ChoiceFormat
allows you to attach a format to a range of numbers.
It is generally used in a MessageFormat
for handling plurals.
The choice is specified with an ascending list of doubles, where each item
specifies a half-open interval up to the next item:
If there is no match, then either the first or last index is used, depending on whether the number (X) is too low or too high. If the limit array is not in ascending order, the results of formatting will be incorrect. ChoiceFormat also acceptsX matches j if and only if limit[j] <= X < limit[j+1]
\u221E
as equivalent to infinity(INF).
Note:
ChoiceFormat
differs from the other Format
classes in that you create a ChoiceFormat
object with a
constructor (not with a getInstance
style factory
method). The factory methods aren't necessary because ChoiceFormat
doesn't require any complex setup for a given locale. In fact,
ChoiceFormat
doesn't implement any locale specific behavior.
When creating a ChoiceFormat
, you must specify an array of formats
and an array of limits. The length of these arrays must be the same.
For example,
nextDouble
can be used to get the next higher double, to
make the half-open interval.)
Here is a simple example that shows formatting and parsing:
Here is a more complex example, with a pattern format:double[] limits = {1,2,3,4,5,6,7}; String[] monthNames = {"Sun","Mon","Tue","Wed","Thur","Fri","Sat"}; ChoiceFormat form = new ChoiceFormat(limits, monthNames); ParsePosition status = new ParsePosition(0); for (double i = 0.0; i <= 8.0; ++i) { status.setIndex(0); System.out.println(i + " -> " + form.format(i) + " -> " + form.parse(form.format(i),status)); }
double[] filelimits = {0,1,2}; String[] filepart = {"are no files","is one file","are {2} files"}; ChoiceFormat fileform = new ChoiceFormat(filelimits, filepart); Format[] testFormats = {fileform, null, NumberFormat.getInstance()}; MessageFormat pattform = new MessageFormat("There {0} on {1}"); pattform.setFormats(testFormats); Object[] testArgs = {null, "ADisk", null}; for (int i = 0; i < 4; ++i) { testArgs[0] = new Integer(i); testArgs[2] = testArgs[0]; System.out.println(pattform.format(testArgs)); }
Specifying a pattern for ChoiceFormat objects is fairly straightforward. For example:
And the output result would be like the following:ChoiceFormat fmt = new ChoiceFormat( "-1#is negative| 0#is zero or fraction | 1#is one |1.0<is 1+ |2#is two |2<is more than 2."); System.out.println("Formatter Pattern : " + fmt.toPattern()); System.out.println("Format with -INF : " + fmt.format(Double.NEGATIVE_INFINITY)); System.out.println("Format with -1.0 : " + fmt.format(-1.0)); System.out.println("Format with 0 : " + fmt.format(0)); System.out.println("Format with 0.9 : " + fmt.format(0.9)); System.out.println("Format with 1.0 : " + fmt.format(1)); System.out.println("Format with 1.5 : " + fmt.format(1.5)); System.out.println("Format with 2 : " + fmt.format(2)); System.out.println("Format with 2.1 : " + fmt.format(2.1)); System.out.println("Format with NaN : " + fmt.format(Double.NaN)); System.out.println("Format with +INF : " + fmt.format(Double.POSITIVE_INFINITY));
Format with -INF : is negative Format with -1.0 : is negative Format with 0 : is zero or fraction Format with 0.9 : is zero or fraction Format with 1.0 : is one Format with 1.5 : is 1+ Format with 2 : is two Format with 2.1 : is more than 2. Format with NaN : is negative Format with +INF : is more than 2.
Choice formats are not synchronized. It is recommended to create separate format instances for each thread. If multiple threads access a format concurrently, it must be synchronized externally.
format(double, StringBuffer, FieldPosition)
thus the range of longs that are supported is only equal to
the range that can be stored by double. This will never be
a practical limitation.
format
(obj,
new StringBuffer(), new FieldPosition(0)).toString();
This implementation extracts the number's value using
for all integral type values that
can be converted to long
without loss of information,
including BigInteger
values with a
bit length
of less than 64,
and
for all other types. It
then calls
or
.
This may result in loss of magnitude information and precision for
BigInteger
and BigDecimal
values.
AttributedCharacterIterator
.
You can use the returned AttributedCharacterIterator
to build the resulting String, as well as to determine information
about the resulting String.
Each attribute key of the AttributedCharacterIterator will be of type
Field
. It is up to each Format
implementation
to define what the legal values are for each attribute in the
AttributedCharacterIterator
, but typically the attribute
key is also used as the attribute value.
