Proxy provides static methods for creating dynamic proxy classes and instances, and it is also the superclass of all dynamic proxy classes created by those methods.

To create a proxy for some interface Foo:

     InvocationHandler handler = new MyInvocationHandler(...);
     Class proxyClass = Proxy.getProxyClass(
         Foo.class.getClassLoader(), new Class[] { Foo.class });
     Foo f = (Foo) proxyClass.
         getConstructor(new Class[] { InvocationHandler.class }).
         newInstance(new Object[] { handler });
 
or more simply:
     Foo f = (Foo) Proxy.newProxyInstance(Foo.class.getClassLoader(),
                                          new Class[] { Foo.class },
                                          handler);
 

A dynamic proxy class (simply referred to as a proxy class below) is a class that implements a list of interfaces specified at runtime when the class is created, with behavior as described below. A proxy interface is such an interface that is implemented by a proxy class. A proxy instance is an instance of a proxy class. Each proxy instance has an associated invocation handler object, which implements the interface InvocationHandler . A method invocation on a proxy instance through one of its proxy interfaces will be dispatched to the invoke method of the instance's invocation handler, passing the proxy instance, a java.lang.reflect.Method object identifying the method that was invoked, and an array of type Object containing the arguments. The invocation handler processes the encoded method invocation as appropriate and the result that it returns will be returned as the result of the method invocation on the proxy instance.

A proxy class has the following properties:

A proxy instance has the following properties:

Methods Duplicated in Multiple Proxy Interfaces

When two or more interfaces of a proxy class contain a method with the same name and parameter signature, the order of the proxy class's interfaces becomes significant. When such a duplicate method is invoked on a proxy instance, the Method object passed to the invocation handler will not necessarily be the one whose declaring class is assignable from the reference type of the interface that the proxy's method was invoked through. This limitation exists because the corresponding method implementation in the generated proxy class cannot determine which interface it was invoked through. Therefore, when a duplicate method is invoked on a proxy instance, the Method object for the method in the foremost interface that contains the method (either directly or inherited through a superinterface) in the proxy class's list of interfaces is passed to the invocation handler's invoke method, regardless of the reference type through which the method invocation occurred.

If a proxy interface contains a method with the same name and parameter signature as the hashCode, equals, or toString methods of java.lang.Object, when such a method is invoked on a proxy instance, the Method object passed to the invocation handler will have java.lang.Object as its declaring class. In other words, the public, non-final methods of java.lang.Object logically precede all of the proxy interfaces for the determination of which Method object to pass to the invocation handler.

Note also that when a duplicate method is dispatched to an invocation handler, the invoke method may only throw checked exception types that are assignable to one of the exception types in the throws clause of the method in all of the proxy interfaces that it can be invoked through. If the invoke method throws a checked exception that is not assignable to any of the exception types declared by the method in one of the proxy interfaces that it can be invoked through, then an unchecked UndeclaredThrowableException will be thrown by the invocation on the proxy instance. This restriction means that not all of the exception types returned by invoking getExceptionTypes on the Method object passed to the invoke method can necessarily be thrown successfully by the invoke method.

@author
Peter Jones
@version
1.20, 04/04/20
@since
1.3
Indicates whether some other object is "equal to" this one.

The equals method implements an equivalence relation on non-null object references:

  • It is reflexive: for any non-null reference value x, x.equals(x) should return true.
  • It is symmetric: for any non-null reference values x and y, x.equals(y) should return true if and only if y.equals(x) returns true.
  • It is transitive: for any non-null reference values x, y, and z, if x.equals(y) returns true and y.equals(z) returns true, then x.equals(z) should return true.
  • It is consistent: for any non-null reference values x and y, multiple invocations of x.equals(y) consistently return true or consistently return false, provided no information used in equals comparisons on the objects is modified.
  • For any non-null reference value x, x.equals(null) should return false.

The equals method for class Object implements the most discriminating possible equivalence relation on objects; that is, for any non-null reference values x and y, this method returns true if and only if x and y refer to the same object (x == y has the value true).

Note that it is generally necessary to override the hashCode method whenever this method is overridden, so as to maintain the general contract for the hashCode method, which states that equal objects must have equal hash codes.

Parameters
objthe reference object with which to compare.
Return
true if this object is the same as the obj argument; false otherwise.
Returns the runtime class of an object. That Class object is the object that is locked by static synchronized methods of the represented class.
Return
The java.lang.Class object that represents the runtime class of the object. The result is of type {@code Class} where X is the erasure of the static type of the expression on which getClass is called.
Returns the invocation handler for the specified proxy instance.
Parameters
proxythe proxy instance to return the invocation handler for
Return
the invocation handler for the proxy instance
Throws
IllegalArgumentExceptionif the argument is not a proxy instance
Returns the java.lang.Class object for a proxy class given a class loader and an array of interfaces. The proxy class will be defined by the specified class loader and will implement all of the supplied interfaces. If a proxy class for the same permutation of interfaces has already been defined by the class loader, then the existing proxy class will be returned; otherwise, a proxy class for those interfaces will be generated dynamically and defined by the class loader.

