An unbounded priority based on a priority heap. This queue orders elements according to an order specified at construction time, which is specified either according to their natural order (see Comparable ), or according to a java.util.Comparator , depending on which constructor is used. A priority queue does not permit null elements. A priority queue relying on natural ordering also does not permit insertion of non-comparable objects (doing so may result in ClassCastException).

The head of this queue is the least element with respect to the specified ordering. If multiple elements are tied for least value, the head is one of those elements -- ties are broken arbitrarily. The queue retrieval operations poll, remove, peek, and element access the element at the head of the queue.

A priority queue is unbounded, but has an internal capacity governing the size of an array used to store the elements on the queue. It is always at least as large as the queue size. As elements are added to a priority queue, its capacity grows automatically. The details of the growth policy are not specified.

This class and its iterator implement all of the optional methods of the Collection and Iterator interfaces. The Iterator provided in method #iterator() is not guaranteed to traverse the elements of the PriorityQueue in any particular order. If you need ordered traversal, consider using Arrays.sort(pq.toArray()).

Note that this implementation is not synchronized. Multiple threads should not access a PriorityQueue instance concurrently if any of the threads modifies the list structurally. Instead, use the thread-safe java.util.concurrent.PriorityBlockingQueue class.

Implementation note: this implementation provides O(log(n)) time for the insertion methods (offer, poll, remove() and add) methods; linear time for the remove(Object) and contains(Object) methods; and constant time for the retrieval methods (peek, element, and size).

This class is a member of the Java Collections Framework.

@since
1.5
@version
1.6, 06/11/04
@author
Josh Bloch
@param
the type of elements held in this collection
Creates a PriorityQueue with the default initial capacity (11) that orders its elements according to their natural ordering (using Comparable).
Creates a PriorityQueue with the specified initial capacity that orders its elements according to their natural ordering (using Comparable).
Parameters
initialCapacitythe initial capacity for this priority queue.
Throws
IllegalArgumentExceptionif initialCapacity is less than 1
Creates a PriorityQueue with the specified initial capacity that orders its elements according to the specified comparator.
Parameters
initialCapacitythe initial capacity for this priority queue.
comparatorthe comparator used to order this priority queue. If null then the order depends on the elements' natural ordering.
Throws
IllegalArgumentExceptionif initialCapacity is less than 1
Creates a PriorityQueue containing the elements in the specified collection. The priority queue has an initial capacity of 110% of the size of the specified collection or 1 if the collection is empty. If the specified collection is an instance of a java.util.SortedSet or is another PriorityQueue, the priority queue will be sorted according to the same comparator, or according to its elements' natural order if the collection is sorted according to its elements' natural order. Otherwise, the priority queue is ordered according to its elements' natural order.
Parameters
cthe collection whose elements are to be placed into this priority queue.
Throws
ClassCastExceptionif elements of the specified collection cannot be compared to one another according to the priority queue's ordering.
NullPointerExceptionif c or any element within it is null
Creates a PriorityQueue containing the elements in the specified collection. The priority queue has an initial capacity of 110% of the size of the specified collection or 1 if the collection is empty. This priority queue will be sorted according to the same comparator as the given collection, or according to its elements' natural order if the collection is sorted according to its elements' natural order.
Parameters
cthe collection whose elements are to be placed into this priority queue.
Throws
ClassCastExceptionif elements of the specified collection cannot be compared to one another according to the priority queue's ordering.
NullPointerExceptionif c or any element within it is null
Creates a PriorityQueue containing the elements in the specified collection. The priority queue has an initial capacity of 110% of the size of the specified collection or 1 if the collection is empty. This priority queue will be sorted according to the same comparator as the given collection, or according to its elements' natural order if the collection is sorted according to its elements' natural order.
Parameters
cthe collection whose elements are to be placed into this priority queue.
Throws
ClassCastExceptionif elements of the specified collection cannot be compared to one another according to the priority queue's ordering.
NullPointerExceptionif c or any element within it is null
Adds the specified element to this queue.
Return
true (as per the general contract of Collection.add).
Throws
NullPointerExceptionif the specified element is null.
ClassCastExceptionif the specified element cannot be compared with elements currently in the priority queue according to the priority queue's ordering.
Adds all of the elements in the specified collection to this queue. Attempts to addAll of a queue to itself result in IllegalArgumentException. Further, the behavior of this operation is undefined if the specified collection is modified while the operation is in progress.

