Abstract class for X.509 certificates. This provides a standard way to access all the attributes of an X.509 certificate.
In June of 1996, the basic X.509 v3 format was completed by ISO/IEC and ANSI X9, which is described below in ASN.1:
Certificate ::= SEQUENCE { tbsCertificate TBSCertificate, signatureAlgorithm AlgorithmIdentifier, signature BIT STRING }
These certificates are widely used to support authentication and other functionality in Internet security systems. Common applications include Privacy Enhanced Mail (PEM), Transport Layer Security (SSL), code signing for trusted software distribution, and Secure Electronic Transactions (SET).
These certificates are managed and vouched for by Certificate Authorities (CAs). CAs are services which create certificates by placing data in the X.509 standard format and then digitally signing that data. CAs act as trusted third parties, making introductions between principals who have no direct knowledge of each other. CA certificates are either signed by themselves, or by some other CA such as a "root" CA.
More information can be found in RFC 2459, "Internet X.509 Public Key Infrastructure Certificate and CRL Profile" at http://www.ietf.org/rfc/rfc2459.txt .
The ASN.1 definition of tbsCertificate
is:
TBSCertificate ::= SEQUENCE { version [0] EXPLICIT Version DEFAULT v1, serialNumber CertificateSerialNumber, signature AlgorithmIdentifier, issuer Name, validity Validity, subject Name, subjectPublicKeyInfo SubjectPublicKeyInfo, issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL, -- If present, version must be v2 or v3 subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL, -- If present, version must be v2 or v3 extensions [3] EXPLICIT Extensions OPTIONAL -- If present, version must be v3 }
Certificates are instantiated using a certificate factory. The following is an example of how to instantiate an X.509 certificate:
InputStream inStream = new FileInputStream("fileName-of-cert"); CertificateFactory cf = CertificateFactory.getInstance("X.509"); X509Certificate cert = (X509Certificate)cf.generateCertificate(inStream); inStream.close();
The validity period consists of two date/time values: the first and last dates (and times) on which the certificate is valid. It is defined in ASN.1 as:
validity ValidityValidity ::= SEQUENCE { notBefore CertificateValidityDate, notAfter CertificateValidityDate }
CertificateValidityDate ::= CHOICE { utcTime UTCTime, generalTime GeneralizedTime }
other
object is an
instanceof
Certificate
, then
its encoded form is retrieved and compared with the
encoded form of this certificate.BasicConstraints
extension, (OID = 2.5.29.19).
The basic constraints extension identifies whether the subject
of the certificate is a Certificate Authority (CA) and
how deep a certification path may exist through that CA. The
pathLenConstraint
field (see below) is meaningful
only if cA
is set to TRUE. In this case, it gives the
maximum number of CA certificates that may follow this certificate in a
certification path. A value of zero indicates that only an end-entity
certificate may follow in the path.
Note that for RFC 2459 this extension is always marked
critical if cA
is TRUE, meaning this certificate belongs
to a Certificate Authority.
The ASN.1 definition for this is:
BasicConstraints ::= SEQUENCE { cA BOOLEAN DEFAULT FALSE, pathLenConstraint INTEGER (0..MAX) OPTIONAL }
InputStream inStrm = new FileInputStream("DER-encoded-Cert");
CertificateFactory cf = CertificateFactory.getInstance("X.509");
X509Certificate cert = (X509Certificate)cf.generateCertificate(inStrm);
inStrm.close();
Set critSet = cert.getCriticalExtensionOIDs();
if (critSet != null && !critSet.isEmpty()) {
System.out.println("Set of critical extensions:");
for (Iterator i = critSet.iterator(); i.hasNext();) {
String oid = (String)i.next();
System.out.println(oid);
}
}
ExtKeyUsageSyntax
field of the
extended key usage extension, (OID = 2.5.29.37). It indicates
one or more purposes for which the certified public key may be
used, in addition to or in place of the basic purposes
indicated in the key usage extension field. The ASN.1
definition for this is:
ExtKeyUsageSyntax ::= SEQUENCE SIZE (1..MAX) OF KeyPurposeIdKey purposes may be defined by any organization with a need. Object identifiers used to identify key purposes shall be assigned in accordance with IANA or ITU-T Rec. X.660 | ISO/IEC/ITU 9834-1.KeyPurposeId ::= OBJECT IDENTIFIER
This method was added to version 1.4 of the Java 2 Platform Standard
Edition. In order to maintain backwards compatibility with existing
service providers, this method is not abstract
and it provides a default implementation. Subclasses
should override this method with a correct implementation.
oid
String.
