In order to be used with a selector, an instance of this class must first be registered via the register method. This method returns a new SelectionKey object that represents the channel's registration with the selector.
Once registered with a selector, a channel remains registered until it is deregistered. This involves deallocating whatever resources were allocated to the channel by the selector.
A channel cannot be deregistered directly; instead, the key representing its registration must be cancelled. Cancelling a key requests that the channel be deregistered during the selector's next selection operation. A key may be cancelled explicitly by invoking its cancel method. All of a channel's keys are cancelled implicitly when the channel is closed, whether by invoking its close method or by interrupting a thread blocked in an I/O operation upon the channel.
If the selector itself is closed then the channel will be deregistered, and the key representing its registration will be invalidated, without further delay.
A channel may be registered at most once with any particular selector.
Whether or not a channel is registered with one or more selectors may be determined by invoking the isRegistered method.
Selectable channels are safe for use by multiple concurrent threads.
Newly-created selectable channels are always in blocking mode. Non-blocking mode is most useful in conjunction with selector-based multiplexing. A channel must be placed into non-blocking mode before being registered with a selector, and may not be returned to blocking mode until it has been deregistered.
If the channel has already been closed then this method returns immediately. Otherwise it marks the channel as closed and then invokes the implCloseChannel method in order to complete the close operation.
If this channel is registered with one or more selectors then an attempt to place it into blocking mode will cause an IllegalBlockingModeException to be thrown.
This method may be invoked at any time. The new blocking mode will only affect I/O operations that are initiated after this method returns. For some implementations this may require blocking until all pending I/O operations are complete.
If this method is invoked while another invocation of this method or of the register method is in progress then it will first block until the other operation is complete.
The equals
method implements an equivalence relation
on non-null object references:
x
, x.equals(x)
should return
true
.
x
and y
, x.equals(y)
should return true
if and only if
y.equals(x)
returns true
.
x
, y
, and z
, if
x.equals(y)
returns true
and
y.equals(z)
returns true
, then
x.equals(z)
should return true
.
x
and y
, multiple invocations of
x.equals(y) consistently return true
or consistently return false
, provided no
information used in equals
comparisons on the
objects is modified.
x
,
x.equals(null)
should return false
.
The equals method for class Object
implements
the most discriminating possible equivalence relation on objects;
that is, for any non-null reference values x
and
y
, this method returns true
if and only
if x
and y
refer to the same object
(x == y
has the value true
).
Note that it is generally necessary to override the hashCode method whenever this method is overridden, so as to maintain the general contract for the hashCode method, which states that equal objects must have equal hash codes.
java.util.Hashtable
.
The general contract of hashCode
is:
hashCode
method on each of
the two objects must produce the same integer result.
As much as is reasonably practical, the hashCode method defined by class Object does return distinct integers for distinct objects. (This is typically implemented by converting the internal address of the object into an integer, but this implementation technique is not required by the JavaTM programming language.)
If this channel is closed then the value returned by this method is not specified.
Due to the inherent delay between key cancellation and channel deregistration, a channel may remain registered for some time after all of its keys have been cancelled. A channel may also remain registered for some time after it is closed.
wait
methods.
The awakened thread will not be able to proceed until the current thread relinquishes the lock on this object. The awakened thread will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened thread enjoys no reliable privilege or disadvantage in being the next thread to lock this object.
This method should only be called by a thread that is the owner of this object's monitor. A thread becomes the owner of the object's monitor in one of three ways:
synchronized
statement
that synchronizes on the object.
Class,
by executing a
synchronized static method of that class.
Only one thread at a time can own an object's monitor.
wait
methods.
The awakened threads will not be able to proceed until the current thread relinquishes the lock on this object. The awakened threads will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened threads enjoy no reliable privilege or disadvantage in being the next thread to lock this object.
This method should only be called by a thread that is the owner
of this object's monitor. See the notify
method for a
description of the ways in which a thread can become the owner of
a monitor.