The default implementation creates an
AttributedCharacterIterator
with no attributes. Subclasses
that support fields should override this and create an
AttributedCharacterIterator
with meaningful attributes.
get*Instance
methods of this class can return
localized instances.
The array returned must contain at least a Locale
instance equal to Locale.US
.
The default implementation throws
UnsupportedOperationException
.
Used to make half-open intervals.
wait
methods.
The awakened thread will not be able to proceed until the current thread relinquishes the lock on this object. The awakened thread will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened thread enjoys no reliable privilege or disadvantage in being the next thread to lock this object.
This method should only be called by a thread that is the owner of this object's monitor. A thread becomes the owner of the object's monitor in one of three ways:
synchronized
statement
that synchronizes on the object.
Class,
by executing a
synchronized static method of that class.
Only one thread at a time can own an object's monitor.
wait
methods.
The awakened threads will not be able to proceed until the current thread relinquishes the lock on this object. The awakened threads will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened threads enjoy no reliable privilege or disadvantage in being the next thread to lock this object.
This method should only be called by a thread that is the owner
of this object's monitor. See the notify
method for a
description of the ways in which a thread can become the owner of
a monitor.
Number
.
The method attempts to parse text starting at the index given by
pos
.
If parsing succeeds, then the index of pos
is updated
to the index after the last character used (parsing does not necessarily
use all characters up to the end of the string), and the parsed
number is returned. The updated pos
can be used to
indicate the starting point for the next call to this method.
If an error occurs, then the index of pos
is not
changed, the error index of pos
is set to the index of
the character where the error occurred, and null is returned.
The default implementation throws
UnsupportedOperationException
.
toString
method returns a string that
"textually represents" this object. The result should
be a concise but informative representation that is easy for a
person to read.
It is recommended that all subclasses override this method.
The toString
method for class Object
returns a string consisting of the name of the class of which the
object is an instance, the at-sign character `@
', and
the unsigned hexadecimal representation of the hash code of the
object. In other words, this method returns a string equal to the
value of:
getClass().getName() + '@' + Integer.toHexString(hashCode())
The current thread must own this object's monitor. The thread
releases ownership of this monitor and waits until another thread
notifies threads waiting on this object's monitor to wake up
either through a call to the notify
method or the
notifyAll
method. The thread then waits until it can
re-obtain ownership of the monitor and resumes execution.
As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:
synchronized (obj) { while (<condition does not hold>) obj.wait(); ... // Perform action appropriate to condition }This method should only be called by a thread that is the owner of this object's monitor. See the
notify
method for a
description of the ways in which a thread can become the owner of
a monitor.The current thread must own this object's monitor.
This method causes the current thread (call it T) to place itself in the wait set for this object and then to relinquish any and all synchronization claims on this object. Thread T becomes disabled for thread scheduling purposes and lies dormant until one of four things happens:
A thread can also wake up without being notified, interrupted, or timing out, a so-called spurious wakeup. While this will rarely occur in practice, applications must guard against it by testing for the condition that should have caused the thread to be awakened, and continuing to wait if the condition is not satisfied. In other words, waits should always occur in loops, like this one:
synchronized (obj) { while (<condition does not hold>) obj.wait(timeout); ... // Perform action appropriate to condition }(For more information on this topic, see Section 3.2.3 in Doug Lea's "Concurrent Programming in Java (Second Edition)" (Addison-Wesley, 2000), or Item 50 in Joshua Bloch's "Effective Java Programming Language Guide" (Addison-Wesley, 2001).
If the current thread is interrupted by another thread while it is waiting, then an InterruptedException is thrown. This exception is not thrown until the lock status of this object has been restored as described above.
Note that the wait method, as it places the current thread into the wait set for this object, unlocks only this object; any other objects on which the current thread may be synchronized remain locked while the thread waits.
This method should only be called by a thread that is the owner
of this object's monitor. See the notify
method for a
description of the ways in which a thread can become the owner of
a monitor.
This method is similar to the wait
method of one
argument, but it allows finer control over the amount of time to
wait for a notification before giving up. The amount of real time,
measured in nanoseconds, is given by:
1000000*timeout+nanos
In all other respects, this method does the same thing as the method of one argument. In particular, wait(0, 0) means the same thing as wait(0).
The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until either of the following two conditions has occurred:
notify
method
or the notifyAll
method.
timeout
milliseconds plus nanos
nanoseconds arguments, has
elapsed.
The thread then waits until it can re-obtain ownership of the monitor and resumes execution.
As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:
synchronized (obj) { while (<condition does not hold>) obj.wait(timeout, nanos); ... // Perform action appropriate to condition }This method should only be called by a thread that is the owner of this object's monitor. See the
notify
method for a
description of the ways in which a thread can become the owner of
a monitor.