A class loader is an object that is responsible for loading classes. The class ClassLoader is an abstract class. Given the binary name of a class, a class loader should attempt to locate or generate data that constitutes a definition for the class. A typical strategy is to transform the name into a file name and then read a "class file" of that name from a file system.

Every Class object contains a reference to the ClassLoader that defined it.

Class objects for array classes are not created by class loaders, but are created automatically as required by the Java runtime. The class loader for an array class, as returned by is the same as the class loader for its element type; if the element type is a primitive type, then the array class has no class loader.

Applications implement subclasses of ClassLoader in order to extend the manner in which the Java virtual machine dynamically loads classes.

Class loaders may typically be used by security managers to indicate security domains.

The ClassLoader class uses a delegation model to search for classes and resources. Each instance of ClassLoader has an associated parent class loader. When requested to find a class or resource, a ClassLoader instance will delegate the search for the class or resource to its parent class loader before attempting to find the class or resource itself. The virtual machine's built-in class loader, called the "bootstrap class loader", does not itself have a parent but may serve as the parent of a ClassLoader instance.

Normally, the Java virtual machine loads classes from the local file system in a platform-dependent manner. For example, on UNIX systems, the virtual machine loads classes from the directory defined by the CLASSPATH environment variable.

However, some classes may not originate from a file; they may originate from other sources, such as the network, or they could be constructed by an application. The method defineClass converts an array of bytes into an instance of class Class. Instances of this newly defined class can be created using Class.newInstance .

The methods and constructors of objects created by a class loader may reference other classes. To determine the class(es) referred to, the Java virtual machine invokes the loadClass method of the class loader that originally created the class.

For example, an application could create a network class loader to download class files from a server. Sample code might look like:

   ClassLoader loader = new NetworkClassLoader(host, port);
   Object main = loader.loadClass("Main", true).newInstance();
	  . . .
 

The network class loader subclass must define the methods findClass and loadClassData to load a class from the network. Once it has downloaded the bytes that make up the class, it should use the method defineClass to create a class instance. A sample implementation is:

     class NetworkClassLoader extends ClassLoader {
         String host;
         int port;

         public Class findClass(String name) {
             byte[] b = loadClassData(name);
             return defineClass(name, b, 0, b.length);
         }

         private byte[] loadClassData(String name) {
             // load the class data from the connection
              . . .
         }
     }
 

Binary names

Any class name provided as a String parameter to methods in ClassLoader must be a binary name as defined by the Java Language Specification.

Examples of valid class names include:

   "java.lang.String"
   "javax.swing.JSpinner$DefaultEditor"
   "java.security.KeyStore$Builder$FileBuilder$1"
   "java.net.URLClassLoader$3$1"
 
@version
1.186, 08/02/04
@since
1.0
Sets the default assertion status for this class loader to false and discards any package defaults or class assertion status settings associated with the class loader. This method is provided so that class loaders can be made to ignore any command line or persistent assertion status settings and "start with a clean slate."

@since
1.4
Indicates whether some other object is "equal to" this one.

The equals method implements an equivalence relation on non-null object references:

  • It is reflexive: for any non-null reference value x, x.equals(x) should return true.
  • It is symmetric: for any non-null reference values x and y, x.equals(y) should return true if and only if y.equals(x) returns true.
  • It is transitive: for any non-null reference values x, y, and z, if x.equals(y) returns true and y.equals(z) returns true, then x.equals(z) should return true.
  • It is consistent: for any non-null reference values x and y, multiple invocations of x.equals(y) consistently return true or consistently return false, provided no information used in equals comparisons on the objects is modified.
  • For any non-null reference value x, x.equals(null) should return false.

The equals method for class Object implements the most discriminating possible equivalence relation on objects; that is, for any non-null reference values x and y, this method returns true if and only if x and y refer to the same object (x == y has the value true).

Note that it is generally necessary to override the hashCode method whenever this method is overridden, so as to maintain the general contract for the hashCode method, which states that equal objects must have equal hash codes.

