The XMLEncoder class is a complementary alternative to the ObjectOutputStream and can used to generate a textual representation of a JavaBean in the same way that the ObjectOutputStream can be used to create binary representation of Serializable objects. For example, the following fragment can be used to create a textual representation the supplied JavaBean and all its properties:
       XMLEncoder e = new XMLEncoder(
                          new BufferedOutputStream(
                              new FileOutputStream("Test.xml")));
       e.writeObject(new JButton("Hello, world"));
       e.close();
 
Despite the similarity of their APIs, the XMLEncoder class is exclusively designed for the purpose of archiving graphs of JavaBeans as textual representations of their public properties. Like Java source files, documents written this way have a natural immunity to changes in the implementations of the classes involved. The ObjectOutputStream continues to be recommended for interprocess communication and general purpose serialization.

The XMLEncoder class provides a default denotation for JavaBeans in which they are represented as XML documents complying with version 1.0 of the XML specification and the UTF-8 character encoding of the Unicode/ISO 10646 character set. The XML documents produced by the XMLEncoder class are:

Below is an example of an XML archive containing some user interface components from the swing toolkit:

 <?xml version="1.0" encoding="UTF-8"?>
 <java version="1.0" class="java.beans.XMLDecoder">
 <object class="javax.swing.JFrame">
   <void property="name">
     <string>frame1</string>
   </void>
   <void property="bounds">
     <object class="java.awt.Rectangle">
       <int>0</int>
       <int>0</int>
       <int>200</int>
       <int>200</int>
     </object>
   </void>
   <void property="contentPane">
     <void method="add">
       <object class="javax.swing.JButton">
         <void property="label">
           <string>Hello</string>
         </void>
       </object>
     </void>
   </void>
   <void property="visible">
     <boolean>true</boolean>
   </void>
 </object>
 </java>
 
The XML syntax uses the following conventions:

Although all object graphs may be written using just these three tags, the following definitions are included so that common data structures can be expressed more concisely:

For more information you might also want to check out Using XMLEncoder, an article in The Swing Connection.

@since
1.4
@version
1.33 12/19/03
@author
Philip Milne
Creates a new output stream for sending JavaBeans to the stream out using an XML encoding.
Parameters
outThe stream to which the XML representation of the objects will be sent.
This method calls flush, writes the closing postamble and then closes the output stream associated with this stream.
Indicates whether some other object is "equal to" this one.

The equals method implements an equivalence relation on non-null object references:

  • It is reflexive: for any non-null reference value x, x.equals(x) should return true.
  • It is symmetric: for any non-null reference values x and y, x.equals(y) should return true if and only if y.equals(x) returns true.
  • It is transitive: for any non-null reference values x, y, and z, if x.equals(y) returns true and y.equals(z) returns true, then x.equals(z) should return true.
  • It is consistent: for any non-null reference values x and y, multiple invocations of x.equals(y) consistently return true or consistently return false, provided no information used in equals comparisons on the objects is modified.
  • For any non-null reference value x, x.equals(null) should return false.

The equals method for class Object implements the most discriminating possible equivalence relation on objects; that is, for any non-null reference values x and y, this method returns true if and only if x and y refer to the same object (x == y has the value true).

Note that it is generally necessary to override the hashCode method whenever this method is overridden, so as to maintain the general contract for the hashCode method, which states that equal objects must have equal hash codes.

