Double
class wraps a value of the primitive type
double
in an object. An object of type
Double
contains a single field whose type is
double
.
In addition, this class provides several methods for converting a
double
to a String
and a
String
to a double
, as well as other
constants and methods useful when dealing with a
double
.
Double
object that
represents the primitive double
argument.Double
object that
represents the floating-point value of type double
represented by the string. The string is converted to a
double
value as if by the valueOf
method.double
,
(2-2-52)·21023. It is equal to
the hexadecimal floating-point literal
0x1.fffffffffffffP+1023
and also equal to
Double.longBitsToDouble(0x7fefffffffffffffL)
.double
, 2-1074. It is equal to the
hexadecimal floating-point literal
0x0.0000000000001P-1022
and also equal to
Double.longBitsToDouble(0x1L)
.double
. It is equivalent to the value returned by
Double.longBitsToDouble(0x7ff8000000000000L)
.double
. It is equal to the value returned by
Double.longBitsToDouble(0xfff0000000000000L)
.double
. It is equal to the value returned by
Double.longBitsToDouble(0x7ff0000000000000L)
.Class
instance representing the primitive type
double
.Double
as a byte
(by
casting to a byte
).double
values. The sign
of the integer value returned is the same as that of the
integer that would be returned by the call:
new Double(d1).compareTo(new Double(d2))
Double
objects numerically. There
are two ways in which comparisons performed by this method
differ from those performed by the Java language numerical
comparison operators (<, <=, ==, >= >
)
when applied to primitive double
values:
Double.NaN
is considered by this method
to be equal to itself and greater than all other
double
values (including
Double.POSITIVE_INFINITY
).
0.0d
is considered by this method to be greater
than -0.0d
.
In the foregoing description, the notation sgn(expression) designates the mathematical signum function, which is defined to return one of -1, 0, or 1 according to whether the value of expression is negative, zero or positive. The implementor must ensure sgn(x.compareTo(y)) == -sgn(y.compareTo(x)) for all x and y. (This implies that x.compareTo(y) must throw an exception iff y.compareTo(x) throws an exception.)
The implementor must also ensure that the relation is transitive: (x.compareTo(y)>0 && y.compareTo(z)>0) implies x.compareTo(z)>0.
Finally, the implementer must ensure that x.compareTo(y)==0 implies that sgn(x.compareTo(z)) == sgn(y.compareTo(z)), for all z.
It is strongly recommended, but not strictly required that (x.compareTo(y)==0) == (x.equals(y)). Generally speaking, any class that implements the Comparable interface and violates this condition should clearly indicate this fact. The recommended language is "Note: this class has a natural ordering that is inconsistent with equals."
Bit 63 (the bit that is selected by the mask
0x8000000000000000L
) represents the sign of the
floating-point number. Bits
62-52 (the bits that are selected by the mask
0x7ff0000000000000L
) represent the exponent. Bits 51-0
(the bits that are selected by the mask
0x000fffffffffffffL
) represent the significand
(sometimes called the mantissa) of the floating-point number.
If the argument is positive infinity, the result is
0x7ff0000000000000L
.
If the argument is negative infinity, the result is
0xfff0000000000000L
.
If the argument is NaN, the result is
0x7ff8000000000000L
.
In all cases, the result is a long
integer that, when
given to the
method, will produce a
floating-point value the same as the argument to
doubleToLongBits
(except all NaN values are
collapsed to a single "canonical" NaN value).
Bit 63 (the bit that is selected by the mask
0x8000000000000000L
) represents the sign of the
floating-point number. Bits
62-52 (the bits that are selected by the mask
0x7ff0000000000000L
) represent the exponent. Bits 51-0
(the bits that are selected by the mask
0x000fffffffffffffL
) represent the significand
(sometimes called the mantissa) of the floating-point number.
If the argument is positive infinity, the result is
0x7ff0000000000000L
.
If the argument is negative infinity, the result is
0xfff0000000000000L
.
If the argument is NaN, the result is the long
integer representing the actual NaN value. Unlike the
doubleToLongBits
method,
doubleToRawLongBits
does not collapse all the bit
patterns encoding a NaN to a single "canonical" NaN
value.
In all cases, the result is a long
integer that,
when given to the
method, will
produce a floating-point value the same as the argument to
doubleToRawLongBits
.
double
value of this
Double
object.true
if and only if the argument is not
null
and is a Double
object that
represents a double
that has the same value as the
double
represented by this object. For this
purpose, two double
values are considered to be
the same if and only if the method
returns the identical
long
value when applied to each.
