A reentrant mutual exclusion Lock with the same basic behavior and semantics as the implicit monitor lock accessed using synchronized methods and statements, but with extended capabilities.

A ReentrantLock is owned by the thread last successfully locking, but not yet unlocking it. A thread invoking lock will return, successfully acquiring the lock, when the lock is not owned by another thread. The method will return immediately if the current thread already owns the lock. This can be checked using methods #isHeldByCurrentThread , and #getHoldCount .

The constructor for this class accepts an optional fairness parameter. When set true, under contention, locks favor granting access to the longest-waiting thread. Otherwise this lock does not guarantee any particular access order. Programs using fair locks accessed by many threads may display lower overall throughput (i.e., are slower; often much slower) than those using the default setting, but have smaller variances in times to obtain locks and guarantee lack of starvation. Note however, that fairness of locks does not guarantee fairness of thread scheduling. Thus, one of many threads using a fair lock may obtain it multiple times in succession while other active threads are not progressing and not currently holding the lock. Also note that the untimed tryLock method does not honor the fairness setting. It will succeed if the lock is available even if other threads are waiting.

It is recommended practice to always immediately follow a call to lock with a try block, most typically in a before/after construction such as:

 class X {
   private final ReentrantLock lock = new ReentrantLock();
   // ...

   public void m() { 
     lock.lock();  // block until condition holds
     try {
       // ... method body
     } finally {
       lock.unlock()
     }
   }
 }
 

In addition to implementing the Lock interface, this class defines methods isLocked and getLockQueueLength, as well as some associated protected access methods that may be useful for instrumentation and monitoring.

Serialization of this class behaves in the same way as built-in locks: a deserialized lock is in the unlocked state, regardless of its state when serialized.

This lock supports a maximum of 2147483648 recursive locks by the same thread.

@since
1.5
@author
Doug Lea
Creates an instance of ReentrantLock. This is equivalent to using ReentrantLock(false).
Creates an instance of ReentrantLock with the given fairness policy.
Parameters
fairtrue if this lock will be fair; else false
Indicates whether some other object is "equal to" this one.

The equals method implements an equivalence relation on non-null object references:

  • It is reflexive: for any non-null reference value x, x.equals(x) should return true.
  • It is symmetric: for any non-null reference values x and y, x.equals(y) should return true if and only if y.equals(x) returns true.
  • It is transitive: for any non-null reference values x, y, and z, if x.equals(y) returns true and y.equals(z) returns true, then x.equals(z) should return true.
  • It is consistent: for any non-null reference values x and y, multiple invocations of x.equals(y) consistently return true or consistently return false, provided no information used in equals comparisons on the objects is modified.
  • For any non-null reference value x, x.equals(null) should return false.

The equals method for class Object implements the most discriminating possible equivalence relation on objects; that is, for any non-null reference values x and y, this method returns true if and only if x and y refer to the same object (x == y has the value true).

Note that it is generally necessary to override the hashCode method whenever this method is overridden, so as to maintain the general contract for the hashCode method, which states that equal objects must have equal hash codes.

Parameters
objthe reference object with which to compare.
Return
true if this object is the same as the obj argument; false otherwise.
Returns the runtime class of an object. That Class object is the object that is locked by static synchronized methods of the represented class.
Return
The java.lang.Class object that represents the runtime class of the object. The result is of type {@code Class} where X is the erasure of the static type of the expression on which getClass is called.
Queries the number of holds on this lock by the current thread.

A thread has a hold on a lock for each lock action that is not matched by an unlock action.

The hold count information is typically only used for testing and debugging purposes. For example, if a certain section of code should not be entered with the lock already held then we can assert that fact:

 class X {
   ReentrantLock lock = new ReentrantLock();
   // ...     
   public void m() { 
     assert lock.getHoldCount() == 0;
     lock.lock();
     try {
       // ... method body
     } finally {
       lock.unlock();
     }
   }
 }
 