There are several restrictions on the parameters that may be passed to Proxy.getProxyClass:

  • All of the Class objects in the interfaces array must represent interfaces, not classes or primitive types.
  • No two elements in the interfaces array may refer to identical Class objects.
  • All of the interface types must be visible by name through the specified class loader. In other words, for class loader cl and every interface i, the following expression must be true:
         Class.forName(i.getName(), false, cl) == i
     
  • All non-public interfaces must be in the same package; otherwise, it would not be possible for the proxy class to implement all of the interfaces, regardless of what package it is defined in.
  • For any set of member methods of the specified interfaces that have the same signature:
    • If the return type of any of the methods is a primitive type or void, then all of the methods must have that same return type.
    • Otherwise, one of the methods must have a return type that is assignable to all of the return types of the rest of the methods.
  • The resulting proxy class must not exceed any limits imposed on classes by the virtual machine. For example, the VM may limit the number of interfaces that a class may implement to 65535; in that case, the size of the interfaces array must not exceed 65535.

If any of these restrictions are violated, Proxy.getProxyClass will throw an IllegalArgumentException. If the interfaces array argument or any of its elements are null, a NullPointerException will be thrown.

Note that the order of the specified proxy interfaces is significant: two requests for a proxy class with the same combination of interfaces but in a different order will result in two distinct proxy classes.

Parameters
loaderthe class loader to define the proxy class
interfacesthe list of interfaces for the proxy class to implement
Return
a proxy class that is defined in the specified class loader and that implements the specified interfaces
Throws
IllegalArgumentExceptionif any of the restrictions on the parameters that may be passed to getProxyClass are violated
NullPointerExceptionif the interfaces array argument or any of its elements are null
Returns a hash code value for the object. This method is supported for the benefit of hashtables such as those provided by java.util.Hashtable.

The general contract of hashCode is:

  • Whenever it is invoked on the same object more than once during an execution of a Java application, the hashCode method must consistently return the same integer, provided no information used in equals comparisons on the object is modified. This integer need not remain consistent from one execution of an application to another execution of the same application.
  • If two objects are equal according to the equals(Object) method, then calling the hashCode method on each of the two objects must produce the same integer result.
  • It is not required that if two objects are unequal according to the method, then calling the hashCode method on each of the two objects must produce distinct integer results. However, the programmer should be aware that producing distinct integer results for unequal objects may improve the performance of hashtables.

As much as is reasonably practical, the hashCode method defined by class Object does return distinct integers for distinct objects. (This is typically implemented by converting the internal address of the object into an integer, but this implementation technique is not required by the JavaTM programming language.)

Return
a hash code value for this object.
Returns true if and only if the specified class was dynamically generated to be a proxy class using the getProxyClass method or the newProxyInstance method.

The reliability of this method is important for the ability to use it to make security decisions, so its implementation should not just test if the class in question extends Proxy.

Parameters
clthe class to test
Return
true if the class is a proxy class and false otherwise
Throws
NullPointerExceptionif cl is null
Returns an instance of a proxy class for the specified interfaces that dispatches method invocations to the specified invocation handler. This method is equivalent to:
     Proxy.getProxyClass(loader, interfaces).
         getConstructor(new Class[] { InvocationHandler.class }).
         newInstance(new Object[] { handler });
 

Proxy.newProxyInstance throws IllegalArgumentException for the same reasons that Proxy.getProxyClass does.

Parameters
loaderthe class loader to define the proxy class
interfacesthe list of interfaces for the proxy class to implement
hthe invocation handler to dispatch method invocations to
Return
a proxy instance with the specified invocation handler of a proxy class that is defined by the specified class loader and that implements the specified interfaces
Throws
IllegalArgumentExceptionif any of the restrictions on the parameters that may be passed to getProxyClass are violated
NullPointerExceptionif the interfaces array argument or any of its elements are null, or if the invocation handler, h, is null
Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the discretion of the implementation. A thread waits on an object's monitor by calling one of the wait methods.

The awakened thread will not be able to proceed until the current thread relinquishes the lock on this object. The awakened thread will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened thread enjoys no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. A thread becomes the owner of the object's monitor in one of three ways:

  • By executing a synchronized instance method of that object.
  • By executing the body of a synchronized statement that synchronizes on the object.
  • For objects of type Class, by executing a synchronized static method of that class.