Note that in most cases, for two instances of class
Double
, d1
and d2
, the
value of d1.equals(d2)
is true
if and
only if
d1.doubleValue() == d2.doubleValue()
also has the value true
. However, there are two
exceptions:
d1
and d2
both represent
Double.NaN
, then the equals
method
returns true
, even though
Double.NaN==Double.NaN
has the value
false
.
d1
represents +0.0
while
d2
represents -0.0
, or vice versa,
the equal
test has the value false
,
even though +0.0==-0.0
has the value true
.
float
value of this
Double
object.Double
object. The
result is the exclusive OR of the two halves of the
long
integer bit representation, exactly as
produced by the method
, of
the primitive double
value represented by this
Double
object. That is, the hash code is the value
of the expression:
where(int)(v^(v>>>32))
v
is defined by:
long v = Double.doubleToLongBits(this.doubleValue());
Double
as an
int
(by casting to type int
).true
if this Double
value is
infinitely large in magnitude, false
otherwise.true
if the specified number is infinitely
large in magnitude, false
otherwise.true
if this Double
value is
a Not-a-Number (NaN), false
otherwise.true
if the specified number is a
Not-a-Number (NaN) value, false
otherwise.double
value corresponding to a given
bit representation.
The argument is considered to be a representation of a
floating-point value according to the IEEE 754 floating-point
"double format" bit layout.
If the argument is 0x7ff0000000000000L
, the result
is positive infinity.
If the argument is 0xfff0000000000000L
, the result
is negative infinity.
If the argument is any value in the range
0x7ff0000000000001L
through
0x7fffffffffffffffL
or in the range
0xfff0000000000001L
through
0xffffffffffffffffL
, the result is a NaN. No IEEE
754 floating-point operation provided by Java can distinguish
between two NaN values of the same type with different bit
patterns. Distinct values of NaN are only distinguishable by
use of the Double.doubleToRawLongBits
method.
In all other cases, let s, e, and m be three values that can be computed from the argument:
Then the floating-point result equals the value of the mathematical expression s·m·2e-1075.int s = ((bits >> 63) == 0) ? 1 : -1; int e = (int)((bits >> 52) & 0x7ffL); long m = (e == 0) ? (bits & 0xfffffffffffffL) << 1 : (bits & 0xfffffffffffffL) | 0x10000000000000L;
Note that this method may not be able to return a
double
NaN with exactly same bit pattern as the
long
argument. IEEE 754 distinguishes between two
kinds of NaNs, quiet NaNs and signaling NaNs. The
differences between the two kinds of NaN are generally not
visible in Java. Arithmetic operations on signaling NaNs turn
them into quiet NaNs with a different, but often similar, bit
pattern. However, on some processors merely copying a
signaling NaN also performs that conversion. In particular,
copying a signaling NaN to return it to the calling method
may perform this conversion. So longBitsToDouble
may not be able to return a double
with a
signaling NaN bit pattern. Consequently, for some
long
values,
doubleToRawLongBits(longBitsToDouble(start))
may
not equal start
. Moreover, which
particular bit patterns represent signaling NaNs is platform
dependent; although all NaN bit patterns, quiet or signaling,
must be in the NaN range identified above.
Double
as a
long
(by casting to type long
).wait
methods.
The awakened thread will not be able to proceed until the current thread relinquishes the lock on this object. The awakened thread will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened thread enjoys no reliable privilege or disadvantage in being the next thread to lock this object.
This method should only be called by a thread that is the owner of this object's monitor. A thread becomes the owner of the object's monitor in one of three ways:
synchronized
statement
that synchronizes on the object.
Class,
by executing a
synchronized static method of that class.
Only one thread at a time can own an object's monitor.
wait
methods.
The awakened threads will not be able to proceed until the current thread relinquishes the lock on this object. The awakened threads will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened threads enjoy no reliable privilege or disadvantage in being the next thread to lock this object.
This method should only be called by a thread that is the owner
of this object's monitor. See the notify
method for a
description of the ways in which a thread can become the owner of
a monitor.
double
initialized to the value
represented by the specified String
, as performed
by the valueOf
method of class
Double
.Double
as a
short
(by casting to a short
).double
argument. All characters mentioned below
are ASCII characters.
NaN
".
-
'
('\u002D'
); if the sign is positive, no sign
character appears in the result. As for the magnitude m:
"Infinity"
; thus, positive infinity produces the
result "Infinity"
and negative infinity produces
the result "-Infinity"
.