The oid
string is
represented by a set of nonnegative whole numbers separated
by periods.
For example:
OID (Object Identifier) | Extension Name |
---|---|
2.5.29.14 | SubjectKeyIdentifier |
2.5.29.15 | KeyUsage |
2.5.29.16 | PrivateKeyUsage |
2.5.29.17 | SubjectAlternativeName |
2.5.29.18 | IssuerAlternativeName |
2.5.29.19 | BasicConstraints |
2.5.29.30 | NameConstraints |
2.5.29.33 | PolicyMappings |
2.5.29.35 | AuthorityKeyIdentifier |
2.5.29.36 | PolicyConstraints |
IssuerAltName
extension, (OID = 2.5.29.18).
The ASN.1 definition of the IssuerAltName
extension is:
IssuerAltName ::= GeneralNamesThe ASN.1 definition of
GeneralNames
is defined
in getSubjectAlternativeNames
.
If this certificate does not contain an IssuerAltName
extension, null
is returned. Otherwise, a
Collection
is returned with an entry representing each
GeneralName
included in the extension. Each entry is a
List
whose first entry is an Integer
(the name type, 0-8) and whose second entry is a String
or a byte array (the name, in string or ASN.1 DER encoded form,
respectively). For more details about the formats used for each
name type, see the getSubjectAlternativeNames
method.
Note that the Collection
returned may contain more
than one name of the same type. Also, note that the returned
Collection
is immutable and any entries containing byte
arrays are cloned to protect against subsequent modifications.
This method was added to version 1.4 of the Java 2 Platform Standard
Edition. In order to maintain backwards compatibility with existing
service providers, this method is not abstract
and it provides a default implementation. Subclasses
should override this method with a correct implementation.
issuer
as an implementation specific Principal object, which should not be
relied upon by portable code.
Gets the issuer
(issuer distinguished name) value from
the certificate. The issuer name identifies the entity that signed (and
issued) the certificate.
The issuer name field contains an X.500 distinguished name (DN). The ASN.1 definition for this is:
issuer NameTheName ::= CHOICE { RDNSequence } RDNSequence ::= SEQUENCE OF RelativeDistinguishedName RelativeDistinguishedName ::= SET OF AttributeValueAssertion AttributeValueAssertion ::= SEQUENCE { AttributeType, AttributeValue } AttributeType ::= OBJECT IDENTIFIER AttributeValue ::= ANY
Name
describes a hierarchical name composed of
attributes,
such as country name, and corresponding values, such as US.
The type of the AttributeValue
component is determined by
the AttributeType
; in general it will be a
directoryString
. A directoryString
is usually
one of PrintableString
,
TeletexString
or UniversalString
.issuerUniqueID
value from the certificate.
The issuer unique identifier is present in the certificate
to handle the possibility of reuse of issuer names over time.
RFC 2459 recommends that names not be reused and that
conforming certificates not make use of unique identifiers.
Applications conforming to that profile should be capable of
parsing unique identifiers and making comparisons.
The ASN.1 definition for this is:
issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONALUniqueIdentifier ::= BIT STRING
X500Principal
.
It is recommended that subclasses override this method.
KeyUsage
extension, (OID = 2.5.29.15).
The key usage extension defines the purpose (e.g., encipherment,
signature, certificate signing) of the key contained in the
certificate.
The ASN.1 definition for this is:
KeyUsage ::= BIT STRING { digitalSignature (0), nonRepudiation (1), keyEncipherment (2), dataEncipherment (3), keyAgreement (4), keyCertSign (5), cRLSign (6), encipherOnly (7), decipherOnly (8) }RFC 2459 recommends that when used, this be marked as a critical extension.
