This module, both source code and documentation, is in the Public Domain, and comes with NO WARRANTY. See http://www.saxproject.org for further information.
AttributeList implements the deprecated SAX1 AttributeList interface, and has been replaced by the new SAX2 AttributesImpl interface.
This class provides a convenience implementation of the SAX AttributeList interface. This implementation is useful both for SAX parser writers, who can use it to provide attributes to the application, and for SAX application writers, who can use it to create a persistent copy of an element's attribute specifications:
private AttributeList myatts; public void startElement (String name, AttributeList atts) { // create a persistent copy of the attribute list // for use outside this method myatts = new AttributeListImpl(atts); [...] }
Please note that SAX parsers are not required to use this class to provide an implementation of AttributeList; it is supplied only as an optional convenience. In particular, parser writers are encouraged to invent more efficient implementations.
This constructor is most useful for parser writers, who will use it to create a single, reusable attribute list that can be reset with the clear method between elements.
This constructor is most useful for application writers, who will use it to create a persistent copy of an existing attribute list.
This method is provided for SAX parser writers, to allow them to build up an attribute list incrementally before delivering it to the application.
SAX parser writers can use this method to reset the attribute list between DocumentHandler.startElement events. Normally, it will make sense to reuse the same AttributeListImpl object rather than allocating a new one each time.
The equals
method implements an equivalence relation
on non-null object references:
x
, x.equals(x)
should return
true
.
x
and y
, x.equals(y)
should return true
if and only if
y.equals(x)
returns true
.
x
, y
, and z
, if
x.equals(y)
returns true
and
y.equals(z)
returns true
, then
x.equals(z)
should return true
.
x
and y
, multiple invocations of
x.equals(y) consistently return true
or consistently return false
, provided no
information used in equals
comparisons on the
objects is modified.
x
,
x.equals(null)
should return false
.
The equals method for class Object
implements
the most discriminating possible equivalence relation on objects;
that is, for any non-null reference values x
and
y
, this method returns true
if and only
if x
and y
refer to the same object
(x == y
has the value true
).
Note that it is generally necessary to override the hashCode method whenever this method is overridden, so as to maintain the general contract for the hashCode method, which states that equal objects must have equal hash codes.
The SAX parser may provide attributes in any arbitrary order, regardless of the order in which they were declared or specified. The number of attributes may be zero.
The names must be unique: the SAX parser shall not include the same attribute twice. Attributes without values (those declared #IMPLIED without a value specified in the start tag) will be omitted from the list.
If the attribute name has a namespace prefix, the prefix will still be attached.
The attribute type is one of the strings "CDATA", "ID", "IDREF", "IDREFS", "NMTOKEN", "NMTOKENS", "ENTITY", "ENTITIES", or "NOTATION" (always in upper case).
If the parser has not read a declaration for the attribute, or if the parser does not report attribute types, then it must return the value "CDATA" as stated in the XML 1.0 Recommentation (clause 3.3.3, "Attribute-Value Normalization").
For an enumerated attribute that is not a notation, the parser will report the type as "NMTOKEN".
The return value is the same as the return value for getType(int).
If the attribute name has a namespace prefix in the document, the application must include the prefix here.
If the attribute value is a list of tokens (IDREFS, ENTITIES, or NMTOKENS), the tokens will be concatenated into a single string separated by whitespace.
The return value is the same as the return value for getValue(int).
If the attribute name has a namespace prefix in the document, the application must include the prefix here.
java.util.Hashtable
.
The general contract of hashCode
is:
hashCode
method on each of
the two objects must produce the same integer result.
As much as is reasonably practical, the hashCode method defined by class Object does return distinct integers for distinct objects. (This is typically implemented by converting the internal address of the object into an integer, but this implementation technique is not required by the JavaTM programming language.)
wait
methods.
The awakened thread will not be able to proceed until the current thread relinquishes the lock on this object. The awakened thread will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened thread enjoys no reliable privilege or disadvantage in being the next thread to lock this object.
