SampleModel and ColorModel) to be
specified in a convenient manner.
ImageTypeSpecifier directly
from a ColorModel and a SampleModel.
It is the caller's responsibility to supply compatible
parameters.ImageTypeSpecifier from a
RenderedImage. If a BufferedImage is
being used, one of the factory methods
createFromRenderedImage or
createFromBufferedImageType should be used instead in
order to get a more accurate result.ComponentColorModel and a
BandedSampleModel to store each channel in a
separate array.BufferedImage with a given width and
height according to the specification embodied in this object.ImageTypeSpecifier that encodes
one of the standard BufferedImage types
(other than TYPE_CUSTOM).ImageTypeSpecifier that encodes the
layout of a RenderedImage (which may be a
BufferedImage).ComponentColorModel and a
PixelInterleavedSampleModel to store each pixel
component in a separate byte, short, or int.DirectColorModel and a packed
SampleModel to store each pixel packed into in a
single byte, short, or int.true if the given Object is
an ImageTypeSpecifier and has a
SampleModel and ColorModel that are
equal to those of this object.BufferedImage.ColorModel specified by this object.SampleModel.getNumBandsColorModel.getNumComponentsSampleModel based on the settings
encapsulated within this object. The width and height of the
SampleModel will be set to arbitrary values.SampleModel based on the settings
encapsulated within this object. The width and height of the
SampleModel will be set to the supplied values.wait methods.
The awakened thread will not be able to proceed until the current thread relinquishes the lock on this object. The awakened thread will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened thread enjoys no reliable privilege or disadvantage in being the next thread to lock this object.
This method should only be called by a thread that is the owner of this object's monitor. A thread becomes the owner of the object's monitor in one of three ways:
synchronized statement
that synchronizes on the object.
Class, by executing a
synchronized static method of that class.
Only one thread at a time can own an object's monitor.
wait methods.
The awakened threads will not be able to proceed until the current thread relinquishes the lock on this object. The awakened threads will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened threads enjoy no reliable privilege or disadvantage in being the next thread to lock this object.
This method should only be called by a thread that is the owner
of this object's monitor. See the notify method for a
description of the ways in which a thread can become the owner of
a monitor.
toString method returns a string that
"textually represents" this object. The result should
be a concise but informative representation that is easy for a
person to read.
It is recommended that all subclasses override this method.
The toString method for class Object
returns a string consisting of the name of the class of which the
object is an instance, the at-sign character `@', and
the unsigned hexadecimal representation of the hash code of the
object. In other words, this method returns a string equal to the
value of:
getClass().getName() + '@' + Integer.toHexString(hashCode())
The current thread must own this object's monitor. The thread
releases ownership of this monitor and waits until another thread
notifies threads waiting on this object's monitor to wake up
either through a call to the notify method or the
notifyAll method. The thread then waits until it can
re-obtain ownership of the monitor and resumes execution.
As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:
synchronized (obj) {
while (<condition does not hold>)
obj.wait();
... // Perform action appropriate to condition
}
This method should only be called by a thread that is the owner
of this object's monitor. See the notify method for a
description of the ways in which a thread can become the owner of
a monitor.The current thread must own this object's monitor.
This method causes the current thread (call it T) to place itself in the wait set for this object and then to relinquish any and all synchronization claims on this object. Thread T becomes disabled for thread scheduling purposes and lies dormant until one of four things happens:
A thread can also wake up without being notified, interrupted, or timing out, a so-called spurious wakeup. While this will rarely occur in practice, applications must guard against it by testing for the condition that should have caused the thread to be awakened, and continuing to wait if the condition is not satisfied. In other words, waits should always occur in loops, like this one:
synchronized (obj) {
while (<condition does not hold>)
obj.wait(timeout);
... // Perform action appropriate to condition
}
(For more information on this topic, see Section 3.2.3 in Doug Lea's
"Concurrent Programming in Java (Second Edition)" (Addison-Wesley,
2000), or Item 50 in Joshua Bloch's "Effective Java Programming
Language Guide" (Addison-Wesley, 2001).
If the current thread is interrupted by another thread while it is waiting, then an InterruptedException is thrown. This exception is not thrown until the lock status of this object has been restored as described above.
Note that the wait method, as it places the current thread into the wait set for this object, unlocks only this object; any other objects on which the current thread may be synchronized remain locked while the thread waits.
This method should only be called by a thread that is the owner
of this object's monitor. See the notify method for a
description of the ways in which a thread can become the owner of
a monitor.
This method is similar to the wait method of one
argument, but it allows finer control over the amount of time to
wait for a notification before giving up. The amount of real time,
measured in nanoseconds, is given by:
1000000*timeout+nanos
In all other respects, this method does the same thing as the method of one argument. In particular, wait(0, 0) means the same thing as wait(0).
The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until either of the following two conditions has occurred:
notify method
or the notifyAll method.
timeout
milliseconds plus nanos nanoseconds arguments, has
elapsed.
The thread then waits until it can re-obtain ownership of the monitor and resumes execution.
As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:
synchronized (obj) {
while (<condition does not hold>)
obj.wait(timeout, nanos);
... // Perform action appropriate to condition
}
This method should only be called by a thread that is the owner
of this object's monitor. See the notify method for a
description of the ways in which a thread can become the owner of
a monitor.