InputStream inStrm = new FileInputStream("DER-encoded-CRL");
CertificateFactory cf = CertificateFactory.getInstance("X.509");
X509CRL crl = (X509CRL)cf.generateCRL(inStrm);
inStrm.close();
byte[] certData = <DER-encoded certificate data>
ByteArrayInputStream bais = new ByteArrayInputStream(certData);
X509Certificate cert = (X509Certificate)cf.generateCertificate(bais);
bais.close();
X509CRLEntry badCert =
crl.getRevokedCertificate(cert.getSerialNumber());
if (badCert != null) {
Set nonCritSet = badCert.getNonCriticalExtensionOIDs();
if (nonCritSet != null)
for (Iterator i = nonCritSet.iterator(); i.hasNext();) {
String oid = (String)i.next();
System.out.println(oid);
}
}
notAfter
date from the validity period of
the certificate. See getNotBefore
for relevant ASN.1 definitions.notBefore
date from the validity period of
the certificate.
The relevant ASN.1 definitions are:
validity ValidityValidity ::= SEQUENCE { notBefore CertificateValidityDate, notAfter CertificateValidityDate }
CertificateValidityDate ::= CHOICE { utcTime UTCTime, generalTime GeneralizedTime }
serialNumber
value from the certificate.
The serial number is an integer assigned by the certification
authority to each certificate. It must be unique for each
certificate issued by a given CA (i.e., the issuer name and
serial number identify a unique certificate).
The ASN.1 definition for this is:
serialNumber CertificateSerialNumberCertificateSerialNumber ::= INTEGER
signatureAlgorithm AlgorithmIdentifierAlgorithmIdentifier ::= SEQUENCE { algorithm OBJECT IDENTIFIER, parameters ANY DEFINED BY algorithm OPTIONAL } -- contains a value of the type -- registered for use with the -- algorithm object identifier value
The algorithm name is determined from the algorithm
OID string.
See getSigAlgName for relevant ASN.1 definitions.
See getSigAlgName for relevant ASN.1 definitions.
signature
value (the raw signature bits) from
the certificate.
The ASN.1 definition for this is:
signature BIT STRING
SubjectAltName
extension, (OID = 2.5.29.17).
The ASN.1 definition of the SubjectAltName
extension is:
SubjectAltName ::= GeneralNames GeneralNames :: = SEQUENCE SIZE (1..MAX) OF GeneralName GeneralName ::= CHOICE { otherName [0] OtherName, rfc822Name [1] IA5String, dNSName [2] IA5String, x400Address [3] ORAddress, directoryName [4] Name, ediPartyName [5] EDIPartyName, uniformResourceIdentifier [6] IA5String, iPAddress [7] OCTET STRING, registeredID [8] OBJECT IDENTIFIER}
If this certificate does not contain a SubjectAltName
extension, null
is returned. Otherwise, a
Collection
is returned with an entry representing each
GeneralName
included in the extension. Each entry is a
List
whose first entry is an Integer
(the name type, 0-8) and whose second entry is a String
or a byte array (the name, in string or ASN.1 DER encoded form,
respectively).
RFC 822, DNS, and URI names are returned as String
s,
using the well-established string formats for those types (subject to
the restrictions included in RFC 2459). IPv4 address names are
returned using dotted quad notation. IPv6 address names are returned
in the form "a1:a2:...:a8", where a1-a8 are hexadecimal values
representing the eight 16-bit pieces of the address. OID names are
returned as String
s represented as a series of nonnegative
integers separated by periods. And directory names (distinguished names)
are returned in RFC 2253 string format. No standard string format is
defined for otherNames, X.400 names, EDI party names, or any
other type of names. They are returned as byte arrays
containing the ASN.1 DER encoded form of the name.
Note that the Collection
returned may contain more
than one name of the same type. Also, note that the returned
Collection
is immutable and any entries containing byte
arrays are cloned to protect against subsequent modifications.
This method was added to version 1.4 of the Java 2 Platform Standard
Edition. In order to maintain backwards compatibility with existing
service providers, this method is not abstract
and it provides a default implementation. Subclasses
should override this method with a correct implementation.
subject
as an implementation specific Principal object, which should not be
relied upon by portable code.
Gets the subject
(subject distinguished name) value
from the certificate. If the subject
value is empty,
then the getName()
method of the returned
Principal
object returns an empty string ("").
