative the value of nanos is not in the range 0-999999.
InterruptedExceptionif another thread has interrupted the current thread. The interrupted status of the current thread is cleared when this exception is thrown.
Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the discretion of the implementation. A thread waits on an object's monitor by calling one of the wait methods.

The awakened thread will not be able to proceed until the current thread relinquishes the lock on this object. The awakened thread will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened thread enjoys no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. A thread becomes the owner of the object's monitor in one of three ways:

  • By executing a synchronized instance method of that object.
  • By executing the body of a synchronized statement that synchronizes on the object.
  • For objects of type Class, by executing a synchronized static method of that class.

Only one thread at a time can own an object's monitor.

Throws
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
Wakes up all threads that are waiting on this object's monitor. A thread waits on an object's monitor by calling one of the wait methods.

The awakened threads will not be able to proceed until the current thread relinquishes the lock on this object. The awakened threads will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened threads enjoy no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.

Throws
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
Resumes a suspended thread.

First, the checkAccess method of this thread is called with no arguments. This may result in throwing a SecurityException (in the current thread).

If the thread is alive but suspended, it is resumed and is permitted to make progress in its execution.

Throws
SecurityExceptionif the current thread cannot modify this thread.
@deprecated
This method exists solely for use with {@link #suspend}, which has been deprecated because it is deadlock-prone. For more information, see Why are Thread.stop, Thread.suspend and Thread.resume Deprecated?.
When an object implementing interface Runnable is used to create a thread, starting the thread causes the object's run method to be called in that separately executing thread.

The general contract of the method run is that it may take any action whatsoever.

Sets the context ClassLoader for this Thread. The context ClassLoader can be set when a thread is created, and allows the creator of the thread to provide the appropriate class loader to code running in the thread when loading classes and resources.

First, if there is a security manager, its checkPermission method is called with a RuntimePermission("setContextClassLoader") permission to see if it's ok to set the context ClassLoader..

Parameters
clthe context ClassLoader for this Thread
Throws
SecurityExceptionif the current thread cannot set the context ClassLoader.
@since
1.2
Marks this thread as either a daemon thread or a user thread. The Java Virtual Machine exits when the only threads running are all daemon threads.

This method must be called before the thread is started.

This method first calls the checkAccess method of this thread with no arguments. This may result in throwing a SecurityException (in the current thread).

Parameters
onif true, marks this thread as a daemon thread.
Throws
IllegalThreadStateExceptionif this thread is active.
SecurityExceptionif the current thread cannot modify this thread.
Set the default handler invoked when a thread abruptly terminates due to an uncaught exception, and no other handler has been defined for that thread.

Uncaught exception handling is controlled first by the thread, then by the thread's ThreadGroup object and finally by the default uncaught exception handler. If the thread does not have an explicit uncaught exception handler set, and the thread's thread group (including parent thread groups) does not specialize its uncaughtException method, then the default handler's uncaughtException method will be invoked.

By setting the default uncaught exception handler, an application can change the way in which uncaught exceptions are handled (such as logging to a specific device, or file) for those threads that would already accept whatever "default" behavior the system provided.

Note that the default uncaught exception handler should not usually defer to the thread's ThreadGroup object, as that could cause infinite recursion.

Parameters
ehthe object to use as the default uncaught exception handler. If null then there is no default handler.
Throws
SecurityExceptionif a security manager is present and it denies {@link RuntimePermission} ("setDefaultUncaughtExceptionHandler")
@since
1.5
Changes the name of this thread to be equal to the argument name.

First the checkAccess method of this thread is called with no arguments. This may result in throwing a SecurityException.

Parameters
namethe new name for this thread.
Throws
SecurityExceptionif the current thread cannot modify this thread.
Changes the priority of this thread.

First the checkAccess method of this thread is called with no arguments. This may result in throwing a SecurityException.

Otherwise, the priority of this thread is set to the smaller of the specified newPriority and the maximum permitted priority of the thread's thread group.

Parameters
newPrioritypriority to set this thread to
Throws
IllegalArgumentExceptionIf the priority is not in the range MIN_PRIORITY to MAX_PRIORITY.
SecurityExceptionif the current thread cannot modify this thread.
Set the handler invoked when this thread abruptly terminates due to an uncaught exception.

A thread can take full control of how it responds to uncaught exceptions by having its uncaught exception handler explicitly set. If no such handler is set then the thread's ThreadGroup object acts as its handler.

