A token representing the registration of a SelectableChannel with a Selector .

A selection key is created each time a channel is registered with a selector. A key remains valid until it is cancelled by invoking its cancel method, by closing its channel, or by closing its selector. Cancelling a key does not immediately remove it from its selector; it is instead added to the selector's cancelled-key set for removal during the next selection operation. The validity of a key may be tested by invoking its isValid method.

A selection key contains two operation sets represented as integer values. Each bit of an operation set denotes a category of selectable operations that are supported by the key's channel.

That a selection key's ready set indicates that its channel is ready for some operation category is a hint, but not a guarantee, that an operation in such a category may be performed by a thread without causing the thread to block. A ready set is most likely to be accurate immediately after the completion of a selection operation. It is likely to be made inaccurate by external events and by I/O operations that are invoked upon the corresponding channel.

This class defines all known operation-set bits, but precisely which bits are supported by a given channel depends upon the type of the channel. Each subclass of SelectableChannel defines an validOps() method which returns a set identifying just those operations that are supported by the channel. An attempt to set or test an operation-set bit that is not supported by a key's channel will result in an appropriate run-time exception.

It is often necessary to associate some application-specific data with a selection key, for example an object that represents the state of a higher-level protocol and handles readiness notifications in order to implement that protocol. Selection keys therefore support the attachment of a single arbitrary object to a key. An object can be attached via the attach method and then later retrieved via the attachment method.

Selection keys are safe for use by multiple concurrent threads. The operations of reading and writing the interest set will, in general, be synchronized with certain operations of the selector. Exactly how this synchronization is performed is implementation-dependent: In a naive implementation, reading or writing the interest set may block indefinitely if a selection operation is already in progress; in a high-performance implementation, reading or writing the interest set may block briefly, if at all. In any case, a selection operation will always use the interest-set value that was current at the moment that the operation began.

@author
Mark Reinhold
@author
JSR-51 Expert Group
@version
1.24, 03/12/19
@since
1.4
Operation-set bit for socket-accept operations.

Suppose that a selection key's interest set contains OP_ACCEPT at the start of a selection operation. If the selector detects that the corresponding server-socket channel is ready to accept another connection, or has an error pending, then it will add OP_ACCEPT to the key's ready set and add the key to its selected-key set.

Operation-set bit for socket-connect operations.

Suppose that a selection key's interest set contains OP_CONNECT at the start of a selection operation. If the selector detects that the corresponding socket channel is ready to complete its connection sequence, or has an error pending, then it will add OP_CONNECT to the key's ready set and add the key to its selected-key set.

Operation-set bit for read operations.

Suppose that a selection key's interest set contains OP_READ at the start of a selection operation. If the selector detects that the corresponding channel is ready for reading, has reached end-of-stream, has been remotely shut down for further reading, or has an error pending, then it will add OP_READ to the key's ready-operation set and add the key to its selected-key set.

Operation-set bit for write operations.

Suppose that a selection key's interest set contains OP_WRITE at the start of a selection operation. If the selector detects that the corresponding channel is ready for writing, has been remotely shut down for further writing, or has an error pending, then it will add OP_WRITE to the key's ready set and add the key to its selected-key set.

Attaches the given object to this key.

An attached object may later be retrieved via the attachment method. Only one object may be attached at a time; invoking this method causes any previous attachment to be discarded. The current attachment may be discarded by attaching null.

Parameters
ob The object to be attached; may be null
Return
The previously-attached object, if any, otherwise null
Retrieves the current attachment.

Return
The object currently attached to this key, or null if there is no attachment
Requests that the registration of this key's channel with its selector be cancelled. Upon return the key will be invalid and will have been added to its selector's cancelled-key set. The key will be removed from all of the selector's key sets during the next selection operation.

If this key has already been cancelled then invoking this method has no effect. Once cancelled, a key remains forever invalid.

This method may be invoked at any time. It synchronizes on the selector's cancelled-key set, and therefore may block briefly if invoked concurrently with a cancellation or selection operation involving the same selector.

Returns the channel for which this key was created. This method will continue to return the channel even after the key is cancelled.

Return
This key's channel
Indicates whether some other object is "equal to" this one.

The equals method implements an equivalence relation on non-null object references:

  • It is reflexive: for any non-null reference value x, x.equals(x) should return true.
  • It is symmetric: for any non-null reference values x and y, x.equals(y) should return true if and only if y.equals(x) returns true.
  • It is transitive: for any non-null reference values x, y, and z, if x.equals(y) returns true and y.equals(z) returns true, then x.equals(z) should return true.
  • It is consistent: for any non-null reference values x and y, multiple invocations of x.equals(y) consistently return true or consistently return false, provided no information used in equals comparisons on the objects is modified.
  • For any non-null reference value x, x.equals(null) should return false.