Parameters
objthe reference object with which to compare.
Return
true if this object is the same as the obj argument; false otherwise.
This method writes out the preamble associated with the XML encoding if it has not been written already and then writes out all of the values that been written to the stream since the last time flush was called. After flushing, all internal references to the values that were written to this stream are cleared.
Returns a tentative value for oldInstance in the environment created by this stream. A persistence delegate can use its mutatesTo method to determine whether this value may be initialized to form the equivalent object at the output or whether a new object must be instantiated afresh. If the stream has not yet seen this value, null is returned.
Parameters
oldInstanceThe instance to be looked up.
Return
The object, null if the object has not been seen before.
Returns the runtime class of an object. That Class object is the object that is locked by static synchronized methods of the represented class.
Return
The java.lang.Class object that represents the runtime class of the object. The result is of type {@code Class} where X is the erasure of the static type of the expression on which getClass is called.
Gets the exception handler for this stream.
Return
The exception handler for this stream; Will return the default exception listener if this has not explicitly been set.
Gets the owner of this encoder.
Return
The owner of this encoder.
See Also
Returns the persistence delegate for the given type. The persistence delegate is calculated by applying the following of rules in order:
  • If the type is an array, an internal persistence delegate is returned which will instantiate an array of the appropriate type and length, initializing each of its elements as if they are properties.
  • If the type is a proxy, an internal persistence delegate is returned which will instantiate a new proxy instance using the static "newProxyInstance" method defined in the Proxy class.
  • If the BeanInfo for this type has a BeanDescriptor which defined a "persistenceDelegate" property, this value is returned.
  • In all other cases the default persistence delegate is returned. The default persistence delegate assumes the type is a JavaBean, implying that it has a nullary constructor and that its state may be characterized by the matching pairs of "setter" and "getter" methods returned by the Introspector.
Parameters
typeThe type of the object.
Return
The persistence delegate for this type of object.
Returns a hash code value for the object. This method is supported for the benefit of hashtables such as those provided by java.util.Hashtable.

The general contract of hashCode is:

  • Whenever it is invoked on the same object more than once during an execution of a Java application, the hashCode method must consistently return the same integer, provided no information used in equals comparisons on the object is modified. This integer need not remain consistent from one execution of an application to another execution of the same application.
  • If two objects are equal according to the equals(Object) method, then calling the hashCode method on each of the two objects must produce the same integer result.
  • It is not required that if two objects are unequal according to the method, then calling the hashCode method on each of the two objects must produce distinct integer results. However, the programmer should be aware that producing distinct integer results for unequal objects may improve the performance of hashtables.

As much as is reasonably practical, the hashCode method defined by class Object does return distinct integers for distinct objects. (This is typically implemented by converting the internal address of the object into an integer, but this implementation technique is not required by the JavaTM programming language.)

Return
a hash code value for this object.
Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the discretion of the implementation. A thread waits on an object's monitor by calling one of the wait methods.

The awakened thread will not be able to proceed until the current thread relinquishes the lock on this object. The awakened thread will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened thread enjoys no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. A thread becomes the owner of the object's monitor in one of three ways:

  • By executing a synchronized instance method of that object.
  • By executing the body of a synchronized statement that synchronizes on the object.
  • For objects of type Class, by executing a synchronized static method of that class.

Only one thread at a time can own an object's monitor.

Throws
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
Wakes up all threads that are waiting on this object's monitor. A thread waits on an object's monitor by calling one of the wait methods.

The awakened threads will not be able to proceed until the current thread relinquishes the lock on this object. The awakened threads will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened threads enjoy no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.

Throws
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
Removes the entry for this instance, returning the old entry.
Parameters
oldInstanceThe entry that should be removed.
Return
The entry that was removed.
See Also
Sets the exception handler for this stream to exceptionListener. The exception handler is notified when this stream catches recoverable exceptions.
Parameters
exceptionListenerThe exception handler for this stream; if null the default exception listener will be used.
Sets the owner of this encoder to owner.
Parameters
ownerThe owner of this encoder.
See Also
Sets the persistence delegate associated with this type to persistenceDelegate.
Parameters
typeThe class of objects that persistenceDelegate applies to.
persistenceDelegateThe persistence delegate for instances of type.
Returns a string representation of the object. In general, the toString method returns a string that "textually represents" this object. The result should be a concise but informative representation that is easy for a person to read. It is recommended that all subclasses override this method.

The toString method for class Object returns a string consisting of the name of the class of which the object is an instance, the at-sign character `@', and the unsigned hexadecimal representation of the hash code of the object. In other words, this method returns a string equal to the value of:

 getClass().getName() + '@' + Integer.toHexString(hashCode())
 
Return
a string representation of the object.
Causes current thread to wait until another thread invokes the method or the method for this object. In other words, this method behaves exactly as if it simply performs the call wait(0).

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until another thread notifies threads waiting on this object's monitor to wake up either through a call to the notify method or the notifyAll method. The thread then waits until it can re-obtain ownership of the monitor and resumes execution.