Only one thread at a time can own an object's monitor.

Throws
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
Wakes up all threads that are waiting on this object's monitor. A thread waits on an object's monitor by calling one of the wait methods.

The awakened threads will not be able to proceed until the current thread relinquishes the lock on this object. The awakened threads will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened threads enjoy no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.

Throws
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
Returns a string representation of the object. In general, the toString method returns a string that "textually represents" this object. The result should be a concise but informative representation that is easy for a person to read. It is recommended that all subclasses override this method.

The toString method for class Object returns a string consisting of the name of the class of which the object is an instance, the at-sign character `@', and the unsigned hexadecimal representation of the hash code of the object. In other words, this method returns a string equal to the value of:

 getClass().getName() + '@' + Integer.toHexString(hashCode())
 
Return
a string representation of the object.
Causes current thread to wait until another thread invokes the method or the method for this object. In other words, this method behaves exactly as if it simply performs the call wait(0).

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until another thread notifies threads waiting on this object's monitor to wake up either through a call to the notify method or the notifyAll method. The thread then waits until it can re-obtain ownership of the monitor and resumes execution.

As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait();
         ... // Perform action appropriate to condition
     }
 
This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.
Throws
IllegalMonitorStateExceptionif the current thread is not the owner of the object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.
Causes current thread to wait until either another thread invokes the method or the method for this object, or a specified amount of time has elapsed.

The current thread must own this object's monitor.

This method causes the current thread (call it T) to place itself in the wait set for this object and then to relinquish any and all synchronization claims on this object. Thread T becomes disabled for thread scheduling purposes and lies dormant until one of four things happens:

  • Some other thread invokes the notify method for this object and thread T happens to be arbitrarily chosen as the thread to be awakened.
  • Some other thread invokes the notifyAll method for this object.
  • Some other thread interrupts thread T.
  • The specified amount of real time has elapsed, more or less. If timeout is zero, however, then real time is not taken into consideration and the thread simply waits until notified.
The thread T is then removed from the wait set for this object and re-enabled for thread scheduling. It then competes in the usual manner with other threads for the right to synchronize on the object; once it has gained control of the object, all its synchronization claims on the object are restored to the status quo ante - that is, to the situation as of the time that the wait method was invoked. Thread T then returns from the invocation of the wait method. Thus, on return from the wait method, the synchronization state of the object and of thread T is exactly as it was when the wait method was invoked.

A thread can also wake up without being notified, interrupted, or timing out, a so-called spurious wakeup. While this will rarely occur in practice, applications must guard against it by testing for the condition that should have caused the thread to be awakened, and continuing to wait if the condition is not satisfied. In other words, waits should always occur in loops, like this one:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait(timeout);
         ... // Perform action appropriate to condition
     }
 
(For more information on this topic, see Section 3.2.3 in Doug Lea's "Concurrent Programming in Java (Second Edition)" (Addison-Wesley, 2000), or Item 50 in Joshua Bloch's "Effective Java Programming Language Guide" (Addison-Wesley, 2001).

If the current thread is interrupted by another thread while it is waiting, then an InterruptedException is thrown. This exception is not thrown until the lock status of this object has been restored as described above.

Note that the wait method, as it places the current thread into the wait set for this object, unlocks only this object; any other objects on which the current thread may be synchronized remain locked while the thread waits.

This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.

Parameters
timeoutthe maximum time to wait in milliseconds.
Throws
IllegalArgumentExceptionif the value of timeout is negative.
IllegalMonitorStateExceptionif the current thread is not the owner of the object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.
Causes current thread to wait until another thread invokes the method or the method for this object, or some other thread interrupts the current thread, or a certain amount of real time has elapsed.

This method is similar to the wait method of one argument, but it allows finer control over the amount of time to wait for a notification before giving up. The amount of real time, measured in nanoseconds, is given by:

 1000000*timeout+nanos

In all other respects, this method does the same thing as the method of one argument. In particular, wait(0, 0) means the same thing as wait(0).

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until either of the following two conditions has occurred:

  • Another thread notifies threads waiting on this object's monitor to wake up either through a call to the notify method or the notifyAll method.
  • The timeout period, specified by timeout milliseconds plus nanos nanoseconds arguments, has elapsed.

The thread then waits until it can re-obtain ownership of the monitor and resumes execution.

As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait(timeout, nanos);
         ... // Perform action appropriate to condition
     }
 
This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.
Parameters
timeoutthe maximum time to wait in milliseconds.
nanosadditional time, in nanoseconds range 0-999999.
Throws
IllegalArgumentExceptionif the value of timeout is negative or the value of nanos is not in the range 0-999999.
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.