The equals method for class Object implements the most discriminating possible equivalence relation on objects; that is, for any non-null reference values x and y, this method returns true if and only if x and y refer to the same object (x == y has the value true).

Note that it is generally necessary to override the hashCode method whenever this method is overridden, so as to maintain the general contract for the hashCode method, which states that equal objects must have equal hash codes.

Parameters
objthe reference object with which to compare.
Return
true if this object is the same as the obj argument; false otherwise.
Returns the runtime class of an object. That Class object is the object that is locked by static synchronized methods of the represented class.
Return
The java.lang.Class object that represents the runtime class of the object. The result is of type {@code Class} where X is the erasure of the static type of the expression on which getClass is called.
Returns a hash code value for the object. This method is supported for the benefit of hashtables such as those provided by java.util.Hashtable.

The general contract of hashCode is:

  • Whenever it is invoked on the same object more than once during an execution of a Java application, the hashCode method must consistently return the same integer, provided no information used in equals comparisons on the object is modified. This integer need not remain consistent from one execution of an application to another execution of the same application.
  • If two objects are equal according to the equals(Object) method, then calling the hashCode method on each of the two objects must produce the same integer result.
  • It is not required that if two objects are unequal according to the method, then calling the hashCode method on each of the two objects must produce distinct integer results. However, the programmer should be aware that producing distinct integer results for unequal objects may improve the performance of hashtables.

As much as is reasonably practical, the hashCode method defined by class Object does return distinct integers for distinct objects. (This is typically implemented by converting the internal address of the object into an integer, but this implementation technique is not required by the JavaTM programming language.)

Return
a hash code value for this object.
Retrieves this key's interest set.

It is guaranteed that the returned set will only contain operation bits that are valid for this key's channel.

This method may be invoked at any time. Whether or not it blocks, and for how long, is implementation-dependent.

Return
This key's interest set
Throws
CancelledKeyException If this key has been cancelled
Sets this key's interest set to the given value.

This method may be invoked at any time. Whether or not it blocks, and for how long, is implementation-dependent.

Parameters
opsThe new interest set
Return
This selection key
Throws
IllegalArgumentException If a bit in the set does not correspond to an operation that is supported by this key's channel, that is, if set & ~(channel().validOps()) != 0
CancelledKeyException If this key has been cancelled
Tests whether this key's channel is ready to accept a new socket connection.

An invocation of this method of the form k.isAcceptable() behaves in exactly the same way as the expression

 k.readyOps() & OP_ACCEPT != 0

If this key's channel does not support socket-accept operations then this method always returns false.

Return
true if, and only if, readyOps() & OP_ACCEPT is nonzero
Throws
CancelledKeyException If this key has been cancelled
Tests whether this key's channel has either finished, or failed to finish, its socket-connection operation.

An invocation of this method of the form k.isConnectable() behaves in exactly the same way as the expression

 k.readyOps() & OP_CONNECT != 0

If this key's channel does not support socket-connect operations then this method always returns false.

Return
true if, and only if, readyOps() & OP_CONNECT is nonzero
Throws
CancelledKeyException If this key has been cancelled
Tests whether this key's channel is ready for reading.

An invocation of this method of the form k.isReadable() behaves in exactly the same way as the expression

 k.readyOps() & OP_READ != 0

If this key's channel does not support read operations then this method always returns false.

Return
true if, and only if, readyOps() & OP_READ is nonzero
Throws
CancelledKeyException If this key has been cancelled
Tells whether or not this key is valid.

A key is valid upon creation and remains so until it is cancelled, its channel is closed, or its selector is closed.

Return
true if, and only if, this key is valid
Tests whether this key's channel is ready for writing.

An invocation of this method of the form k.isWritable() behaves in exactly the same way as the expression

 k.readyOps() & OP_WRITE != 0

If this key's channel does not support write operations then this method always returns false.

Return
true if, and only if, readyOps() & OP_WRITE is nonzero
Throws
CancelledKeyException If this key has been cancelled
Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the discretion of the implementation. A thread waits on an object's monitor by calling one of the wait methods.

The awakened thread will not be able to proceed until the current thread relinquishes the lock on this object. The awakened thread will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened thread enjoys no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. A thread becomes the owner of the object's monitor in one of three ways:

  • By executing a synchronized instance method of that object.
  • By executing the body of a synchronized statement that synchronizes on the object.
  • For objects of type Class, by executing a synchronized static method of that class.

Only one thread at a time can own an object's monitor.

Throws
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
Wakes up all threads that are waiting on this object's monitor. A thread waits on an object's monitor by calling one of the wait methods.

The awakened threads will not be able to proceed until the current thread relinquishes the lock on this object. The awakened threads will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened threads enjoy no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.