Parameters
objthe reference object with which to compare.
Return
true if this object is the same as the obj argument; false otherwise.
Returns the runtime class of an object. That Class object is the object that is locked by static synchronized methods of the represented class.
Return
The java.lang.Class object that represents the runtime class of the object. The result is of type {@code Class} where X is the erasure of the static type of the expression on which getClass is called.
Returns the parent class loader for delegation. Some implementations may use null to represent the bootstrap class loader. This method will return null in such implementations if this class loader's parent is the bootstrap class loader.

If a security manager is present, and the invoker's class loader is not null and is not an ancestor of this class loader, then this method invokes the security manager's checkPermission method with a RuntimePermission("getClassLoader") permission to verify access to the parent class loader is permitted. If not, a SecurityException will be thrown.

Return
The parent ClassLoader
Throws
SecurityException If a security manager exists and its checkPermission method doesn't allow access to this class loader's parent class loader.
@since
1.2
Finds the resource with the given name. A resource is some data (images, audio, text, etc) that can be accessed by class code in a way that is independent of the location of the code.

The name of a resource is a '/'-separated path name that identifies the resource.

This method will first search the parent class loader for the resource; if the parent is null the path of the class loader built-in to the virtual machine is searched. That failing, this method will invoke to find the resource.

Parameters
name The resource name
Return
A URL object for reading the resource, or null if the resource could not be found or the invoker doesn't have adequate privileges to get the resource.
@since
1.1
Returns an input stream for reading the specified resource.

The search order is described in the documentation for .

Parameters
name The resource name
Return
An input stream for reading the resource, or null if the resource could not be found
@since
1.1
Finds all the resources with the given name. A resource is some data (images, audio, text, etc) that can be accessed by class code in a way that is independent of the location of the code.

The name of a resource is a /-separated path name that identifies the resource.

The search order is described in the documentation for .

Parameters
name The resource name
Return
An enumeration of {@link java.net.URL URL} objects for the resource. If no resources could be found, the enumeration will be empty. Resources that the class loader doesn't have access to will not be in the enumeration.
Throws
IOException If I/O errors occur
@since
1.2
Returns the system class loader for delegation. This is the default delegation parent for new ClassLoader instances, and is typically the class loader used to start the application.

This method is first invoked early in the runtime's startup sequence, at which point it creates the system class loader and sets it as the context class loader of the invoking Thread.

The default system class loader is an implementation-dependent instance of this class.

If the system property "java.system.class.loader" is defined when this method is first invoked then the value of that property is taken to be the name of a class that will be returned as the system class loader. The class is loaded using the default system class loader and must define a public constructor that takes a single parameter of type ClassLoader which is used as the delegation parent. An instance is then created using this constructor with the default system class loader as the parameter. The resulting class loader is defined to be the system class loader.

If a security manager is present, and the invoker's class loader is not null and the invoker's class loader is not the same as or an ancestor of the system class loader, then this method invokes the security manager's checkPermission method with a RuntimePermission("getClassLoader") permission to verify access to the system class loader. If not, a SecurityException will be thrown.

Return
The system ClassLoader for delegation, or null if none
Throws
SecurityException If a security manager exists and its checkPermission method doesn't allow access to the system class loader.
IllegalStateException If invoked recursively during the construction of the class loader specified by the "java.system.class.loader" property.
Error If the system property "java.system.class.loader" is defined but the named class could not be loaded, the provider class does not define the required constructor, or an exception is thrown by that constructor when it is invoked. The underlying cause of the error can be retrieved via the {@link Throwable#getCause()} method.
@revised
1.4
Find a resource of the specified name from the search path used to load classes. This method locates the resource through the system class loader (see ).

Parameters
name The resource name
Return
A {@link java.net.URL URL} object for reading the resource, or null if the resource could not be found
@since
1.1
Open for reading, a resource of the specified name from the search path used to load classes. This method locates the resource through the system class loader (see ).

Parameters
name The resource name
Return
An input stream for reading the resource, or null if the resource could not be found
@since
1.1
Finds all resources of the specified name from the search path used to load classes. The resources thus found are returned as an Enumeration of URL objects.

The search order is described in the documentation for .