Parameters
ehthe object to use as this thread's uncaught exception handler. If null then this thread has no explicit handler.
Throws
SecurityExceptionif the current thread is not allowed to modify this thread.
@since
1.5
Causes the currently executing thread to sleep (temporarily cease execution) for the specified number of milliseconds. The thread does not lose ownership of any monitors.
Parameters
millisthe length of time to sleep in milliseconds.
Throws
InterruptedExceptionif another thread has interrupted the current thread. The interrupted status of the current thread is cleared when this exception is thrown.
Causes the currently executing thread to sleep (cease execution) for the specified number of milliseconds plus the specified number of nanoseconds. The thread does not lose ownership of any monitors.
Parameters
millisthe length of time to sleep in milliseconds.
nanos0-999999 additional nanoseconds to sleep.
Throws
IllegalArgumentExceptionif the value of millis is negative or the value of nanos is not in the range 0-999999.
InterruptedExceptionif another thread has interrupted the current thread. The interrupted status of the current thread is cleared when this exception is thrown.
Causes this thread to begin execution; the Java Virtual Machine calls the run method of this thread.

The result is that two threads are running concurrently: the current thread (which returns from the call to the start method) and the other thread (which executes its run method).

It is never legal to start a thread more than once. In particular, a thread may not be restarted once it has completed execution.

Throws
IllegalThreadStateExceptionif the thread was already started.
Forces the thread to stop executing.

If there is a security manager installed, its checkAccess method is called with this as its argument. This may result in a SecurityException being raised (in the current thread).

If this thread is different from the current thread (that is, the current thread is trying to stop a thread other than itself), the security manager's checkPermission method (with a RuntimePermission("stopThread") argument) is called in addition. Again, this may result in throwing a SecurityException (in the current thread).

The thread represented by this thread is forced to stop whatever it is doing abnormally and to throw a newly created ThreadDeath object as an exception.

It is permitted to stop a thread that has not yet been started. If the thread is eventually started, it immediately terminates.

An application should not normally try to catch ThreadDeath unless it must do some extraordinary cleanup operation (note that the throwing of ThreadDeath causes finally clauses of try statements to be executed before the thread officially dies). If a catch clause catches a ThreadDeath object, it is important to rethrow the object so that the thread actually dies.

The top-level error handler that reacts to otherwise uncaught exceptions does not print out a message or otherwise notify the application if the uncaught exception is an instance of ThreadDeath.

Throws
SecurityExceptionif the current thread cannot modify this thread.
@deprecated
This method is inherently unsafe. Stopping a thread with Thread.stop causes it to unlock all of the monitors that it has locked (as a natural consequence of the unchecked ThreadDeath exception propagating up the stack). If any of the objects previously protected by these monitors were in an inconsistent state, the damaged objects become visible to other threads, potentially resulting in arbitrary behavior. Many uses of stop should be replaced by code that simply modifies some variable to indicate that the target thread should stop running. The target thread should check this variable regularly, and return from its run method in an orderly fashion if the variable indicates that it is to stop running. If the target thread waits for long periods (on a condition variable, for example), the interrupt method should be used to interrupt the wait. For more information, see Why are Thread.stop, Thread.suspend and Thread.resume Deprecated?.
Forces the thread to stop executing.

If there is a security manager installed, the checkAccess method of this thread is called, which may result in a SecurityException being raised (in the current thread).

If this thread is different from the current thread (that is, the current thread is trying to stop a thread other than itself) or obj is not an instance of ThreadDeath, the security manager's checkPermission method (with the RuntimePermission("stopThread") argument) is called in addition. Again, this may result in throwing a SecurityException (in the current thread).

If the argument obj is null, a NullPointerException is thrown (in the current thread).

The thread represented by this thread is forced to complete whatever it is doing abnormally and to throw the Throwable object obj as an exception. This is an unusual action to take; normally, the stop method that takes no arguments should be used.

It is permitted to stop a thread that has not yet been started. If the thread is eventually started, it immediately terminates.

Parameters
objthe Throwable object to be thrown.
Throws
SecurityExceptionif the current thread cannot modify this thread.
@deprecated
This method is inherently unsafe. See {@link #stop()} for details. An additional danger of this method is that it may be used to generate exceptions that the target thread is unprepared to handle (including checked exceptions that the thread could not possibly throw, were it not for this method). For more information, see Why are Thread.stop, Thread.suspend and Thread.resume Deprecated?.
Suspends this thread.

First, the checkAccess method of this thread is called with no arguments. This may result in throwing a SecurityException (in the current thread).

If the thread is alive, it is suspended and makes no further progress unless and until it is resumed.