Throws
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
Retrieves this key's ready-operation set.

It is guaranteed that the returned set will only contain operation bits that are valid for this key's channel.

Return
This key's ready-operation set
Throws
CancelledKeyException If this key has been cancelled
Returns the selector for which this key was created. This method will continue to return the selector even after the key is cancelled.

Return
This key's selector
Returns a string representation of the object. In general, the toString method returns a string that "textually represents" this object. The result should be a concise but informative representation that is easy for a person to read. It is recommended that all subclasses override this method.

The toString method for class Object returns a string consisting of the name of the class of which the object is an instance, the at-sign character `@', and the unsigned hexadecimal representation of the hash code of the object. In other words, this method returns a string equal to the value of:

 getClass().getName() + '@' + Integer.toHexString(hashCode())
 
Return
a string representation of the object.
Causes current thread to wait until another thread invokes the method or the method for this object. In other words, this method behaves exactly as if it simply performs the call wait(0).

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until another thread notifies threads waiting on this object's monitor to wake up either through a call to the notify method or the notifyAll method. The thread then waits until it can re-obtain ownership of the monitor and resumes execution.

As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait();
         ... // Perform action appropriate to condition
     }
 
This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.
Throws
IllegalMonitorStateExceptionif the current thread is not the owner of the object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.
Causes current thread to wait until either another thread invokes the method or the method for this object, or a specified amount of time has elapsed.

The current thread must own this object's monitor.

This method causes the current thread (call it T) to place itself in the wait set for this object and then to relinquish any and all synchronization claims on this object. Thread T becomes disabled for thread scheduling purposes and lies dormant until one of four things happens:

  • Some other thread invokes the notify method for this object and thread T happens to be arbitrarily chosen as the thread to be awakened.
  • Some other thread invokes the notifyAll method for this object.
  • Some other thread interrupts thread T.
  • The specified amount of real time has elapsed, more or less. If timeout is zero, however, then real time is not taken into consideration and the thread simply waits until notified.
The thread T is then removed from the wait set for this object and re-enabled for thread scheduling. It then competes in the usual manner with other threads for the right to synchronize on the object; once it has gained control of the object, all its synchronization claims on the object are restored to the status quo ante - that is, to the situation as of the time that the wait method was invoked. Thread T then returns from the invocation of the wait method. Thus, on return from the wait method, the synchronization state of the object and of thread T is exactly as it was when the wait method was invoked.

A thread can also wake up without being notified, interrupted, or timing out, a so-called spurious wakeup. While this will rarely occur in practice, applications must guard against it by testing for the condition that should have caused the thread to be awakened, and continuing to wait if the condition is not satisfied. In other words, waits should always occur in loops, like this one:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait(timeout);
         ... // Perform action appropriate to condition
     }
 
(For more information on this topic, see Section 3.2.3 in Doug Lea's "Concurrent Programming in Java (Second Edition)" (Addison-Wesley, 2000), or Item 50 in Joshua Bloch's "Effective Java Programming Language Guide" (Addison-Wesley, 2001).

If the current thread is interrupted by another thread while it is waiting, then an InterruptedException is thrown. This exception is not thrown until the lock status of this object has been restored as described above.

Note that the wait method, as it places the current thread into the wait set for this object, unlocks only this object; any other objects on which the current thread may be synchronized remain locked while the thread waits.

This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.

Parameters
timeoutthe maximum time to wait in milliseconds.
Throws
IllegalArgumentExceptionif the value of timeout is negative.
IllegalMonitorStateExceptionif the current thread is not the owner of the object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.
Causes current thread to wait until another thread invokes the method or the method for this object, or some other thread interrupts the current thread, or a certain amount of real time has elapsed.

This method is similar to the wait method of one argument, but it allows finer control over the amount of time to wait for a notification before giving up. The amount of real time, measured in nanoseconds, is given by:

 1000000*timeout+nanos

In all other respects, this method does the same thing as the method of one argument. In particular, wait(0, 0) means the same thing as wait(0).

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until either of the following two conditions has occurred:

  • Another thread notifies threads waiting on this object's monitor to wake up either through a call to the notify method or the notifyAll method.
  • The timeout period, specified by timeout milliseconds plus nanos nanoseconds arguments, has elapsed.

The thread then waits until it can re-obtain ownership of the monitor and resumes execution.

As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait(timeout, nanos);
         ... // Perform action appropriate to condition
     }
 
This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.
Parameters
timeoutthe maximum time to wait in milliseconds.
nanosadditional time, in nanoseconds range 0-999999.
Throws
IllegalArgumentExceptionif the value of timeout is negative or the value of nanos is not in the range 0-999999.
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.