"0x0.0p0"
; thus, negative zero produces the result
"-0x0.0p0"
and positive zero produces the result
"0x0.0p0"
.
double
value with a
normalized representation, substrings are used to represent the
significand and exponent fields. The significand is
represented by the characters "0x1."
followed by a lowercase hexadecimal representation of the rest
of the significand as a fraction. Trailing zeros in the
hexadecimal representation are removed unless all the digits
are zero, in which case a single zero is used. Next, the
exponent is represented by "p"
followed
by a decimal string of the unbiased exponent as if produced by
a call to Integer.toString
on the
exponent value.
double
value with a subnormal
representation, the significand is represented by the
characters "0x0."
followed by a
hexadecimal representation of the rest of the significand as a
fraction. Trailing zeros in the hexadecimal representation are
removed. Next, the exponent is represented by
"p-1022"
. Note that there must be at
least one nonzero digit in a subnormal significand.
Floating-point Value | Hexadecimal String |
---|---|
1.0 | 0x1.0p0 |
-1.0 | -0x1.0p0 |
2.0 | 0x1.0p1 |
3.0 | 0x1.8p1 |
0.5 | 0x1.0p-1 |
0.25 | 0x1.0p-2 |
Double.MAX_VALUE |
0x1.fffffffffffffp1023 |
Minimum Normal Value |
0x1.0p-1022 |
Maximum Subnormal Value |
0x0.fffffffffffffp-1022 |
Double.MIN_VALUE |
0x0.0000000000001p-1022 |
Double
object.
The primitive double
value represented by this
object is converted to a string exactly as if by the method
toString
of one argument.double
argument. All characters mentioned below are ASCII characters.
NaN
".
-
'
('\u002D'
); if the sign is positive, no sign character
appears in the result. As for the magnitude m:
"Infinity"
; thus, positive infinity produces the result
"Infinity"
and negative infinity produces the result
"-Infinity"
.
"0.0"
; thus, negative zero produces the result
"-0.0"
and positive zero produces the result
"0.0"
.
.
' ('\u002E'
), followed by one or
more decimal digits representing the fractional part of m.
.
'
('\u002E'
), followed by decimal digits
representing the fractional part of a, followed by the
letter 'E
' ('\u0045'
), followed
by a representation of n as a decimal integer, as
produced by the method
.
double
. That is, suppose that
x is the exact mathematical value represented by the decimal
representation produced by this method for a finite nonzero argument
d. Then d must be the double
value nearest
to x; or if two double
values are equally close
to x, then d must be one of them and the least
significant bit of the significand of d must be 0
.
To create localized string representations of a floating-point value, use subclasses of java.text.NumberFormat .
Double
object holding the
double
value represented by the argument string
s
.
If s
is null
, then a
NullPointerException
is thrown.
Leading and trailing whitespace characters in s
are ignored. Whitespace is removed as if by the String#trim
method; that is, both ASCII space and control
characters are removed. The rest of s
should
constitute a FloatValue as described by the lexical
syntax rules:
where Sign, FloatingPointLiteral, HexNumeral, HexDigits, SignedInteger and FloatTypeSuffix are as defined in the lexical structure sections of the of the Java Language Specification. If
- FloatValue:
- Signopt
NaN
- Signopt
Infinity
- Signopt FloatingPointLiteral
- Signopt HexFloatingPointLiteral
- SignedInteger
- HexFloatingPointLiteral:
- HexSignificand BinaryExponent FloatTypeSuffixopt
- HexSignificand:
- HexNumeral
- HexNumeral
.
0x
HexDigitsopt.
HexDigits0X
HexDigitsopt.
HexDigits
- BinaryExponent:
- BinaryExponentIndicator SignedInteger
- BinaryExponentIndicator:
p
P
s
does not have the form of
a FloatValue, then a NumberFormatException
is thrown. Otherwise, s
is regarded as
representing an exact decimal value in the usual
"computerized scientific notation" or as an exact
hexadecimal value; this exact numerical value is then
conceptually converted to an "infinitely precise"
binary value that is then rounded to type double
by the usual round-to-nearest rule of IEEE 754 floating-point
arithmetic, which includes preserving the sign of a zero
value. Finally, a Double
object representing this
double
value is returned.
To interpret localized string representations of a floating-point value, use subclasses of java.text.NumberFormat .
Note that trailing format specifiers, specifiers that
determine the type of a floating-point literal
(1.0f
is a float
value;
1.0d
is a double
value), do
not influence the results of this method. In other
words, the numerical value of the input string is converted
directly to the target floating-point type. The two-step
sequence of conversions, string to float
followed
by float
to double
, is not
equivalent to converting a string directly to
double
. For example, the float
literal 0.1f
is equal to the double
value 0.10000000149011612
; the float
literal 0.1f
represents a different numerical
value than the double
literal
0.1
. (The numerical value 0.1 cannot be exactly
represented in a binary floating-point number.)