This implementation iterates over the specified collection, and adds each element returned by the iterator to this collection, in turn. A runtime exception encountered while trying to add an element (including, in particular, a null element) may result in only some of the elements having been successfully added when the associated exception is thrown.

Parameters
ccollection whose elements are to be added to this collection.
Return
true if this collection changed as a result of the call.
Throws
NullPointerExceptionif the specified collection or any of its elements are null.
IllegalArgumentExceptionif c is this queue.
See Also
Removes all elements from the priority queue. The queue will be empty after this call returns.
Returns the comparator used to order this collection, or null if this collection is sorted according to its elements natural ordering (using Comparable).
Return
the comparator used to order this collection, or null if this collection is sorted according to its elements natural ordering.
Returns true if this collection contains the specified element. More formally, returns true if and only if this collection contains at least one element e such that (o==null ? e==null : o.equals(e)).

This implementation iterates over the elements in the collection, checking each element in turn for equality with the specified element.

Parameters
oobject to be checked for containment in this collection.
Return
true if this collection contains the specified element.
Returns true if this collection contains all of the elements in the specified collection.

This implementation iterates over the specified collection, checking each element returned by the iterator in turn to see if it's contained in this collection. If all elements are so contained true is returned, otherwise false.

Parameters
ccollection to be checked for containment in this collection.
Return
true if this collection contains all of the elements in the specified collection.
Throws
NullPointerExceptionif the specified collection is null.
Retrieves, but does not remove, the head of this queue. This implementation returns the result of peek unless the queue is empty.
Return
the head of this queue.
Throws
NoSuchElementExceptionif this queue is empty.
Indicates whether some other object is "equal to" this one.

The equals method implements an equivalence relation on non-null object references:

  • It is reflexive: for any non-null reference value x, x.equals(x) should return true.
  • It is symmetric: for any non-null reference values x and y, x.equals(y) should return true if and only if y.equals(x) returns true.
  • It is transitive: for any non-null reference values x, y, and z, if x.equals(y) returns true and y.equals(z) returns true, then x.equals(z) should return true.
  • It is consistent: for any non-null reference values x and y, multiple invocations of x.equals(y) consistently return true or consistently return false, provided no information used in equals comparisons on the objects is modified.
  • For any non-null reference value x, x.equals(null) should return false.

The equals method for class Object implements the most discriminating possible equivalence relation on objects; that is, for any non-null reference values x and y, this method returns true if and only if x and y refer to the same object (x == y has the value true).

Note that it is generally necessary to override the hashCode method whenever this method is overridden, so as to maintain the general contract for the hashCode method, which states that equal objects must have equal hash codes.

Parameters
objthe reference object with which to compare.
Return
true if this object is the same as the obj argument; false otherwise.
Returns the runtime class of an object. That Class object is the object that is locked by static synchronized methods of the represented class.
Return
The java.lang.Class object that represents the runtime class of the object. The result is of type {@code Class} where X is the erasure of the static type of the expression on which getClass is called.
Returns a hash code value for the object. This method is supported for the benefit of hashtables such as those provided by java.util.Hashtable.

The general contract of hashCode is:

  • Whenever it is invoked on the same object more than once during an execution of a Java application, the hashCode method must consistently return the same integer, provided no information used in equals comparisons on the object is modified. This integer need not remain consistent from one execution of an application to another execution of the same application.
  • If two objects are equal according to the equals(Object) method, then calling the hashCode method on each of the two objects must produce the same integer result.
  • It is not required that if two objects are unequal according to the method, then calling the hashCode method on each of the two objects must produce distinct integer results. However, the programmer should be aware that producing distinct integer results for unequal objects may improve the performance of hashtables.

As much as is reasonably practical, the hashCode method defined by class Object does return distinct integers for distinct objects. (This is typically implemented by converting the internal address of the object into an integer, but this implementation technique is not required by the JavaTM programming language.)

Return
a hash code value for this object.
Returns true if this collection contains no elements.

This implementation returns size() == 0.

Return
true if this collection contains no elements.
Returns an iterator over the elements in this queue. The iterator does not return the elements in any particular order.
Return
an iterator over the elements in this queue.
Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the discretion of the implementation. A thread waits on an object's monitor by calling one of the wait methods.