An invocation of this convenience method of the form
sc.register(sel, ops)behaves in exactly the same way as the invocation
sc.register (sel, ops, null)
If this channel is currently registered with the given selector then the selection key representing that registration is returned. The key's interest set will have been changed to ops, as if by invoking the interestOps(int) method. If the att argument is not null then the key's attachment will have been set to that value. A CancelledKeyException will be thrown if the key has already been cancelled.
Otherwise this channel has not yet been registered with the given selector, so it is registered and the resulting new key is returned. The key's initial interest set will be ops and its attachment will be att.
This method may be invoked at any time. If this method is invoked while another invocation of this method or of the configureBlocking method is in progress then it will first block until the other operation is complete. This method will then synchronize on the selector's key set and therefore may block if invoked concurrently with another registration or selection operation involving the same selector.
If this channel is closed while this operation is in progress then the key returned by this method will have been cancelled and will therefore be invalid.
toString
method returns a string that
"textually represents" this object. The result should
be a concise but informative representation that is easy for a
person to read.
It is recommended that all subclasses override this method.
The toString
method for class Object
returns a string consisting of the name of the class of which the
object is an instance, the at-sign character `@
', and
the unsigned hexadecimal representation of the hash code of the
object. In other words, this method returns a string equal to the
value of:
getClass().getName() + '@' + Integer.toHexString(hashCode())
The current thread must own this object's monitor. The thread
releases ownership of this monitor and waits until another thread
notifies threads waiting on this object's monitor to wake up
either through a call to the notify
method or the
notifyAll
method. The thread then waits until it can
re-obtain ownership of the monitor and resumes execution.
As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:
synchronized (obj) { while (<condition does not hold>) obj.wait(); ... // Perform action appropriate to condition }This method should only be called by a thread that is the owner of this object's monitor. See the
notify
method for a
description of the ways in which a thread can become the owner of
a monitor.The current thread must own this object's monitor.
This method causes the current thread (call it T) to place itself in the wait set for this object and then to relinquish any and all synchronization claims on this object. Thread T becomes disabled for thread scheduling purposes and lies dormant until one of four things happens:
A thread can also wake up without being notified, interrupted, or timing out, a so-called spurious wakeup. While this will rarely occur in practice, applications must guard against it by testing for the condition that should have caused the thread to be awakened, and continuing to wait if the condition is not satisfied. In other words, waits should always occur in loops, like this one:
synchronized (obj) { while (<condition does not hold>) obj.wait(timeout); ... // Perform action appropriate to condition }(For more information on this topic, see Section 3.2.3 in Doug Lea's "Concurrent Programming in Java (Second Edition)" (Addison-Wesley, 2000), or Item 50 in Joshua Bloch's "Effective Java Programming Language Guide" (Addison-Wesley, 2001).
If the current thread is interrupted by another thread while it is waiting, then an InterruptedException is thrown. This exception is not thrown until the lock status of this object has been restored as described above.
Note that the wait method, as it places the current thread into the wait set for this object, unlocks only this object; any other objects on which the current thread may be synchronized remain locked while the thread waits.
This method should only be called by a thread that is the owner
of this object's monitor. See the notify
method for a
description of the ways in which a thread can become the owner of
a monitor.
This method is similar to the wait
method of one
argument, but it allows finer control over the amount of time to
wait for a notification before giving up. The amount of real time,
measured in nanoseconds, is given by:
1000000*timeout+nanos
In all other respects, this method does the same thing as the method of one argument. In particular, wait(0, 0) means the same thing as wait(0).
The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until either of the following two conditions has occurred:
notify
method
or the notifyAll
method.
timeout
milliseconds plus nanos
nanoseconds arguments, has
elapsed.
The thread then waits until it can re-obtain ownership of the monitor and resumes execution.
As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:
synchronized (obj) { while (<condition does not hold>) obj.wait(timeout, nanos); ... // Perform action appropriate to condition }This method should only be called by a thread that is the owner of this object's monitor. See the
notify
method for a
description of the ways in which a thread can become the owner of
a monitor.