Return
the number of holds on this lock by the current thread, or zero if this lock is not held by the current thread.
Returns an estimate of the number of threads waiting to acquire this lock. The value is only an estimate because the number of threads may change dynamically while this method traverses internal data structures. This method is designed for use in monitoring of the system state, not for synchronization control.
Return
the estimated number of threads waiting for this lock
Returns an estimate of the number of threads waiting on the given condition associated with this lock. Note that because timeouts and interrupts may occur at any time, the estimate serves only as an upper bound on the actual number of waiters. This method is designed for use in monitoring of the system state, not for synchronization control.
Parameters
conditionthe condition
Return
the estimated number of waiting threads.
Throws
IllegalMonitorStateExceptionif this lock is not held
IllegalArgumentExceptionif the given condition is not associated with this lock
NullPointerExceptionif condition null
Returns a hash code value for the object. This method is supported for the benefit of hashtables such as those provided by java.util.Hashtable.

The general contract of hashCode is:

  • Whenever it is invoked on the same object more than once during an execution of a Java application, the hashCode method must consistently return the same integer, provided no information used in equals comparisons on the object is modified. This integer need not remain consistent from one execution of an application to another execution of the same application.
  • If two objects are equal according to the equals(Object) method, then calling the hashCode method on each of the two objects must produce the same integer result.
  • It is not required that if two objects are unequal according to the method, then calling the hashCode method on each of the two objects must produce distinct integer results. However, the programmer should be aware that producing distinct integer results for unequal objects may improve the performance of hashtables.

As much as is reasonably practical, the hashCode method defined by class Object does return distinct integers for distinct objects. (This is typically implemented by converting the internal address of the object into an integer, but this implementation technique is not required by the JavaTM programming language.)

Return
a hash code value for this object.
Queries whether the given thread is waiting to acquire this lock. Note that because cancellations may occur at any time, a true return does not guarantee that this thread will ever acquire this lock. This method is designed primarily for use in monitoring of the system state.
Parameters
threadthe thread
Return
true if the given thread is queued waiting for this lock.
Throws
NullPointerExceptionif thread is null
Queries whether any threads are waiting to acquire this lock. Note that because cancellations may occur at any time, a true return does not guarantee that any other thread will ever acquire this lock. This method is designed primarily for use in monitoring of the system state.
Return
true if there may be other threads waiting to acquire the lock.
Queries whether any threads are waiting on the given condition associated with this lock. Note that because timeouts and interrupts may occur at any time, a true return does not guarantee that a future signal will awaken any threads. This method is designed primarily for use in monitoring of the system state.
Parameters
conditionthe condition
Return
true if there are any waiting threads.
Throws
IllegalMonitorStateExceptionif this lock is not held
IllegalArgumentExceptionif the given condition is not associated with this lock
NullPointerExceptionif condition null
Returns true if this lock has fairness set true.
Return
true if this lock has fairness set true.
Queries if this lock is held by the current thread.

Analogous to the Thread#holdsLock method for built-in monitor locks, this method is typically used for debugging and testing. For example, a method that should only be called while a lock is held can assert that this is the case:

 class X {
   ReentrantLock lock = new ReentrantLock();
   // ...

   public void m() { 
       assert lock.isHeldByCurrentThread();
       // ... method body
   }
 }
 

It can also be used to ensure that a reentrant lock is used in a non-reentrant manner, for example:

 class X {
   ReentrantLock lock = new ReentrantLock();
   // ...

   public void m() { 
       assert !lock.isHeldByCurrentThread();
       lock.lock();
       try {
           // ... method body
       } finally {
           lock.unlock();
       }
   }
 }
 
Return
true if current thread holds this lock and false otherwise.
Queries if this lock is held by any thread. This method is designed for use in monitoring of the system state, not for synchronization control.
Return
true if any thread holds this lock and false otherwise.
Acquires the lock.

If the lock is not available then the current thread becomes disabled for thread scheduling purposes and lies dormant until the lock has been acquired.

Implementation Considerations

A Lock implementation may be able to detect erroneous use of the lock, such as an invocation that would cause deadlock, and may throw an (unchecked) exception in such circumstances. The circumstances and the exception type must be documented by that Lock implementation.

Acquires the lock unless the current thread is interrupted .

Acquires the lock if it is available and returns immediately.

If the lock is not available then the current thread becomes disabled for thread scheduling purposes and lies dormant until one of two things happens:

  • The lock is acquired by the current thread; or
  • Some other thread interrupts the current thread, and interruption of lock acquisition is supported.