The awakened thread will not be able to proceed until the current thread relinquishes the lock on this object. The awakened thread will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened thread enjoys no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. A thread becomes the owner of the object's monitor in one of three ways:

  • By executing a synchronized instance method of that object.
  • By executing the body of a synchronized statement that synchronizes on the object.
  • For objects of type Class, by executing a synchronized static method of that class.

Only one thread at a time can own an object's monitor.

Throws
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
Wakes up all threads that are waiting on this object's monitor. A thread waits on an object's monitor by calling one of the wait methods.

The awakened threads will not be able to proceed until the current thread relinquishes the lock on this object. The awakened threads will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened threads enjoy no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.

Throws
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
Inserts the specified element into this priority queue.
Return
true
Throws
ClassCastExceptionif the specified element cannot be compared with elements currently in the priority queue according to the priority queue's ordering.
NullPointerExceptionif the specified element is null.
Retrieves and removes the head of this queue. This implementation returns the result of poll unless the queue is empty.
Return
the head of this queue.
Throws
NoSuchElementExceptionif this queue is empty.
Removes a single instance of the specified element from this queue, if it is present.
Removes from this collection all of its elements that are contained in the specified collection (optional operation).

This implementation iterates over this collection, checking each element returned by the iterator in turn to see if it's contained in the specified collection. If it's so contained, it's removed from this collection with the iterator's remove method.

Note that this implementation will throw an UnsupportedOperationException if the iterator returned by the iterator method does not implement the remove method and this collection contains one or more elements in common with the specified collection.

Parameters
celements to be removed from this collection.
Return
true if this collection changed as a result of the call.
Throws
UnsupportedOperationExceptionif the removeAll method is not supported by this collection.
NullPointerExceptionif the specified collection is null.
Retains only the elements in this collection that are contained in the specified collection (optional operation). In other words, removes from this collection all of its elements that are not contained in the specified collection.

This implementation iterates over this collection, checking each element returned by the iterator in turn to see if it's contained in the specified collection. If it's not so contained, it's removed from this collection with the iterator's remove method.

Note that this implementation will throw an UnsupportedOperationException if the iterator returned by the iterator method does not implement the remove method and this collection contains one or more elements not present in the specified collection.

Parameters
celements to be retained in this collection.
Return
true if this collection changed as a result of the call.
Throws
UnsupportedOperationExceptionif the retainAll method is not supported by this Collection.
NullPointerExceptionif the specified collection is null.
Returns an array containing all of the elements in this collection. If the collection makes any guarantees as to what order its elements are returned by its iterator, this method must return the elements in the same order. The returned array will be "safe" in that no references to it are maintained by the collection. (In other words, this method must allocate a new array even if the collection is backed by an Array). The caller is thus free to modify the returned array.

This implementation allocates the array to be returned, and iterates over the elements in the collection, storing each object reference in the next consecutive element of the array, starting with element 0.

Return
an array containing all of the elements in this collection.
Returns an array containing all of the elements in this collection; the runtime type of the returned array is that of the specified array. If the collection fits in the specified array, it is returned therein. Otherwise, a new array is allocated with the runtime type of the specified array and the size of this collection.

If the collection fits in the specified array with room to spare (i.e., the array has more elements than the collection), the element in the array immediately following the end of the collection is set to null. This is useful in determining the length of the collection only if the caller knows that the collection does not contain any null elements.)

If this collection makes any guarantees as to what order its elements are returned by its iterator, this method must return the elements in the same order.

This implementation checks if the array is large enough to contain the collection; if not, it allocates a new array of the correct size and type (using reflection). Then, it iterates over the collection, storing each object reference in the next consecutive element of the array, starting with element 0. If the array is larger than the collection, a null is stored in the first location after the end of the collection.

Parameters
athe array into which the elements of the collection are to be stored, if it is big enough; otherwise, a new array of the same runtime type is allocated for this purpose.
Return
an array containing the elements of the collection.
Throws
NullPointerExceptionif the specified array is null.
ArrayStoreExceptionif the runtime type of the specified array is not a supertype of the runtime type of every element in this collection.
Returns a string representation of this collection. The string representation consists of a list of the collection's elements in the order they are returned by its iterator, enclosed in square brackets ("[]"). Adjacent elements are separated by the characters ", " (comma and space). Elements are converted to strings as by String.valueOf(Object).