As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait();
         ... // Perform action appropriate to condition
     }
 
This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.
Throws
IllegalMonitorStateExceptionif the current thread is not the owner of the object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.
Causes current thread to wait until either another thread invokes the method or the method for this object, or a specified amount of time has elapsed.

The current thread must own this object's monitor.

This method causes the current thread (call it T) to place itself in the wait set for this object and then to relinquish any and all synchronization claims on this object. Thread T becomes disabled for thread scheduling purposes and lies dormant until one of four things happens:

  • Some other thread invokes the notify method for this object and thread T happens to be arbitrarily chosen as the thread to be awakened.
  • Some other thread invokes the notifyAll method for this object.
  • Some other thread interrupts thread T.
  • The specified amount of real time has elapsed, more or less. If timeout is zero, however, then real time is not taken into consideration and the thread simply waits until notified.
The thread T is then removed from the wait set for this object and re-enabled for thread scheduling. It then competes in the usual manner with other threads for the right to synchronize on the object; once it has gained control of the object, all its synchronization claims on the object are restored to the status quo ante - that is, to the situation as of the time that the wait method was invoked. Thread T then returns from the invocation of the wait method. Thus, on return from the wait method, the synchronization state of the object and of thread T is exactly as it was when the wait method was invoked.

A thread can also wake up without being notified, interrupted, or timing out, a so-called spurious wakeup. While this will rarely occur in practice, applications must guard against it by testing for the condition that should have caused the thread to be awakened, and continuing to wait if the condition is not satisfied. In other words, waits should always occur in loops, like this one:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait(timeout);
         ... // Perform action appropriate to condition
     }
 
(For more information on this topic, see Section 3.2.3 in Doug Lea's "Concurrent Programming in Java (Second Edition)" (Addison-Wesley, 2000), or Item 50 in Joshua Bloch's "Effective Java Programming Language Guide" (Addison-Wesley, 2001).

If the current thread is interrupted by another thread while it is waiting, then an InterruptedException is thrown. This exception is not thrown until the lock status of this object has been restored as described above.

Note that the wait method, as it places the current thread into the wait set for this object, unlocks only this object; any other objects on which the current thread may be synchronized remain locked while the thread waits.

This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.

Parameters
timeoutthe maximum time to wait in milliseconds.
Throws
IllegalArgumentExceptionif the value of timeout is negative.
IllegalMonitorStateExceptionif the current thread is not the owner of the object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.
Causes current thread to wait until another thread invokes the method or the method for this object, or some other thread interrupts the current thread, or a certain amount of real time has elapsed.

This method is similar to the wait method of one argument, but it allows finer control over the amount of time to wait for a notification before giving up. The amount of real time, measured in nanoseconds, is given by:

 1000000*timeout+nanos

In all other respects, this method does the same thing as the method of one argument. In particular, wait(0, 0) means the same thing as wait(0).

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until either of the following two conditions has occurred:

  • Another thread notifies threads waiting on this object's monitor to wake up either through a call to the notify method or the notifyAll method.
  • The timeout period, specified by timeout milliseconds plus nanos nanoseconds arguments, has elapsed.

The thread then waits until it can re-obtain ownership of the monitor and resumes execution.

As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait(timeout, nanos);
         ... // Perform action appropriate to condition
     }
 
This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.
Parameters
timeoutthe maximum time to wait in milliseconds.
nanosadditional time, in nanoseconds range 0-999999.
Throws
IllegalArgumentExceptionif the value of timeout is negative or the value of nanos is not in the range 0-999999.
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.
Records the Expression so that the Encoder will produce the actual output when the stream is flushed.

This method should only be invoked within the context of initializing a persistence delegate or setting up an encoder to read from a resource bundle.

For more information about using resource bundles with the XMLEncoder, see http://java.sun.com/products/jfc/tsc/articles/persistence4/#i18n

Parameters
oldExpThe expression that will be written to the stream.
Write an XML representation of the specified object to the output.
Parameters
oThe object to be written to the stream.
Records the Statement so that the Encoder will produce the actual output when the stream is flushed.

This method should only be invoked within the context of initializing a persistence delegate.

Parameters
oldStmThe statement that will be written to the stream.