If the current thread:

  • has its interrupted status set on entry to this method; or
  • is interrupted while acquiring the lock, and interruption of lock acquisition is supported,
then InterruptedException is thrown and the current thread's interrupted status is cleared.

Implementation Considerations

The ability to interrupt a lock acquisition in some implementations may not be possible, and if possible may be an expensive operation. The programmer should be aware that this may be the case. An implementation should document when this is the case.

An implementation can favor responding to an interrupt over normal method return.

A Lock implementation may be able to detect erroneous use of the lock, such as an invocation that would cause deadlock, and may throw an (unchecked) exception in such circumstances. The circumstances and the exception type must be documented by that Lock implementation.

Throws
InterruptedExceptionif the current thread is interrupted while acquiring the lock (and interruption of lock acquisition is supported).
Returns a new Condition instance that is bound to this Lock instance.

Before waiting on the condition the lock must be held by the current thread. A call to will atomically release the lock before waiting and re-acquire the lock before the wait returns.

Implementation Considerations

The exact operation of the Condition instance depends on the Lock implementation and must be documented by that implementation.

Return
A new {@link Condition} instance for this Lock instance.
Throws
UnsupportedOperationExceptionif this Lock implementation does not support conditions.
Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the discretion of the implementation. A thread waits on an object's monitor by calling one of the wait methods.

The awakened thread will not be able to proceed until the current thread relinquishes the lock on this object. The awakened thread will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened thread enjoys no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. A thread becomes the owner of the object's monitor in one of three ways:

  • By executing a synchronized instance method of that object.
  • By executing the body of a synchronized statement that synchronizes on the object.
  • For objects of type Class, by executing a synchronized static method of that class.

Only one thread at a time can own an object's monitor.

Throws
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
Wakes up all threads that are waiting on this object's monitor. A thread waits on an object's monitor by calling one of the wait methods.

The awakened threads will not be able to proceed until the current thread relinquishes the lock on this object. The awakened threads will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened threads enjoy no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.

Throws
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
Returns a string identifying this lock, as well as its lock state. The state, in brackets, includes either the String "Unlocked" or the String "Locked by" followed by the Thread#getName of the owning thread.
Return
a string identifying this lock, as well as its lock state.
Acquires the lock only if it is free at the time of invocation.

Acquires the lock if it is available and returns immediately with the value true. If the lock is not available then this method will return immediately with the value false.

A typical usage idiom for this method would be:

      Lock lock = ...;
      if (lock.tryLock()) {
          try {
              // manipulate protected state
          } finally {
              lock.unlock();
          }
      } else {
          // perform alternative actions
      }
 
This usage ensures that the lock is unlocked if it was acquired, and doesn't try to unlock if the lock was not acquired.
Return
true if the lock was acquired and false otherwise.
Acquires the lock if it is free within the given waiting time and the current thread has not been interrupted .

If the lock is available this method returns immediately with the value true. If the lock is not available then the current thread becomes disabled for thread scheduling purposes and lies dormant until one of three things happens:

  • The lock is acquired by the current thread; or
  • Some other thread interrupts the current thread, and interruption of lock acquisition is supported; or
  • The specified waiting time elapses

If the lock is acquired then the value true is returned.

If the current thread:

  • has its interrupted status set on entry to this method; or
  • is interrupted while acquiring the lock, and interruption of lock acquisition is supported,
then InterruptedException is thrown and the current thread's interrupted status is cleared.

If the specified waiting time elapses then the value false is returned. If the time is less than or equal to zero, the method will not wait at all.

Implementation Considerations

The ability to interrupt a lock acquisition in some implementations may not be possible, and if possible may be an expensive operation. The programmer should be aware that this may be the case. An implementation should document when this is the case.

An implementation can favor responding to an interrupt over normal method return, or reporting a timeout.

A Lock implementation may be able to detect erroneous use of the lock, such as an invocation that would cause deadlock, and may throw an (unchecked) exception in such circumstances. The circumstances and the exception type must be documented by that Lock implementation.

Parameters
timethe maximum time to wait for the lock
unitthe time unit of the time argument.
Return
true if the lock was acquired and false if the waiting time elapsed before the lock was acquired.
Throws
InterruptedExceptionif the current thread is interrupted while acquiring the lock (and interruption of lock acquisition is supported).
Releases the lock.