The ASN.1 definition for this is:
subject Name
See getIssuerDN
for Name
and other relevant definitions.
subjectUniqueID
value from the certificate.
The ASN.1 definition for this is:
subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONALUniqueIdentifier ::= BIT STRING
X500Principal
. If the subject value
is empty, then the getName()
method of the returned
X500Principal
object returns an empty string ("").
It is recommended that subclasses override this method.
tbsCertificate
from this certificate.
This can be used to verify the signature independently.version
(version number) value from the
certificate.
The ASN.1 definition for this is:
version [0] EXPLICIT Version DEFAULT v1Version ::= INTEGER { v1(0), v2(1), v3(2) }
wait
methods.
The awakened thread will not be able to proceed until the current thread relinquishes the lock on this object. The awakened thread will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened thread enjoys no reliable privilege or disadvantage in being the next thread to lock this object.
This method should only be called by a thread that is the owner of this object's monitor. A thread becomes the owner of the object's monitor in one of three ways:
synchronized
statement
that synchronizes on the object.
Class,
by executing a
synchronized static method of that class.
Only one thread at a time can own an object's monitor.
wait
methods.
The awakened threads will not be able to proceed until the current thread relinquishes the lock on this object. The awakened threads will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened threads enjoy no reliable privilege or disadvantage in being the next thread to lock this object.
This method should only be called by a thread that is the owner
of this object's monitor. See the notify
method for a
description of the ways in which a thread can become the owner of
a monitor.
The current thread must own this object's monitor. The thread
releases ownership of this monitor and waits until another thread
notifies threads waiting on this object's monitor to wake up
either through a call to the notify
method or the
notifyAll
method. The thread then waits until it can
re-obtain ownership of the monitor and resumes execution.
As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:
synchronized (obj) { while (<condition does not hold>) obj.wait(); ... // Perform action appropriate to condition }This method should only be called by a thread that is the owner of this object's monitor. See the
notify
method for a
description of the ways in which a thread can become the owner of
a monitor.The current thread must own this object's monitor.
This method causes the current thread (call it T) to place itself in the wait set for this object and then to relinquish any and all synchronization claims on this object. Thread T becomes disabled for thread scheduling purposes and lies dormant until one of four things happens:
A thread can also wake up without being notified, interrupted, or timing out, a so-called spurious wakeup. While this will rarely occur in practice, applications must guard against it by testing for the condition that should have caused the thread to be awakened, and continuing to wait if the condition is not satisfied. In other words, waits should always occur in loops, like this one:
synchronized (obj) { while (<condition does not hold>) obj.wait(timeout); ... // Perform action appropriate to condition }(For more information on this topic, see Section 3.2.3 in Doug Lea's "Concurrent Programming in Java (Second Edition)" (Addison-Wesley, 2000), or Item 50 in Joshua Bloch's "Effective Java Programming Language Guide" (Addison-Wesley, 2001).
If the current thread is interrupted by another thread while it is waiting, then an InterruptedException is thrown. This exception is not thrown until the lock status of this object has been restored as described above.
Note that the wait method, as it places the current thread into the wait set for this object, unlocks only this object; any other objects on which the current thread may be synchronized remain locked while the thread waits.
This method should only be called by a thread that is the owner
of this object's monitor. See the notify
method for a
description of the ways in which a thread can become the owner of
a monitor.
This method is similar to the wait
method of one
argument, but it allows finer control over the amount of time to
wait for a notification before giving up. The amount of real time,
measured in nanoseconds, is given by:
1000000*timeout+nanos
In all other respects, this method does the same thing as the method of one argument. In particular, wait(0, 0) means the same thing as wait(0).
The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until either of the following two conditions has occurred:
notify
method
or the notifyAll
method.
timeout
milliseconds plus nanos
nanoseconds arguments, has
elapsed.
The thread then waits until it can re-obtain ownership of the monitor and resumes execution.
As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:
synchronized (obj) { while (<condition does not hold>) obj.wait(timeout, nanos); ... // Perform action appropriate to condition }This method should only be called by a thread that is the owner of this object's monitor. See the
notify
method for a
description of the ways in which a thread can become the owner of
a monitor.