To avoid calling this method on a invalid string and having
a NumberFormatException
be thrown, the regular
expression below can be used to screen the input string:
final String Digits = "(\\p{Digit}+)";
final String HexDigits = "(\\p{XDigit}+)";
// an exponent is 'e' or 'E' followed by an optionally
// signed decimal integer.
final String Exp = "[eE][+-]?"+Digits;
final String fpRegex =
("[\\x00-\\x20]*"+ // Optional leading "whitespace"
"[+-]?(" + // Optional sign character
"NaN|" + // "NaN" string
"Infinity|" + // "Infinity" string
// A decimal floating-point string representing a finite positive
// number without a leading sign has at most five basic pieces:
// Digits . Digits ExponentPart FloatTypeSuffix
//
// Since this method allows integer-only strings as input
// in addition to strings of floating-point literals, the
// two sub-patterns below are simplifications of the grammar
// productions from the Java Language Specification, 2nd
// edition, section 3.10.2.
// Digits ._opt Digits_opt ExponentPart_opt FloatTypeSuffix_opt
"((("+Digits+"(\\.)?("+Digits+"?)("+Exp+")?)|"+
// . Digits ExponentPart_opt FloatTypeSuffix_opt
"(\\.("+Digits+")("+Exp+")?)|"+
// Hexadecimal strings
"((" +
// 0[xX] HexDigits ._opt BinaryExponent FloatTypeSuffix_opt
"(0[xX]" + HexDigits + "(\\.)?)|" +
// 0[xX] HexDigits_opt . HexDigits BinaryExponent FloatTypeSuffix_opt
"(0[xX]" + HexDigits + "?(\\.)" + HexDigits + ")" +
")[pP][+-]?" + Digits + "))" +
"[fFdD]?))" +
"[\\x00-\\x20]*");// Optional trailing "whitespace"
if (Pattern.matches(fpRegex, myString))
Double.valueOf(myString); // Will not throw NumberFormatException
else {
// Perform suitable alternative action
}
The current thread must own this object's monitor. The thread
releases ownership of this monitor and waits until another thread
notifies threads waiting on this object's monitor to wake up
either through a call to the notify
method or the
notifyAll
method. The thread then waits until it can
re-obtain ownership of the monitor and resumes execution.
As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:
synchronized (obj) { while (<condition does not hold>) obj.wait(); ... // Perform action appropriate to condition }This method should only be called by a thread that is the owner of this object's monitor. See the
notify
method for a
description of the ways in which a thread can become the owner of
a monitor.The current thread must own this object's monitor.
This method causes the current thread (call it T) to place itself in the wait set for this object and then to relinquish any and all synchronization claims on this object. Thread T becomes disabled for thread scheduling purposes and lies dormant until one of four things happens:
A thread can also wake up without being notified, interrupted, or timing out, a so-called spurious wakeup. While this will rarely occur in practice, applications must guard against it by testing for the condition that should have caused the thread to be awakened, and continuing to wait if the condition is not satisfied. In other words, waits should always occur in loops, like this one:
synchronized (obj) { while (<condition does not hold>) obj.wait(timeout); ... // Perform action appropriate to condition }(For more information on this topic, see Section 3.2.3 in Doug Lea's "Concurrent Programming in Java (Second Edition)" (Addison-Wesley, 2000), or Item 50 in Joshua Bloch's "Effective Java Programming Language Guide" (Addison-Wesley, 2001).
If the current thread is interrupted by another thread while it is waiting, then an InterruptedException is thrown. This exception is not thrown until the lock status of this object has been restored as described above.
Note that the wait method, as it places the current thread into the wait set for this object, unlocks only this object; any other objects on which the current thread may be synchronized remain locked while the thread waits.
This method should only be called by a thread that is the owner
of this object's monitor. See the notify
method for a
description of the ways in which a thread can become the owner of
a monitor.
This method is similar to the wait
method of one
argument, but it allows finer control over the amount of time to
wait for a notification before giving up. The amount of real time,
measured in nanoseconds, is given by:
1000000*timeout+nanos
In all other respects, this method does the same thing as the method of one argument. In particular, wait(0, 0) means the same thing as wait(0).
The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until either of the following two conditions has occurred:
notify
method
or the notifyAll
method.
timeout
milliseconds plus nanos
nanoseconds arguments, has
elapsed.
The thread then waits until it can re-obtain ownership of the monitor and resumes execution.
As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:
synchronized (obj) { while (<condition does not hold>) obj.wait(timeout, nanos); ... // Perform action appropriate to condition }This method should only be called by a thread that is the owner of this object's monitor. See the
notify
method for a
description of the ways in which a thread can become the owner of
a monitor.