Implementation Considerations

A Lock implementation will usually impose restrictions on which thread can release a lock (typically only the holder of the lock can release it) and may throw an (unchecked) exception if the restriction is violated. Any restrictions and the exception type must be documented by that Lock implementation.

Causes current thread to wait until another thread invokes the method or the method for this object. In other words, this method behaves exactly as if it simply performs the call wait(0).

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until another thread notifies threads waiting on this object's monitor to wake up either through a call to the notify method or the notifyAll method. The thread then waits until it can re-obtain ownership of the monitor and resumes execution.

As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait();
         ... // Perform action appropriate to condition
     }
 
This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.
Throws
IllegalMonitorStateExceptionif the current thread is not the owner of the object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.
Causes current thread to wait until either another thread invokes the method or the method for this object, or a specified amount of time has elapsed.

The current thread must own this object's monitor.

This method causes the current thread (call it T) to place itself in the wait set for this object and then to relinquish any and all synchronization claims on this object. Thread T becomes disabled for thread scheduling purposes and lies dormant until one of four things happens:

  • Some other thread invokes the notify method for this object and thread T happens to be arbitrarily chosen as the thread to be awakened.
  • Some other thread invokes the notifyAll method for this object.
  • Some other thread interrupts thread T.
  • The specified amount of real time has elapsed, more or less. If timeout is zero, however, then real time is not taken into consideration and the thread simply waits until notified.
The thread T is then removed from the wait set for this object and re-enabled for thread scheduling. It then competes in the usual manner with other threads for the right to synchronize on the object; once it has gained control of the object, all its synchronization claims on the object are restored to the status quo ante - that is, to the situation as of the time that the wait method was invoked. Thread T then returns from the invocation of the wait method. Thus, on return from the wait method, the synchronization state of the object and of thread T is exactly as it was when the wait method was invoked.

A thread can also wake up without being notified, interrupted, or timing out, a so-called spurious wakeup. While this will rarely occur in practice, applications must guard against it by testing for the condition that should have caused the thread to be awakened, and continuing to wait if the condition is not satisfied. In other words, waits should always occur in loops, like this one:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait(timeout);
         ... // Perform action appropriate to condition
     }
 
(For more information on this topic, see Section 3.2.3 in Doug Lea's "Concurrent Programming in Java (Second Edition)" (Addison-Wesley, 2000), or Item 50 in Joshua Bloch's "Effective Java Programming Language Guide" (Addison-Wesley, 2001).

If the current thread is interrupted by another thread while it is waiting, then an InterruptedException is thrown. This exception is not thrown until the lock status of this object has been restored as described above.

Note that the wait method, as it places the current thread into the wait set for this object, unlocks only this object; any other objects on which the current thread may be synchronized remain locked while the thread waits.

This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.

Parameters
timeoutthe maximum time to wait in milliseconds.
Throws
IllegalArgumentExceptionif the value of timeout is negative.
IllegalMonitorStateExceptionif the current thread is not the owner of the object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.
Causes current thread to wait until another thread invokes the method or the method for this object, or some other thread interrupts the current thread, or a certain amount of real time has elapsed.

This method is similar to the wait method of one argument, but it allows finer control over the amount of time to wait for a notification before giving up. The amount of real time, measured in nanoseconds, is given by:

 1000000*timeout+nanos

In all other respects, this method does the same thing as the method of one argument. In particular, wait(0, 0) means the same thing as wait(0).

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until either of the following two conditions has occurred:

  • Another thread notifies threads waiting on this object's monitor to wake up either through a call to the notify method or the notifyAll method.
  • The timeout period, specified by timeout milliseconds plus nanos nanoseconds arguments, has elapsed.

The thread then waits until it can re-obtain ownership of the monitor and resumes execution.

As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait(timeout, nanos);
         ... // Perform action appropriate to condition
     }
 
This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.
Parameters
timeoutthe maximum time to wait in milliseconds.
nanosadditional time, in nanoseconds range 0-999999.
Throws
IllegalArgumentExceptionif the value of timeout is negative or the value of nanos is not in the range 0-999999.
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.