Parameters
name The resource name
Return
An enumeration of resource {@link java.net.URL URL} objects
Throws
IOException If I/O errors occur
@since
1.2
Returns a hash code value for the object. This method is supported for the benefit of hashtables such as those provided by java.util.Hashtable.

The general contract of hashCode is:

  • Whenever it is invoked on the same object more than once during an execution of a Java application, the hashCode method must consistently return the same integer, provided no information used in equals comparisons on the object is modified. This integer need not remain consistent from one execution of an application to another execution of the same application.
  • If two objects are equal according to the equals(Object) method, then calling the hashCode method on each of the two objects must produce the same integer result.
  • It is not required that if two objects are unequal according to the method, then calling the hashCode method on each of the two objects must produce distinct integer results. However, the programmer should be aware that producing distinct integer results for unequal objects may improve the performance of hashtables.

As much as is reasonably practical, the hashCode method defined by class Object does return distinct integers for distinct objects. (This is typically implemented by converting the internal address of the object into an integer, but this implementation technique is not required by the JavaTM programming language.)

Return
a hash code value for this object.
Loads the class with the specified binary name. This method searches for classes in the same manner as the method. It is invoked by the Java virtual machine to resolve class references. Invoking this method is equivalent to invoking loadClass(name, false) .

Parameters
name The binary name of the class
Return
The resulting Class object
Throws
ClassNotFoundException If the class was not found
Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the discretion of the implementation. A thread waits on an object's monitor by calling one of the wait methods.

The awakened thread will not be able to proceed until the current thread relinquishes the lock on this object. The awakened thread will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened thread enjoys no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. A thread becomes the owner of the object's monitor in one of three ways:

  • By executing a synchronized instance method of that object.
  • By executing the body of a synchronized statement that synchronizes on the object.
  • For objects of type Class, by executing a synchronized static method of that class.

Only one thread at a time can own an object's monitor.

Throws
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
Wakes up all threads that are waiting on this object's monitor. A thread waits on an object's monitor by calling one of the wait methods.

The awakened threads will not be able to proceed until the current thread relinquishes the lock on this object. The awakened threads will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened threads enjoy no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.

Throws
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
Sets the desired assertion status for the named top-level class in this class loader and any nested classes contained therein. This setting takes precedence over the class loader's default assertion status, and over any applicable per-package default. This method has no effect if the named class has already been initialized. (Once a class is initialized, its assertion status cannot change.)

If the named class is not a top-level class, this invocation will have no effect on the actual assertion status of any class, and its return value is undefined.

Parameters
className The fully qualified class name of the top-level class whose assertion status is to be set.
enabled true if the named class is to have assertions enabled when (and if) it is initialized, false if the class is to have assertions disabled.
@since
1.4
Sets the default assertion status for this class loader. This setting determines whether classes loaded by this class loader and initialized in the future will have assertions enabled or disabled by default. This setting may be overridden on a per-package or per-class basis by invoking or .

Parameters
enabled true if classes loaded by this class loader will henceforth have assertions enabled by default, false if they will have assertions disabled by default.
@since
1.4
Sets the package default assertion status for the named package. The package default assertion status determines the assertion status for classes initialized in the future that belong to the named package or any of its "subpackages".

A subpackage of a package named p is any package whose name begins with "p.". For example, javax.swing.text is a subpackage of javax.swing, and both java.util and java.lang.reflect are subpackages of java.

In the event that multiple package defaults apply to a given class, the package default pertaining to the most specific package takes precedence over the others. For example, if javax.lang and javax.lang.reflect both have package defaults associated with them, the latter package default applies to classes in javax.lang.reflect.

Package defaults take precedence over the class loader's default assertion status, and may be overridden on a per-class basis by invoking .

Parameters
packageName The name of the package whose package default assertion status is to be set. A null value indicates the unnamed package that is "current" (Java Language Specification, section 7.4.2).
enabled true if classes loaded by this classloader and belonging to the named package or any of its subpackages will have assertions enabled by default, false if they will have assertions disabled by default.
@since
1.4
Returns a string representation of the object. In general, the toString method returns a string that "textually represents" this object. The result should be a concise but informative representation that is easy for a person to read. It is recommended that all subclasses override this method.