Throws
SecurityExceptionif the current thread cannot modify this thread.
@deprecated
This method has been deprecated, as it is inherently deadlock-prone. If the target thread holds a lock on the monitor protecting a critical system resource when it is suspended, no thread can access this resource until the target thread is resumed. If the thread that would resume the target thread attempts to lock this monitor prior to calling resume, deadlock results. Such deadlocks typically manifest themselves as "frozen" processes. For more information, see Why are Thread.stop, Thread.suspend and Thread.resume Deprecated?.
See Also
Returns a string representation of this thread, including the thread's name, priority, and thread group.
Return
a string representation of this thread.
Causes current thread to wait until another thread invokes the method or the method for this object. In other words, this method behaves exactly as if it simply performs the call wait(0).

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until another thread notifies threads waiting on this object's monitor to wake up either through a call to the notify method or the notifyAll method. The thread then waits until it can re-obtain ownership of the monitor and resumes execution.

As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait();
         ... // Perform action appropriate to condition
     }
 
This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.
Throws
IllegalMonitorStateExceptionif the current thread is not the owner of the object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.
Causes current thread to wait until either another thread invokes the method or the method for this object, or a specified amount of time has elapsed.

The current thread must own this object's monitor.

This method causes the current thread (call it T) to place itself in the wait set for this object and then to relinquish any and all synchronization claims on this object. Thread T becomes disabled for thread scheduling purposes and lies dormant until one of four things happens:

  • Some other thread invokes the notify method for this object and thread T happens to be arbitrarily chosen as the thread to be awakened.
  • Some other thread invokes the notifyAll method for this object.
  • Some other thread interrupts thread T.
  • The specified amount of real time has elapsed, more or less. If timeout is zero, however, then real time is not taken into consideration and the thread simply waits until notified.
The thread T is then removed from the wait set for this object and re-enabled for thread scheduling. It then competes in the usual manner with other threads for the right to synchronize on the object; once it has gained control of the object, all its synchronization claims on the object are restored to the status quo ante - that is, to the situation as of the time that the wait method was invoked. Thread T then returns from the invocation of the wait method. Thus, on return from the wait method, the synchronization state of the object and of thread T is exactly as it was when the wait method was invoked.

A thread can also wake up without being notified, interrupted, or timing out, a so-called spurious wakeup. While this will rarely occur in practice, applications must guard against it by testing for the condition that should have caused the thread to be awakened, and continuing to wait if the condition is not satisfied. In other words, waits should always occur in loops, like this one:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait(timeout);
         ... // Perform action appropriate to condition
     }
 
(For more information on this topic, see Section 3.2.3 in Doug Lea's "Concurrent Programming in Java (Second Edition)" (Addison-Wesley, 2000), or Item 50 in Joshua Bloch's "Effective Java Programming Language Guide" (Addison-Wesley, 2001).

If the current thread is interrupted by another thread while it is waiting, then an InterruptedException is thrown. This exception is not thrown until the lock status of this object has been restored as described above.

Note that the wait method, as it places the current thread into the wait set for this object, unlocks only this object; any other objects on which the current thread may be synchronized remain locked while the thread waits.

This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.

Parameters
timeoutthe maximum time to wait in milliseconds.
Throws
IllegalArgumentExceptionif the value of timeout is negative.
IllegalMonitorStateExceptionif the current thread is not the owner of the object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.
Causes current thread to wait until another thread invokes the method or the method for this object, or some other thread interrupts the current thread, or a certain amount of real time has elapsed.

This method is similar to the wait method of one argument, but it allows finer control over the amount of time to wait for a notification before giving up. The amount of real time, measured in nanoseconds, is given by:

 1000000*timeout+nanos

In all other respects, this method does the same thing as the method of one argument. In particular, wait(0, 0) means the same thing as wait(0).

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until either of the following two conditions has occurred:

  • Another thread notifies threads waiting on this object's monitor to wake up either through a call to the notify method or the notifyAll method.
  • The timeout period, specified by timeout milliseconds plus nanos nanoseconds arguments, has elapsed.

The thread then waits until it can re-obtain ownership of the monitor and resumes execution.

As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait(timeout, nanos);
         ... // Perform action appropriate to condition
     }
 
This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.
Parameters
timeoutthe maximum time to wait in milliseconds.
nanosadditional time, in nanoseconds range 0-999999.
Throws
IllegalArgumentExceptionif the value of timeout is negative or the value of nanos is not in the range 0-999999.
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.
Causes the currently executing thread object to temporarily pause and allow other threads to execute.