This implementation creates an empty string buffer, appends a left square bracket, and iterates over the collection appending the string representation of each element in turn. After appending each element except the last, the string ", " is appended. Finally a right bracket is appended. A string is obtained from the string buffer, and returned.

Return
a string representation of this collection.
Causes current thread to wait until another thread invokes the method or the method for this object. In other words, this method behaves exactly as if it simply performs the call wait(0).

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until another thread notifies threads waiting on this object's monitor to wake up either through a call to the notify method or the notifyAll method. The thread then waits until it can re-obtain ownership of the monitor and resumes execution.

As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait();
         ... // Perform action appropriate to condition
     }
 
This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.
Throws
IllegalMonitorStateExceptionif the current thread is not the owner of the object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.
Causes current thread to wait until either another thread invokes the method or the method for this object, or a specified amount of time has elapsed.

The current thread must own this object's monitor.

This method causes the current thread (call it T) to place itself in the wait set for this object and then to relinquish any and all synchronization claims on this object. Thread T becomes disabled for thread scheduling purposes and lies dormant until one of four things happens:

  • Some other thread invokes the notify method for this object and thread T happens to be arbitrarily chosen as the thread to be awakened.
  • Some other thread invokes the notifyAll method for this object.
  • Some other thread interrupts thread T.
  • The specified amount of real time has elapsed, more or less. If timeout is zero, however, then real time is not taken into consideration and the thread simply waits until notified.
The thread T is then removed from the wait set for this object and re-enabled for thread scheduling. It then competes in the usual manner with other threads for the right to synchronize on the object; once it has gained control of the object, all its synchronization claims on the object are restored to the status quo ante - that is, to the situation as of the time that the wait method was invoked. Thread T then returns from the invocation of the wait method. Thus, on return from the wait method, the synchronization state of the object and of thread T is exactly as it was when the wait method was invoked.

A thread can also wake up without being notified, interrupted, or timing out, a so-called spurious wakeup. While this will rarely occur in practice, applications must guard against it by testing for the condition that should have caused the thread to be awakened, and continuing to wait if the condition is not satisfied. In other words, waits should always occur in loops, like this one:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait(timeout);
         ... // Perform action appropriate to condition
     }
 
(For more information on this topic, see Section 3.2.3 in Doug Lea's "Concurrent Programming in Java (Second Edition)" (Addison-Wesley, 2000), or Item 50 in Joshua Bloch's "Effective Java Programming Language Guide" (Addison-Wesley, 2001).

If the current thread is interrupted by another thread while it is waiting, then an InterruptedException is thrown. This exception is not thrown until the lock status of this object has been restored as described above.

Note that the wait method, as it places the current thread into the wait set for this object, unlocks only this object; any other objects on which the current thread may be synchronized remain locked while the thread waits.

This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.

Parameters
timeoutthe maximum time to wait in milliseconds.
Throws
IllegalArgumentExceptionif the value of timeout is negative.
IllegalMonitorStateExceptionif the current thread is not the owner of the object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.
Causes current thread to wait until another thread invokes the method or the method for this object, or some other thread interrupts the current thread, or a certain amount of real time has elapsed.

This method is similar to the wait method of one argument, but it allows finer control over the amount of time to wait for a notification before giving up. The amount of real time, measured in nanoseconds, is given by:

 1000000*timeout+nanos

In all other respects, this method does the same thing as the method of one argument. In particular, wait(0, 0) means the same thing as wait(0).

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until either of the following two conditions has occurred:

  • Another thread notifies threads waiting on this object's monitor to wake up either through a call to the notify method or the notifyAll method.
  • The timeout period, specified by timeout milliseconds plus nanos nanoseconds arguments, has elapsed.

The thread then waits until it can re-obtain ownership of the monitor and resumes execution.

As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait(timeout, nanos);
         ... // Perform action appropriate to condition
     }
 
This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.
Parameters
timeoutthe maximum time to wait in milliseconds.
nanosadditional time, in nanoseconds range 0-999999.
Throws
IllegalArgumentExceptionif the value of timeout is negative or the value of nanos is not in the range 0-999999.
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.