This method should only be called by a thread that is the owner of this object's monitor. A thread becomes the owner of the object's monitor in one of three ways:
synchronized
statement
that synchronizes on the object.
Class,
by executing a
synchronized static method of that class.
Only one thread at a time can own an object's monitor.
wait
methods.
The awakened threads will not be able to proceed until the current thread relinquishes the lock on this object. The awakened threads will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened threads enjoy no reliable privilege or disadvantage in being the next thread to lock this object.
This method should only be called by a thread that is the owner
of this object's monitor. See the notify
method for a
description of the ways in which a thread can become the owner of
a monitor.
SAX application writers can use this method to filter an attribute out of an AttributeList. Note that invoking this method will change the length of the attribute list and some of the attribute's indices.
If the requested attribute is not in the list, this is a no-op.
This method allows an application writer to reuse an attribute list easily.
toString
method returns a string that
"textually represents" this object. The result should
be a concise but informative representation that is easy for a
person to read.
It is recommended that all subclasses override this method.
The toString
method for class Object
returns a string consisting of the name of the class of which the
object is an instance, the at-sign character `@
', and
the unsigned hexadecimal representation of the hash code of the
object. In other words, this method returns a string equal to the
value of:
getClass().getName() + '@' + Integer.toHexString(hashCode())
The current thread must own this object's monitor. The thread
releases ownership of this monitor and waits until another thread
notifies threads waiting on this object's monitor to wake up
either through a call to the notify
method or the
notifyAll
method. The thread then waits until it can
re-obtain ownership of the monitor and resumes execution.
As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:
synchronized (obj) { while (<condition does not hold>) obj.wait(); ... // Perform action appropriate to condition }This method should only be called by a thread that is the owner of this object's monitor. See the
notify
method for a
description of the ways in which a thread can become the owner of
a monitor.The current thread must own this object's monitor.
This method causes the current thread (call it T) to place itself in the wait set for this object and then to relinquish any and all synchronization claims on this object. Thread T becomes disabled for thread scheduling purposes and lies dormant until one of four things happens:
A thread can also wake up without being notified, interrupted, or timing out, a so-called spurious wakeup. While this will rarely occur in practice, applications must guard against it by testing for the condition that should have caused the thread to be awakened, and continuing to wait if the condition is not satisfied. In other words, waits should always occur in loops, like this one:
synchronized (obj) { while (<condition does not hold>) obj.wait(timeout); ... // Perform action appropriate to condition }(For more information on this topic, see Section 3.2.3 in Doug Lea's "Concurrent Programming in Java (Second Edition)" (Addison-Wesley, 2000), or Item 50 in Joshua Bloch's "Effective Java Programming Language Guide" (Addison-Wesley, 2001).
If the current thread is interrupted by another thread while it is waiting, then an InterruptedException is thrown. This exception is not thrown until the lock status of this object has been restored as described above.
Note that the wait method, as it places the current thread into the wait set for this object, unlocks only this object; any other objects on which the current thread may be synchronized remain locked while the thread waits.
This method should only be called by a thread that is the owner
of this object's monitor. See the notify
method for a
description of the ways in which a thread can become the owner of
a monitor.
This method is similar to the wait
method of one
argument, but it allows finer control over the amount of time to
wait for a notification before giving up. The amount of real time,
measured in nanoseconds, is given by:
1000000*timeout+nanos
In all other respects, this method does the same thing as the method of one argument. In particular, wait(0, 0) means the same thing as wait(0).
The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until either of the following two conditions has occurred:
notify
method
or the notifyAll
method.
timeout
milliseconds plus nanos
nanoseconds arguments, has
elapsed.
The thread then waits until it can re-obtain ownership of the monitor and resumes execution.
As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:
synchronized (obj) { while (<condition does not hold>) obj.wait(timeout, nanos); ... // Perform action appropriate to condition }This method should only be called by a thread that is the owner of this object's monitor. See the
notify
method for a
description of the ways in which a thread can become the owner of
a monitor.