The toString method for class Object returns a string consisting of the name of the class of which the object is an instance, the at-sign character `@', and the unsigned hexadecimal representation of the hash code of the object. In other words, this method returns a string equal to the value of:

 getClass().getName() + '@' + Integer.toHexString(hashCode())
 
Return
a string representation of the object.
Causes current thread to wait until another thread invokes the method or the method for this object. In other words, this method behaves exactly as if it simply performs the call wait(0).

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until another thread notifies threads waiting on this object's monitor to wake up either through a call to the notify method or the notifyAll method. The thread then waits until it can re-obtain ownership of the monitor and resumes execution.

As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait();
         ... // Perform action appropriate to condition
     }
 
This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.
Throws
IllegalMonitorStateExceptionif the current thread is not the owner of the object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.
Causes current thread to wait until either another thread invokes the method or the method for this object, or a specified amount of time has elapsed.

The current thread must own this object's monitor.

This method causes the current thread (call it T) to place itself in the wait set for this object and then to relinquish any and all synchronization claims on this object. Thread T becomes disabled for thread scheduling purposes and lies dormant until one of four things happens:

  • Some other thread invokes the notify method for this object and thread T happens to be arbitrarily chosen as the thread to be awakened.
  • Some other thread invokes the notifyAll method for this object.
  • Some other thread interrupts thread T.
  • The specified amount of real time has elapsed, more or less. If timeout is zero, however, then real time is not taken into consideration and the thread simply waits until notified.
The thread T is then removed from the wait set for this object and re-enabled for thread scheduling. It then competes in the usual manner with other threads for the right to synchronize on the object; once it has gained control of the object, all its synchronization claims on the object are restored to the status quo ante - that is, to the situation as of the time that the wait method was invoked. Thread T then returns from the invocation of the wait method. Thus, on return from the wait method, the synchronization state of the object and of thread T is exactly as it was when the wait method was invoked.

A thread can also wake up without being notified, interrupted, or timing out, a so-called spurious wakeup. While this will rarely occur in practice, applications must guard against it by testing for the condition that should have caused the thread to be awakened, and continuing to wait if the condition is not satisfied. In other words, waits should always occur in loops, like this one:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait(timeout);
         ... // Perform action appropriate to condition
     }
 
(For more information on this topic, see Section 3.2.3 in Doug Lea's "Concurrent Programming in Java (Second Edition)" (Addison-Wesley, 2000), or Item 50 in Joshua Bloch's "Effective Java Programming Language Guide" (Addison-Wesley, 2001).

If the current thread is interrupted by another thread while it is waiting, then an InterruptedException is thrown. This exception is not thrown until the lock status of this object has been restored as described above.

Note that the wait method, as it places the current thread into the wait set for this object, unlocks only this object; any other objects on which the current thread may be synchronized remain locked while the thread waits.

This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.

Parameters
timeoutthe maximum time to wait in milliseconds.
Throws
IllegalArgumentExceptionif the value of timeout is negative.
IllegalMonitorStateExceptionif the current thread is not the owner of the object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.
Causes current thread to wait until another thread invokes the method or the method for this object, or some other thread interrupts the current thread, or a certain amount of real time has elapsed.

This method is similar to the wait method of one argument, but it allows finer control over the amount of time to wait for a notification before giving up. The amount of real time, measured in nanoseconds, is given by:

 1000000*timeout+nanos

In all other respects, this method does the same thing as the method of one argument. In particular, wait(0, 0) means the same thing as wait(0).

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until either of the following two conditions has occurred:

  • Another thread notifies threads waiting on this object's monitor to wake up either through a call to the notify method or the notifyAll method.
  • The timeout period, specified by timeout milliseconds plus nanos nanoseconds arguments, has elapsed.

The thread then waits until it can re-obtain ownership of the monitor and resumes execution.

As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait(timeout, nanos);
         ... // Perform action appropriate to condition
     }
 
This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.
Parameters
timeoutthe maximum time to wait in milliseconds.
nanosadditional time, in nanoseconds range 0-999999.
Throws
IllegalArgumentExceptionif the value of timeout is negative or the value of nanos is not in the range 0-999999.
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.